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Clinical applications of artificial neural networks

ArtiWcial neural networks provide a powerful tool to help doctors to analyse, model and make

sense of complex clinical data across a broad range of medical applications. Their potential in

clinical medicine is reXected in the diversity of topics covered in this cutting-edge volume. In

addition to looking at new and forthcoming applications the book looks forward to exciting

future prospects on the horizon. A section on theory looks at approaches to validate and reWne

the results generated by artiWcial neural networks. The volume also recognizes that concerns

exist about the use of ‘black-box’ systems as decision aids in medicine, and the Wnal chapter

considers the ethical and legal conundrums arising out of their use for diagnostic or treatment

decisions. Taken together, this eclectic collection of chapters provides an exciting overview of

current and future prospects for harnessing the power of artiWcial neural networks in the

investigation and treatment of disease.
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His main research interest is the application of statistics (including data visualization) and

formal logics to medical informatics and bioinformatics.
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Introduction

Richard Dybowski and Vanya Gant

In this introduction we outline the types of neural network featured in this book

and how they relate to standard statistical methods. We also examine the issue of

the so-called ‘black-box’ aspect of neural network and consider some possible

future directions in the context of clinical medicine. Finally, we overview the

remaining chapters.

A few evolutionary branches

The structure of the brain as a complex network of multiply connected cells

(neural networks) was recognized in the late 19th century, primarily through the

work of the Italian cytologist Golgi and the Spanish histologist Ramón y Cajal.1

Within the reductionist approach to cognition (Churchland 1986), there appeared

the question of how cognitive function could be modelled by artiWcial versions of

these biological networks. This was the initial impetus for what has become a

diverse collection of computational techniques known as artiWcial neural networks

(ANNs).

The design of artiWcial neural networks was originally motivated by the phe-

nomena of learning and recognition, and the desire to model these cognitive

processes. But, starting in the mid-1980s, a more pragmatic stance has emerged,

and ANNs are now regarded as non-standard statistical tools for pattern recogni-

tion. It must be emphasized that, in spite of their biological origins, they are not

‘computers that think’, nor do they perform ‘brain-like’ computations.

The ‘evolution’ of artiWcial neural networks is divergent and has resulted in a

wide variety of ‘phyla’ and ‘genera’. Rather than examine the development of every

branch of the evolutionary tree, we focus on those associated with the types of

ANN mentioned in this book, namely multilayer perceptrons (Chapters 2–8,

10–13), radial basis function networks (Chapter 12), Kohonen feature maps

(Chapters 2, 5), adaptive resonance theory networks (Chapters 2, 9), and neuro-

fuzzy networks (Chapters 10, 12).

We have not set out to provide a comprehensive tutorial on ANNs; instead, we



Figure 1.1. A graphical representation of a McCulloch–Pitts neuron, and also of a single-layer percep-
tron. In the former, a discontinuous step function is applied to the weighted sum
w0 + w1x1 + · · · + wd xd to produce the output y; in the latter, the step function is replaced by a
continuous sigmoidal function.
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have suggested sources of information throughout the text, and we have provided

some recommended reading in Appendix 1.1.

Multilayer perceptrons

At the start of the 20th century, a number of general but non-mathematical

theories of cognition existed, such as those of Helmholtz and Pavlov. At the

University of Pittsburgh in the 1920s, Nicolas Rashevsky, a physicist, began a

research programme to place biology within the framework of mathematical

physics. This involved a number of projects, including an attempt to mathemat-

ically model Pavlovian conditioning in terms of neural networks (Rashevsky

1948). He continued his work at the University of Chicago, where he was joined by

Warren McCulloch, a neuroanatomist, and then, in 1942, by a mathematical

prodigy called Walter Pitts. Together, McCulloch & Pitts (1943) devised a simple

model of the neuron. In this model (Figure 1.1), the input signals x
1
, . . ., x

d
to a

neuron are regarded as a weighted sum w
0
+ w

1
x

1
+ · · · + w

d
x

d
. If the sum exceeds a

predeWned threshold value, the output signal y from the neuron equals 1; other-

wise, it is 0. However, a McCulloch–Pitts neuron by itself is capable only of simple

tasks, namely discrimination between sets of input values separable by a (possibly

multidimensional) plane. Furthermore, the weights required for the neurons of a

network had to be provided as no method for automatically determining the

weights was available at that time.

Rosenblatt (1958) proposed that the McCulloch–Pitts neuron could be the basis

of a system able to distinguish between patterns originating from diVerent classes.

The system, which he dubbed a perceptron, was a McCulloch–Pitts neuron with

preprocessed inputs.2 Motivated by Hebb’s (1949) hypothesis that learning is

based on the reinforcement of active neuronal connections, Rosenblatt (1960,



Figure 1.2. A multilayer perceptron with two layers of weights. The first layer of nodes, which receive the
inputs x1, . . ., xd , is called the input layer. The layer of nodes producing the output values is
called the output layer. Layers of nodes between the input and output layers are referred to
as hidden layers. The weighted sum hj at the j-th hidden node is given by
w(1)

0, j
+ w(1)

1, j
+ · · · w (1)

d, j
xd. The value from the j-th hidden node to the output node is a function fhid

of hj, and the output y(x; w) is a function of fout of the weighted sum
w(2)

0
+ w (2)

1
fhid(h1) + · · · + w (2)

m
fhid(hm). Functions fhid and fout are typically sigmoidal. Note that a

multilayer perceptron can have more than one layer of hidden nodes and more than one
node providing output values.

3 Introduction

1962) developed the perceptron learning rule and its associated convergence theo-

rem. This solved the problem of a McCulloch–Pitts neuron ‘learning’ a set of

weights. A number of workers (e.g. Block 1962) proved that the learning rule,

when applied to a perceptron consisting of only a single layer of weights, would

always modify the weights so as to give the optimal planar decision boundary

possible for that perceptron.

Multilayer perceptrons (MLPs) are perceptrons having more than one layer of

weights (Figure 1.2), which enables them to produce complex decision bound-

aries. Unfortunately, as pointed out by Minsky & Papert (1969), the perceptron

learning rule did not apply to MLPs,3 a fact that severely limited the types of

problem to which perceptrons could be applied. This caused many researchers to

leave the Weld, thereby starting the ‘Dark Ages’ of neural networks, during which

little research was done. The turning point came in the mid-1980s when the

back-propagation algorithm for training multilayer perceptrons was discovered

independently by several researchers (LeCun 1985; Parker 1985; Rumelhart et al.

1986).4 This answered the criticisms of Minsky & Papert (1969), and the Renais-

sance of neural networks began.

Multilayer perceptrons with sigmoidal hidden node functions are the most

commonly used ANNs, as exempliWed by the contributions to this book and the

reviews by Baxt (1995) and Dybowski & Gant (1995). Each hidden node in Figure

1.2 produces a hyperplane boundary in the multidimensional space containing the

input data. The output node smoothly interpolates between these boundaries to

give decision regions of the input space occupied by each class of interest. With a
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single logistic output unit, MLPs can be viewed as a non-linear extension of

logistic regression, and, with two layers of weights, they can approximate any

continuous function (Blum & Li 1991).5 Although training an MLP by back-

propagation can be a slow process, there are faster alternatives such as Quickprop

(Fahlman 1988).

A particularly eloquent discussion of MLPs is given by Bishop (1995, Chap. 4)

in his book Neural Networks for Pattern Recognition.

A statistical perspective on multilayer perceptrons

The genesis and renaissance of ANNs took place within various communities, and

articles published during this period reXect the disciplines involved: biology and

cognition, statistical physics, and computer science. But it was not until the early

1990s that a probability-theoretic perspective emerged, with Bridle (1991), Ripley

(1993), Amari (1993) and Cheng & Titterington (1994) being amongst the Wrst to

regard ANNs as being within the framework of statistics. The statistical aspect of

ANNs has also been highlighted in textbooks by Smith (1993), Bishop (1995) and

Ripley (1996).

A recurring theme of this literature is that many ANNs are analogous to, or

identical with, existing statistical techniques. For example, a popular statistical

method for modelling the relationship between a binary response variable y and a

vector (an ordered set) of covariates x is logistic regression (Hosmer & Lemeshow

1989; Collett 1991), but consider the single-layer perceptron of Figure 1.1:

y(x; w) = f
outAw

0
+

d

;
i=1

w
i
x

iB . (1.1)

If the output function f
out

of Eq. (1.1) is logistic,

f
out

(r) = 1 + exp[ − (r)]−1,

(where r is any value) and the perceptron is trained by a cross-entropy error

function, Eq. (1.1) will be functionally identical with a main-eVects logistic

regression model

p̂(y = 1 D x) =G1 + expC− (b̂
0
+

d

;
i=1

b̂
i
x

i
)DH

−1

.

Using the notation of Figure 1.2, the MLP can be written as

y(x; w) = f
outAw (2)

0
+

m

;
j=1

w (2)
j

f
hidAw(1)

0,j
+

d

;
i=1

w(1)
i,j

x
iBB , (1.2)

but Hwang et al. (1994) have indicated that Eq. (1.2) can be regarded as a



5 Introduction

particular type of projection pursuit regression model when f
out

is linear:

y(x; w) = v
0
+

m

;
j=1

v
j
f
jAu

0,j
+

d

;
i=1

u
i,j

x
iB . (1.3)

Projection pursuit regression (Friedman & Stuetzle 1981) is an established statistical

technique and, in contrast to an MLP, each function f
j
in Eq. (1.3) can be diVerent,

thereby providing more Xexibility.6 However, Ripley and Ripley (Chapter 11)

point out that the statistical algorithms for Wtting projection pursuit regression are

not as eVective as those for Wtting MLPs.

Another parallel between neural and statistical models exists with regard to the

problem of overWtting. In using an MLP, the aim is to have the MLP generalize

from the data rather than have it Wt to the data (overWtting). OverWtting can be

controlled for by adding a regularization function to the error term (Poggio et al.

1985). This additional term penalizes an MLP that is too Xexible. In statistical

regression the same concept exists in the form of the Akaike information criterion

(Akaike 1974). This is a linear combination of the deviance and the number of

independent parameters, the latter penalizing the former. Furthermore, when

regularization is implemented using weight decay (Hinton 1989), a common

approach, the modelling process is analogous to ridge regression (Montgomery &

Peck 1992, pp. 329–344) – a regression technique that can provide good generaliz-

ation.

One may ask whether the apparent similarity between ANNs and existing

statistical methods means that ANNs are redundant within pattern recognition.

One answer to this is given by Ripley (1996, p. 4):

The traditional methods of statistics and pattern recognition are either parametric based on a
family of models with a small number of parameters, or non-parametric in which the models
used are totally flexible. One of the impacts of neural network methods on pattern recogni-
tion has been to emphasize the need in large-scale practical problems for something in
between, families of models with large but not unlimited flexibility given by a large number of
parameters. The two most widely used neural network architectures, multi-layer perceptrons
and radial basis functions (RBFs), provide two such families (and several others already in
existence).

In other words, ANNs can act as semi-parametric classiWers, which are more

Xexible than parametric methods (such as the quadratic discriminant function

(e.g. Krzanowski 1988)) but require fewer model parameters than non-parametric

methods (such as those based on kernel density estimation (Silverman 1986)).

However, setting up a semi-parametric classiWer can be more computationally

intensive than using a parametric or non-parametric approach.

Another response is to point out that the widespread fascination for ANNs has
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attracted many researchers and potential users into the realm of pattern recogni-

tion. It is true that the neural-computing community rediscovered some statistical

concepts already in existence (Ripley 1996), but this inXux of participants has

created new ideas and reWned existing ones. These beneWts include the learning of

sequences by time delay and partial recurrence (Lang & Hinton 1988; Elman 1990)

and the creation of powerful visualization techniques, such as generative topo-

graphic mapping (Bishop et al. 1997). Thus the ANN movement has resulted in

statisticians having available to them a collection of techniques to add to their

repertoire. Furthermore, the placement of ANNs within a statistical framework

has provided a Wrmer theoretical foundation for neural computation, and it has

led to new developments such as the Bayesian approach to ANNs (MacKay 1992).

Unfortunately, the rebirth of neural networks during the 1980s has been

accompanied by hyperbole and misconceptions that have led to neural networks

being trained incorrectly. In response to this, Tarassenko (1995) highlighted three

areas where care is required in order to achieve reliable performance: Wrstly, there

must be suYcient data to enable a network to generalize eVectively; secondly,

informative features must be extracted from the data for use as input to a network;

thirdly, balanced training sets should be used for underrepresented classes (or

novelty detection used when abnormalities are very rare (Tarassenko et al. 1995)).

Tarassenko (1998) discussed these points in detail, and he stated:

It is easy to be carried away and begin to overestimate their capabilities. The usual conse-
quence of this is, hopefully, no more serious than an embarrassing failure with concomitant
mutterings about black boxes and excessive hype. Neural networks cannot solve every
problem. Traditional methods may be better. Nevertheless, neural networks, when they are
used wisely, usually perform at least as well as the most appropriate traditional method and
in some cases significantly better.

It should also be emphasized that, even with correct training, an ANN will not

necessarily be the best choice for a classiWcation task in terms of accuracy. This has

been highlighted by Wyatt (1995), who wrote:

Neural net advocates claim accuracy as the major advantage. However, when a large
European research project, StatLog, examined the accuracy of five ANN and 19 traditional
statistical or decision-tree methods for classifying 22 sets of data, including three medical
datasets [Michie et al. 1994], a neural technique was the most accurate in only one dataset,
on DNA sequences. For 15 (68%) of the 22 sets, traditional statistical methods were the most
accurate, and those 15 included all three medical datasets.

But one should add the comment made by Michie et al. (1994, p. 221) on the

results of the StatLog project:

With care, neural networks perform very well as measured by error rate. They seem to provide
either the best or near best predictive performance in nearly all cases . . .



Figure 1.3. A radial basis function network. The network has a single layer of basis functions between the
input and output layers. The value of /j produced by the j-th basis function is dependent on
the distance between the ‘centre’ x [j] of the function and the vector of input values x1, . . ., xd .
The output y(x; w) is the weighted sum w0 + w1/1 + · · · + wm/m. Note that a radial basis
function network can have more than one output node, and the functions /1, . . ., /m need not
be the same.

7 Introduction

Nevertheless,when an ANN is being evaluated, its performance must be compared

with that obtained from one or more appropriate standard statistical techniques.

Radial basis function networks

Unlike MLPs, a number of so-called ‘neural networks’ were not biologically

motivated, and one of these is the radial basis function network. Originally

conceived in order to perform multivariate interpolation (Powell 1987), radial

basis function networks (RBFNs) (Broomhead & Lowe 1988) are an alternative to

MLPs. Like an MLP, an RBFN has input and output nodes; but there the similarity

ends, for an RBFN has a middle layer of radially symmetric functions called basis

functions, each of which can be designed separately (Figure 1.3). The idea of using

basis functions originates from the concept of potential functions proposed by

Bashkirov et al. (1964) and illustrated by Duda & Hart (1973).

Each basis function can be regarded as being centred on a prototypic vector of

input values. When a vector of values is applied to an RBFN, a measure of the

proximity of the vector to each of the prototypes is determined by the correspond-

ing basis functions, and a weighted sum of these measures is given as the output of

the RBFN (Figure 1.3).

The basis functions deWne local responses (receptive Welds) (Figure 1.4). Typi-

cally, only some of the hidden units (basis functions) produce signiWcant values

for the Wnal layers. This is why RBFNs are sometimes referred to as localized

receptive Weld networks. In contrast, all the hidden units of an MLP are involved in

determining the output from the network (they are said to form a distributed

representation). The receptive Weld approach can be advantageous when the



Figure 1.4. Schematic representation of possible decision regions created by (a) the hyperplanes of a
multilayer perceptron, and (b) the kernel functions of a radial basis function network. The
circles and crosses represent data points from two respective classes.

8 R. Dybowski and V. Gant

distribution of the data in the space of input values is multimodal (Wilkins et al.

1994). Furthermore, RBFNs can be trained more quickly than MLPs (Moody &

Darken 1989), but the number of basis functions required can grow exponentially

with the number of input nodes (Hartman et al. 1990), and an increase in the

number of basis functions increases the time taken, and amount of data required,

to train an RBFN adequately.

Under certain conditions (White 1989; Lowe & Webb 1991; Nabney 1999), an

RBFN can act as a classiWer. An advantage of the local nature of RBFNs compared

with MLP classiWers is that a new set of input values that falls outside all the

localized receptor Welds could be Xagged as not belonging to any of the classes

represented. In other words, the set of input values is novel. This is a more

cautious approach than the resolute classiWcation that can occur with MLPs, in

which a set of input values is always assigned to a class, irrespective of the values.

For further details on RBFNs, see Bishop (1995, Chap. 5).

A statistical perspective on radial basis function networks

A simple linear discriminant function (Hand 1981, Chap. 4) has the form

g(x) = w
0
+

d

;
i=1

w
i
x

i
. (1.4)

with x assigned to a class of interest if g(x) is greater than a predeWned constant.

This provides a planar decision surface and is functionally equivalent to the

McCulloch–Pitts neuron. Equation (1.4) can be generalized to a linear function of

functions, namely a generalized linear discriminant function

g(x) = w
0
+

m

;
i=1

w
i
f (x), (1.5)
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which permits the construction of non-linear decision surfaces. If we represent an

RBFN by the expression

g(x) = w
0
+

m

;
i=1

w
i
/

i
( E x − x[i] E ), (1.6)

where E x − x[i] E denotes the distance (usually Euclidean) between input vector x
and the ‘centre’ x[i] of the i-th basis function /

i
, comparison of Eq. (1.5) with Eq.

(1.6) shows that an RBFN can be regarded as a type of generalized linear

discriminant function.

Multilayer perceptrons and RBFNs are trained by supervised learning. This

means that an ANN is presented with a set of examples, each example being a pair

(x, t), where x is a vector of input values for the ANN, and t is the corresponding

target value, for example a label denoting the class to which x belongs. The training

algorithm adjusts the parameters of the ANN so as to minimize the discrepancy

between the target values and the outputs produced by the network.

In contrast to MLPs and RBFNs,the ANNs in the next two sections are based on

unsupervised learning. In unsupervised learning, there are no target values avail-

able, only input values, and the ANN attempts to categorize the inputs into classes.

This is usually done by some form of clustering operation.

Kohonen feature maps

Many parts of the brain are organized in such a way that diVerent sensory inputs

are mapped to spatially localized regions within the brain. Furthermore, these

regions are represented by topologically ordered maps. This means that the greater

the similarity between two stimuli, the closer the location of their corresponding

excitation regions. For example, visual, tactile and auditory stimuli are mapped

onto diVerent areas of the cerebral cortex in a topologically ordered manner

(Hubel & Wiesel 1977; Kaas et al. 1983; Suga 1985). Kohonen (1982) was one of a

group of people (others include Willshaw & von der Malsburg (1976)) who

devised computational models of this phenomenon.

The aim of Kohonen’s (1982) self-organizing feature maps (SOFMs) is to map an

input vector to one of a set of neurons arranged in a lattice, and to do so in such a

way that positions in input space are topologically ordered with locations on the

lattice. This is done using a training set of input vectors n(1), . . ., n(m) and a set of

prototype vectors w(1), . . ., w(n) in input space. Each prototype vector w(i) is

associated with a location S(i) on (typically) a lattice (Figure 1.5).

As the SOFM algorithm presents each input vector n to the set of prototype

vectors, the vector w(i*) nearest to n is moved towards n according to a learning



Figure 1.5. A graphical depiction of Kohonen’s self-organizing feature map. See pp. 9–10 for an
explanation. The lattice is two-dimensional, whereas data point (input vector) n and proto-
type vectors w(i*) and w(h) reside in a higher-dimensional (input) space.
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rule. In doing so, the algorithm also ‘drags’ towards n (but to a lesser extent) those

prototype vectors whose associated locations on the lattice are closest to S(i*),

where S(i*) is the lattice location associated with w(i*). For example, w(h) in

Figure 1.5 is dragged along with w(i*) towards n. Hertz et al. (1991) likened this

process to an elastic net, existing in input space, which wants to come as close as

possible to n(1), . . ., n(m). The coordinates of the intersections of the elastic net

are deWned by the prototype vectors w(1), . . ., w(n). If successful, two locations

S(j) and S(k) on the lattice will be closer to each other the closer their associated

prototype vectors w(j) and w(k) are positioned in input space.

The SOFM algorithm provides a means of visualizing the distribution of data

points in input space, but, as pointed out by Bishop (1995), this can be weak if the

data do not lie within a two-dimensional subspace of the higher-dimensional

space containing the data. Another problem with SOFM is that the ‘elastic net’

could twist as it moves towards the training set, resulting in a distorted visualiz-

ation of the data (e.g. Hagan et al. 1996).

For those wishing to know more about SOFMs, we recommend the book

Neural Computation and Self-Organizing Maps by Ritter et al. (1992).

Adaptive resonance theory networks

A feature of cognitive systems is that they can be receptive to new patterns

(described as plasticity) but remain unchanged to others (described as stability).
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The vexing question of how this is possible was referred to as the stability/plasticity

dilemma (Grossberg 1976), but Carpenter & Grossberg (1987) developed a theory

called adaptive resonance theory (ART) to explain this phenomenon.

In terms of design, ART networks are the most complex ANN given in this

book, yet the principle is quite straightforward. Caudill & Butler (1990) regard the

process as a type of hypothesis test. A pattern presented at an input layer is passed

to a second layer, which is interconnected to the Wrst. The second layer makes a

guess about the category to which the original pattern belongs, and this hypotheti-

cal identity is passed back to the Wrst layer. The hypothesis is compared with the

original pattern and, if found to be a close match, the hypothesis and original

pattern reinforce each other (resonance is said to take place). But if the hypothesis

is incorrect, the second layer produces another guess. If the second layer cannot

eventually provide a good match with the pattern, the original pattern is learned as

the Wrst example of a new category.

Although ART provides unsupervised learning, an extension called ARTMAP

(Carpenter et al. 1991) combines two ART modules to enable supervised learning

to take place.

In spite of resolving the stability/plasticity dilemma, the ART algorithms are

sensitive to noise (Moore 1989). Furthermore, Ripley (1996) questions the virtue

of the ART algorithms over adaptive k-means clustering, such as that of Hall &

Khanna (1977).

Details of the ART concept are provided by Beale & Jackson (1990, Chap. 7) and

Hertz, Krogh & Palmer (1991, pp. 228–32).

Neuro-fuzzy networks

Although probability theory is the classic approach to reasoning with uncertainty,

Zadeh (1962) argued that there exist linguistic terms, such as ‘most’ and ‘approxi-

mate’, which are not describable in terms of probability distributions. He then set

about developing a mathematical framework called fuzzy set theory (Zadeh 1965)

to reason with such qualitative expressions. In classical set theory, an object is

either a member of a set or it is not; in fuzzy set theory, grades of membership are

allowed, the degree of membersship being deWned by a membership function.

At a time when representation of knowledge was a focal point in artiWcial

intelligence research, Zadeh (1972) suggested that control expertise could be

represented using a set of linguistic if–then rules acquired from an operator. In his

scheme, execution of the resulting fuzzy controller would be based on the formal

rules of fuzzy set theory. But this left the problem of deWning the membership

functions incorporated in a fuzzy system.

A neuro-fuzzy system determines the parameters of the membership functions of
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a fuzzy system from examples by means of a neural network. Either the fuzzy

system and the neural network are two distinct entities (collaborative neuro-fuzzy

systems; e.g. Nomura et al. 1992) or the fuzzy system has a neural-net-like

architecture (a hybrid neuro-fuzzy system). The various types of hybrid neuro-

fuzzy system include systems analogous to MLPs (Berenji 1992), to RBFNs (Dabija

& Tschichold-Gürman 1993), and to Kohonen feature maps (Pedrycz & Card

1992).

More information on neuro-fuzzy networks can be found in the textbook

Foundations of Neuro-Fuzzy Systems by Nauck et al. (1997).

The ‘black-box’ issue

A criticism levelled against neural networks is that they are ‘black-box’ systems

(Sharp 1995; Wyatt 1995). By this it is meant that the manner in which a neural

network derives an output value from a given feature vector is not comprehensible

to the non-specialist, and that this lack of comprehension makes the output from

neural networks unacceptable. This issue is encountered several times in this book,

namely in Chapters 9, 12, and 14.

There are a number of properties that we desire in a model, two of which are

accuracy (the ‘closeness’ of a model’s estimated value to the true value) and

interpretability. By interpretability, we mean the type of input–output relation-

ships that can be extracted from a model and are comprehensible to the intended

user of the model. At least three types of interpretation can be identiWed:

1. A summary of how a change in each input variable aVects the output value.

This type of interpretation is provided by the regression coeYcients of a

main-eVects logistic regression model (Hosmer & Lemeshow 1989), a virtue of

additive models in general (Plate 1998).

2. A summary of all possible input–output relationships obtainable from the

model as a Wnite set of if–then rules. This sort of interpretation is provided by

all the root-to-leaf paths present in a tree-structured classiWer (Breiman et al.

1984; Buntine 1992).

3. A sequential explanation that shows how the output value provided by a model

was obtained from a given input vector. The explanation uses a chain of

inference with steps that are meaningful to the user of the model. Such an

explanation is provided by a most probable conWguration in Bayesian belief

networks (Jensen 1996, pp. 104–107).

An interpretable model is advantageous for several reasons:

It could be educational by supplying a previously unknown but useful input–

output summary. This, in turn, can lead to new areas of research.



13 Introduction

It could disclose an error in the model when an input–output summary or

explanation contradicts known facts.

Does the lack of interpretability, as deWned above, make a model unacceptable?

That depends on the purpose of the model. Suppose that the choice of a statistical

model for a given problem is reasonable (on theoretical or heuristic grounds), and

an extensive empirical assessment of the model (e.g. by cross-validation and

prospective evaluation) shows that its parameters provide an acceptable degree of

accuracy over a wide range of input vectors. The use of such a model for prediction

would generally be approved, subject to a performance-monitoring policy. Why

not apply the same reasoning to neural networks, which are, after all, non-

standard statistical models?

But suppose that we are interested in knowledge discovery (Brachman & Anand

1996); by this we mean the extraction of previously unknown but useful informa-

tion from data. With a trained MLP, it is very diYcult to interpret the mass of

weights and connections within the network, and the interactions implied by

these. The goal of rule extraction (Chapter 12) is to map the (possibly complex)

associations encoded by the functions and parameters of an ANN to a set of

comprehensible if–then rules. If successful, such a mapping would lead to an

interpretable collection of statements describing the associations discovered by the

ANN.

New developments and future prospects

What have ANNs got to oVer medicine in the future? The answer is not so much

whether they can, but how far they can be used to solve problems of clinical

relevance – and whether this will be considered acceptable. Medicine is a complex

discipline, but the ability of ANNs to model complexity may prove to be reward-

ing. Complexity in this context can be broken down into three elements, each with

very diVerent parameters and requirements.

The Wrst is in many ways the ‘purest’ and yet the most impenetrable, and

concerns the complexity of individual cells. After the initial Xush of enthusiasm,

and the perceived empowerment and promise brought about by the revolution of

molecular biology, it soon became apparent that a seemingly endless stream of

data pertaining to genetic sequence was of little avail in itself. We have begun to

come to terms with the extraordinary number of genes making up the most basic

of living organisms. Added to this is the growing realization that these genes,

numbered in their thousands in the simplest of living organisms, interact with

each other both at the level of the genome itself, and then at the level of their

protein products. Therefore, a fundamental diYculty arises in our ability to
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understand such processes by ‘traditional’ methods. This tension has generated

amongst others the discipline of reverse genomics (Oliver 1997), which attempts

to impute function to individual genes with known and therefore penetrable

sequences in the context of seemingly impenetrable complex living organisms. At

the time of writing, the potential of such mathematical methods to model these

interactions at the level of the single cell remains unexplored. ANNs may allow

complex biological systems to be modelled at a higher level, through thoughtful

experimental design and novel data derived from increasingly sophisticated tech-

niques of physical measurement. Any behaviour at the single cell level productive-

ly modelled in this way may have fundamental consequences for medicine.

The second level concerns individual disease states at the level of individual

human beings. The cause for many diseases continues to be ascribed (if not

understood) to the interaction between individuals and their environment. One

example here might be the variation in human response to infection with a

virulent pathogen, where one individual whose (genetically determined) immune

system has been programmed by his environment (Rook & Stanford 1998), may

live or die depending on how the immune system responds to the invader.

Complex data sets pertaining to genetic and environmental aspects in the life-or-

death interaction may be amenable to ANN modelling techniques. This question

of life or death after environmental insult has already been addressed using ANNs

in the ‘real’ context of outcome in intensive care medicine (e.g. Dybowski et al.

1996). We see no reason why such an approach cannot be extended to questions of

epidemiology. For example, genetic and environmental factors contributing to the

impressive worldwide variation in coronary heart disease continue to be identiWed

(Criqui & Ringel 1994), yet how these individual factors interact continues to

elude us. An ANN approach to such formally unresolved questions, when coupled

with rule extraction (Chapter 12), may reveal the exact nature and extent of

risk-factor interaction.

The third level concerns the analysis of clinical and laboratory observations and

disease. Until we have better tools to identify those molecular elements responsible

for the disease itself, we rely on features associated with them whose relationship

to disease remains unidentiWed and, at best, ‘second hand’. Examples in the real

world of clinical medicine include X-ray appearances suggestive of infection rather

than tumour (Medina et al. 1994), and abnormal histological reports of uncertain

signiWcance (PRISMATIC project management team 1999). Until the discipline of

pathology reveals the presence or absence of such abnormality at the molecular

level, many pathological Wndings continue to be couched in probabilistic terms;

however, ANNs have the potential of modelling the complexity of the data at the

supramolecular level. We note some progress in at least two of these areas: the

screening of cytological specimens, and the interpretation of Xow-cytometric data.
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Clinical pathology laboratories are being subjected to an ever-increasing work-

load. Much of the data received by these laboratories consists of complex Wgures,

such as cytological specimens – objects traditionally interpreted by experts – but

experts are a limited resource. The success of using ANNs to automate the

interpretation of such objects has been illustrated by the PAPNET screening

system (Chapter 3), and we expect that the analysis of complex images by ANNs

will increase with demand.

We now switch to a diVerent channel in our crystal ball and consider three

relatively new branches on the evolutionary tree of neural computation, all of

which could have an impact on clinically oriented ANNs. The Wrst of these is

Bayesian neural computation, the second is support vector machines, and the

third is graphical models.

Bayesian neural computation

Whereas classical statistics attempts to draw inferences from data alone, Bayesian

statistics goes further by allowing data to modify prior beliefs (Lee 1997). This is

done through the Bayesian relationship

p(m D D) P p(m)p(D D m),

where p(m) is the prior probability of a statement m, and p(m D D) is the posterior

probability of m following the observation of data D. Another feature of Bayesian

inference, and one of particular relevance to ANNs, is that unknown parameters

such as network weights w can be integrated out, for example

p(C D x, D) =Pw

p(C D x, w)p(w D D)dw,

where p(C D x, w) is the probability of class C given input x and weights w, and

p(w D D) is the posterior probability distribution of the weights.

The Bayesian approach has been applied to various aspects of statistics (Gelman

et al. 1995), including ANNs (MacKay 1992). Advantages to neural computation

of the Bayesian framework include:

a principled approach to Wtting an ANN to data via regularization (Buntine &

Weigend 1991),

allowance for multiple solutions to the training of an MLP by a committee of

networks (Perrone & Cooper 1993),

automatic selection of features to be used as input to an MLP (automatic relevance

determination (Neal 1994; MacKay 1995)).

Bayesian ANNs have not yet found their way into general use, but, given their
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capabilities, we expect them to take a prominent role in mainstream neural

computation.

Because of its intrinsic mathematical content, we will not give a detailed

account of the Bayesian approach to neural computation in this introduction;

instead, we refer the interested reader to Bishop (1995, Chap. 10).

Support vector machines

Although the perceptron learning rule (see p. 3) is able to position a planar

decision boundary between two linearly separable classes, the location of the

boundary may not be optimal as regards the classiWcation of future data points.

However, if a single-layer perceptron is trained with the iterative adatron algo-

rithm (Anlauf & Biehl 1989), the resulting planar decision boundary will be

optimal.

It can be shown that the optimal position for a planar decision boundary is that

which maximizes the Euclidean distance between the boundary and the nearest

exemplars to the boundary from the two classes (the support vectors) (see e.g.

Vapnik 1995).

One way of regarding an RBFN is as a system in which the basis functions

collectively map the space of input values to an auxiliary space (the feature space),

whereupon a single-layer perceptron is trained on points in feature space originat-

ing from the training set. If the perceptron can be trained with a version of the

adatron algorithm suitable for points residing in feature space then the perceptron

will have been trained optimally. Such an iterative algorithm exists (the kernel

adatron algorithm; Friess & Harrison 1998), and the resulting network is a support

vector machine. Vapnik (1995) derived a non-iterative algorithm for this optimiz-

ation task, and it is his algorithm that is usually associated with support vector

machines. A modiWcation of the procedure exists for when the points in feature

space are not linearly separable.

In order to maximize the linear separability of the points in feature space, a basis

function is centred on each data point, but the resulting support vector machine

eVectively uses only those basis functions associated with the support vectors and

ignores the rest. Further details about support vector machines can be found in the

book by Cristianini & Shawe-Taylor (2000).

Neural networks as graphical models

Within mathematics and the mathematical sciences, it can happen that two

disciplines, developed separately, are brought together. We are witnessing this

type of union between ANNs and graphical models.

A (probabilistic) graphical model is a graphical representation (in the graph-

theoretic sense (Wilson 1985)) of the joint probability distribution p(X
1
, . . ., X

n
)
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over a set of variables X
1
, . . ., X

n
(Buntine 1994).7 Each node of the graph corre-

sponds to a variable, and an edge between two nodes implies a probabilistic

dependence between the corresponding variables.

Because of their structure, graphical models lend themselves to modularity, in

which a complex system is built from simpler parts. And through the theorems

developed for graphical models (Jensen 1996), sound probabilistic inferences can

be made with respect to the structure of a graphical model and its associated

probabilities. Consequently, graphical models have been applied to a diversity of

clinical problems (see e.g. Kazi et al. 1998; Nikiforidis & Sakellaropoulos 1998). An

instructive example is the application of graphical models to the diagnosis of ‘blue’

babies (Spiegelhalter et al. 1993).

The nodes of a graphical model can correspond to hidden variables as well as

to observable variables; thus MLPs (and RBFNs) can be regarded as directed

graphical models, for both have nodes, hidden and visible, linked by directed

edges (Neal 1992). An example of this is Bishop’s work on latent variable models,

which he has regarded from both neural network and graphical model viewpoints

(Bishop et al. 1996; Bishop 1999). But graphical models are not conWned to the

layered structure of MLPs; therefore, the structure of a graphical model can, in

principle, provide a more accurate model of a joint probability distribution

(Binder et al. 1997), and thus a more accurate probability model in those

situations where the variables dictate such a possibility.

In the 1970s and early 1980s, knowledge-based system were the focus of applied

artiWcial intelligence, but the so-called ‘knowledge-acquisition bottleneck’ shifted

the focus during the 1980s to methods, such as ANNs, in which knowledge could

be extracted directly from data. There is now interest in combining background

knowledge (theoretical and heuristical) with data, and graphical models provide a

suitable framework to enable this fusion to take place. Thus a uniWcation or

integration of ANNs with graphical models is a natural direction to explore.

Overview of the remaining chapters

This book covers a wide range of topics pertaining to artiWcial neural networks for

clinical medicine, and the remaining chapters are divided into four parts: I

Applications, II Prospects, III Theory and IV Ethics and Clinical Practice. The Wrst

of these, Applications, is concerned with established or prototypic medical deci-

sion support systems that incorporate artiWcial neural networks. The section

begins with an article by Cross (Chapter 2), who provides an extensive review of

how artiWcial neural networks have dealt with the explosion of information that

has taken place within clinical laboratories. This includes hepatological, radio-

logical and clinical-chemical applications, amongst others.
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The PAPNET system for screening cervical carcinoma was one of the Wrst neural

computational systems developed for medical use. Boon and Kok (Chapter 3) give

an update on this system, and they do this from the viewpoints of the various

parties involved in the screening process, such as the patient, pathologist and

gynaecologist.

QUESTAR is one of the most successful artiWcial neural network-based systems

developed for medicine, and Tarassenko et al. (Chapter 4) describe how QUES-

TAR/BioSleep analyses the sleep of people with severe disorders such as obstruc-

tive sleep apnoea and Cheyne–Stokes respiration.

Chapter 5 by Braithwaite et al. describes Mary, a prototypic online system

designed to predict the onset of respiratory disorders in babies that have been born

prematurely. The authors have compared the performance of the multilayer

perceptron incorporated within Mary with that of a linear discriminant classiWer,

and they also describe some preliminary Wndings based on Kohonen self-

organizing feature maps.

Niederberger and Golden (Chapter 6) describe another application based on

multilayerperceptrons,namely, the neUROnurological system.This predicts stone

recurrence following extracorporeal shock wave lithotripsy, a non-invasive pro-

cedure for the disruption and removal of renal stones. As with Chapter 5, they

compare theperformanceof theMLP with a lineardiscriminant classiWer.Theyalso

describe the useof Wilk’s generalized likelihood ratio test to elect which variables to

useas input for themultilayerperceptron.An interestingadjunct to theirwork is the

availability of a demonstration of neUROn via the World Wide Web.

This section closes with a review by Goodacre (Chapter 7) on the instrumental

approaches to the classiWcation of microorganisms and the use of multilayer

perceptrons to interpret the resulting multivariate data. This work is a response to

the growing workload of clinical microbiology laboratories, and the need for rapid

and accurate identiWcation of microorganisms for clinical management purposes.

In the section entitled Prospects, a number of feasibility studies are presented.

The Wrst of these is by Anderson and Peterson (Chapter 8), who provide a

description of how feedforward networks were used for the analysis of electroen-

cephalograph waveforms. This includes a description of how independent compo-

nents analysis was used to address the problem of eye-blink contamination.

ARTMAP networks are one of the least-used ANN techniques. These networks

provide a form of rule extraction to complement the rule-extraction techniques

developed for multilayer perceptrons, and Harrison et al. (Chapter 9) describe

how ARTMAP and fuzzy ARTMAP can be used to automatically update a

knowledge base over time. They do so in the context of the electrocardiograph

(ECG) diagnosis of myocardial infarction and the cytopathological diagnosis of

breast lesions.
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Like neural computation, evolutionary computation is an example of computer

science imitating nature. A solution given by Porto and Fogel (Chapter 10) to the

problem of Wnding a near-optimal structure for an artiWcial neural network is to

‘evolve’ a network through successive generations of candidate structures. They

explain how evolutionary computation has been used to design fuzzy min–max

networks that classify ECG waveforms and multilayer perceptrons that interpret

mammograms.

The Wrst of the papers in the Theory section is by Ripley and Ripley (Chapter

11), who compare the performance of linear models of patient survival analysis

with their neural network counterparts. This is done with respect to breast cancer

and melanoma survival data.

A response to the ‘black-box’ issue is to extract comprehensible sets of if–then

rules from artiWcial neural networks. Andrews et al. (Chapter 12) examine exten-

sively how relationships between clinical attributes ‘discovered’ by ANNs can be

made explicit, thereby paving the way for hitherto unforeseen clinical insight, and

possibly providing a check on the clinical consistency of a network. They discuss

rule extraction with respect to MLPs, RBFNs, and neuro-fuzzy networks. Rule

extraction via fuzzy ARTMAP is also mentioned, and this chapter places the earlier

chapter by Harrison et al. in a wider context. The authors also look at rule

reWnement, namely the use of ANNs to reWne if–then rules obtained by other

means.

By deWnition, some degree of uncertainty is always associated with predictions,

and this includes those made by multilayer perceptrons. In the last chapter of this

section, Dybowski and Roberts review the various ways in which prediction

uncertainty can be conveyed through the use of conWdence and prediction

intervals, both classical and Bayesian.

Finally, this book addresses some issues generated by combining these appar-

ently disparate disciplines of mathematics and clinical medicine. In the section

entitled Ethics and clinical practice, Gant et al. (Chapter 14) present a critique on

the use of ‘black-box’ systems as decision aids within a clinical environment. They

also consider the ethical and legal conundrums arising out of the use of ANNs for

diagnostic or treatment decisions, and they address issues of which every practi-

tioner must be aware if they are to use neural networks in a clinical context.

NOTES

1. In the year that Golgi and Ramón y Cajal were jointly awarded the Nobel Prize for physiology

and medicine, Sherrington (1906) proposed the existence of special areas (synapses) where

neurons communicate, but it was not until the early 1950s (Hodgkin & Huxley 1952) that the
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basic electrophysiology of neurons was understood.

2. The preprocessing was analogous to a hypothesis that the mammalian retina was composed

of receptive Welds. Each Weld was a limited area of the retina, the activation of which excited a

neuron associated with that Weld (Hubel & Wiesel 1962).

3. To avoid ambiguity, the number of layers of a perceptron should refer to the layers of

weights, and not to the layers of units (nodes), as this avoids a single-layer perceptron also

being regarded as a two-layer perceptron (Tarassenko 1998).

4. It was later found that the Wrst documented description of the back-propagation algorithm

was contained in the doctoral thesis of Werbos (1974).

5. With a single hidden layer, the number of hidden nodes required to approximate a given

function may be very large. If this is the case, a practical alternative is to insert an additional

hidden layer into the network.

6. Another non-linear statistical technique with Xexibility comparable to that of an MLP is

multivariate adaptive regression splines (Friedman 1991).

7. Graphical models are also known as belief networks, Bayesian networks and probabilistic

networks. Heckerman (1997) has written a good tutorial on this topic.

Appendix 1.1. Recommended reading

Recommending material to read is not easy. A suitable recommendation is dependent upon a

reader’s background knowledge, the topics on which he or she wants to focus, and the depth to

which he or she wishes to delve.

The only book of which we know that has attempted to introduce neural networks without

resorting to a single equation is that by Caudill & Butler (1990), with the unfortunate title of

Naturally Intelligent Systems. The book does manage to convey a number of concepts to a certain

extent; however, in order to learn more about neural computation, some mathematical literacy

is required. The basic tools of linear algebra, calculus, and probability theory are the prerequi-

sites, for which there are many suitable publications (e.g. Salas & Hille 1982; Anton 1984; Ross

1988).

The ideas encountered in Caudill & Butler’s (1990) Naturally Intelligent Systems (Chaps. 1–3,

8–10, 13, 14, 16) can be expanded upon by a visit to Beale & Jackson’s (1990) Neural Computing

(Chaps. 1–5, 8). Although somewhat mathematical, this book is by no means daunting and is

worthy of attention. After Beale & Jackson, the next step is undoubtedly Bishop’s (1995) Neural

Networks for Pattern Recognition, a clear and comprehensive treatment of a number of neural

networks, with an emphasis on their statistical properties – a landmark textbook.

For those wishing to go more deeply into the theory, there are a number of routes from which

to choose. These include taking a statistical perspective (e.g. Ripley 1996) and the statistical

physics approach (e.g. Hertz et al. 1991; Haykin 1994). On the other hand, those seeking

examples of medical applications can Wnd a diverse collection in the book ArtiWcial Neural

Networks in Biomedicine (Lisboa et al. 2000). We should also mention A Guide to Neural
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Computing Applications (Tarassenko 1998), a useful guide to the practicalities of neural-network

development.

MATLAB (MathWorks 1997) is a powerful software package for performing technical

computations, and a useful adjunct to Bishop’s (1995) book is Netlab (Nabney & Bishop

1999), a library of MATLAB Wles based on his book. These Wles can be downloaded from

http://www.ncrg.aston.ac.uk/netlab/and they provide implementations of the concepts given in

Bishop’s text. The MATLAB connection is also a feature of Neural Network Design by Hagan et

al. (1996). This well-written book provides a clear survey of neural networks (but not RBFNs),

and is accompanied by many detailed examples and numerous solved problems. The book

comes with a disc of MATLAB demonstration Wles for the user to experiment with whilst

studying the text.

The book Neural and Adaptive Systems by Principe, Euliano & Lefebvre (2000) is also worth

reading, and includes a description of support vector machines. This book is accompanied by an

interactive version of the book on CD, along with a copy of the NeuroSolutions ANN simulator.

However, unlike Bishop’s (1995) Neural Networks for Pattern Recognition, neither this book nor

Neural Network Design describe the Bayesian approach.
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Artificial neural networks in laboratory
medicine

Simon S. Cross

Introduction

Laboratory medicine is the prime generator of objective data on patients in the

medical system. The development of automated analysers in haematology and

clinical chemistry has led to the generation of huge amounts of numerical data for

each patient and increased sophistication in radiology and histopathology have

produced concomitant increases in the informational content of reports (Cross &

Bull 1992). This informational explosion in laboratory medicine has led to a great

need for intelligent decision support systems to assist the laboratory physicians in

formulating their reports and for the clinicians who have to integrate all the

laboratory information in the context of an individual patient. It is likely that

neural networks will play an increasing role in such support systems given their

advantages of model-free estimation, generalization and ability to process non-

linear data (Alvager et al. 1994; Baxt 1994; Su 1994; Dybowski & Gant 1995; Kattan

& Beck 1995).

Cytology

Cytological examination entails the examination of preparations, obtained by

scraping or Wne needle aspiration, in which the predominant feature is the

individual cell rather than the whole tissue architecture seen in histological

samples. The nature of cytological specimens, with mainly separate cells distrib-

uted on a background of plain glass, lend themselves to digitization and threshold-

ing in image analysis systems with semi-automated measurement of features such

as nuclear area or densitometry measurements. The interpretation of cytological

specimens may be more diYcult for humans than histological diagnosis, since the

visual interpretation systems of the brain are better evolved for dealing with whole

scenes rather than individual objects. All these factors combine to make cytologi-

cal diagnosis a rich Weld for the development of intelligent decision support

systems in which neural networks may feature (Weid et al. 1990).
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Cervical cytology

Cervical cytology is used as a screening test for the detection of carcinoma, and

dysplasia, of the uterine cervix. It has been shown to be eVective with reductions in

mortality from cervical carcinoma in all countries that have a well-organized

screening programme. These screening programmes generate an enormous

number of tests (73 million a year in the USA) and until very recently all these tests

were performed by human observation. Human observation of cervical cytology is

a diYcult task – a typical slide will contain around 300 000 cells, all of which have

to be observed. Around 90% of tests in most screening programmes are negative

so there is a psychological accustomization to negativity. There is a relatively high

false negative rate in the human screening of cervical cytology and this has the

unfortunate consequence of allowing cases of cervical carcinoma to go untreated

in that screening interval, which is around 3–5 years in most countries. The

problems of false negatives are compounded by the biology of some tumours in

young women that often produce very few abnormal cells in a smear and these

cells are often small in size; however, these tumours behave biologically more

aggressively than usual cervical carcinoma so the penalty for a false negative test is

greater. For all these reasons there have been attempts to devise automated systems

of screening cervical cytology from the 1940s onwards but until recently these have

not been successful. One of the major problems in interpretation of the slides is

the fact that many of the cells overlap in a conventionally prepared smear, there

being problems in separating single cells from the background. Some systems have

used specially prepared monolayers of cells prepared from cells scraped from the

cervix and put into transport Xuid but it has proved very diYcult to get the

smear-takers to change their working practices. With the advent of neural net-

works a few systems have appeared that do appear to oVer a reasonable promise of

automation, or at least semi-automation, of the screening of cervical cytology.

Foremost amongst these systems is PAPNET (Boon & Kok 1993; Boon et al.

1994, 1995a,b; Husain et al. 1994; Koss 1994; Koss et al. 1994, 1997; Ouwerkerk et

al. 1994; Sherman et al. 1994, 1997; Keyhani-Rofagha et al. 1996; Kok & Boon

1996; Mango 1996, 1997; Rosenthal et al. 1996; Schechter 1996; Cenci et al. 1997;

Denaro et al. 1997; Doornewaard et al. 1997; Halford et al. 1997; Jenny et al. 1997;

Michelow et al. 1997; Mango & Valente 1998; Mitchell & Medley 1998; Sturgis et

al. 1998) a commercially available system produced by Neuromedical Systems in

New York, USA; this system is described in Chapter 3. Another system for cervical

cytology has been developed by Mehdi et al. (1994). The published reports on this

system are still at the stage of using individual cell images rather than automated

scanning of slides but the neural network system used has some interest. The

investigators used a standard multilayer perceptron with 57 measured parameters

as input data from the image analysis of each cell. Initially they used a single
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network with four output neurons for the relevant diagnostic categories (normal,

mild, moderate and severe dyskaryosis) but found that this system did not

produce acceptable results. They then developed a system of three networks used

in a hierarchical process: the Wrst network distinguishes between normal/mild

dyskaryosis and moderate/severe dyskaryosis and then one of two networks is used

to make the further subdivision to a single diagnostic category. They used large

numbers of cells (with expert cytopathological opinion as the ‘gold standard’) to

train the relevant networks (e.g. 600-item training set and 300-item test set for the

Wrst network). The overall performance gave a false negative rate (the key par-

ameter in this domain) of 1.4% and a false positive rate of 4.8%; this was not

compared with human performance on these images but performed as well as

other automated machines overall, with a lower false negative rate. One possible

criticism of the study is rigid use of the mild, moderate and severe categories of

dyskaryosis. Biologically the important distinction is between (a) those cells that

signal a process that will progress to invasive carcinoma with a high degree of

probability and (b) those that are very unlikely to progress to carcinoma. It is

possible that this information was present in their 57 measured parameters on

each cell but, because of rigid adherence to the somewhat arbitrary grading system

used in most cytopathology laboratories, this was distorted. It would have been

interesting to take the image analysis data and use an unsupervised neural network

to see whether there was any distinct cluster formation that could suggest a more

biologically valid division of the data.

Brouwer & MacAuley have used a HopWeld type of neural network to classify

cervical cells (Brouwer & MacAuley 1995). They used either measurements from

image analysis or direct digitized images as input data, with relatively small

numbers of training and test sets (25). The system gave good results for distinc-

tions between ends of the spectrum (e.g. 94% accuracy for normal/severe dys-

karyosis distinction) but less impressive results for other classiWcations (e.g. 58%

for moderate/severe). The method was much quicker than using the back-propa-

gation method of training multilayer perceptrons with only two or three training

epochs required for the network that contained only 25 neurons. The authors

recognize that much larger training and test sets are required to validate these

initial results. Further studies from this group (Kemp et al. 1997a,b) have used

much larger numbers of images and have produced a correct classiWcation rate of

61.6%.

Breast cytology

The cytological diagnosis of lesions of the breast presents a contrasting problem to

cervical cytology. Whereas cervical cytology involves searching through a huge

number of normal cells to Wnd a few abnormal ones, in breast cytology the
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majority of the cells in the specimen will come from the lesion. The diagnostic

process is thus mainly an interpretative problem rather than a searching vigilance

task. In cervical cytology sensitivity is the key parameter, since the penalty for

missing carcinoma in a screening programme is large but deWnitive treatment

(such as loop excision) is not initiated until further investigations have been made

(e.g. colposcopy), so the penalty for false positive tests is not great. In breast

cytology speciWcity is the key parameter, since deWnitive treatment (e.g. mastec-

tomy) will be performed if the cytological test is reported as malignant and this is

supported by clinical and radiological suspicion of malignancy. The false positive

rate in breast cytology should be as close to zero as possible whilst retaining a

reasonably high sensitivity (above 80% on adequate specimens). Many countries

are introducing national breast screening programmes with mammography as the

screening modality but using cytology as the diagnostic method for radiographic

abnormalities, leading to an increased number of these specimens.

Wolberg & Mangasarian (1993) have used a multilayer perceptron to diagnose

breast cytology. Their study conforms to almost all the best principles for such

studies using a large training set, a prospectively collected test set, a rigorous

validation of outcome and comparison with other statistical methods (the only

deWciency is statistical comparison between the diVerent methods). The input

data were nine deWned human observations each rated on a scale of 1 to 10, for

example cellular dyshesion clumps in which all marginal cells were adherent and

not deformed were rated as 1 and those with little cohesion were rated as 10. All

observations were made by a single experienced observer who was blind to the

outcome at the time of observation. The multilayer perceptron had nine input

neurons, a single hidden layer of Wve neurons and single output neuron for the

dichotomous (benign/malignant) prediction. The network was trained on 420

cases and tested on a further 163. On the test set the trained network produced

only one false positive (thus a rate of 0.6%) and one false negative. One of the

stated advantages of neural networks is their ability to produce classiWers with

good generalization and this is illustrated in this report. In the 215 carcinomas in

the study there were only two that shared the same scalar values for the nine input

variables. Among the benign cases (total 368) there was more duplication, with

175 cases having four or more identical input vectors, but there were still 146 with

unique combinations of the scalar values. Therefore all but one of the cancers, and

many of the benign cases, occurred as new combinations of scalar values for the

nine input variables that were not encountered in the training set but were still

classiWed correctly. In this study the neural network system was compared with a

data-derived decision tree with dichotomous branchings and a multisurface

separation method. The decision tree gave a performance inferior to that of the

neural network, with nine false positives in the test set, which is an unacceptably



Figure 2.1. The cascaded network of differently optimized ARTMAPs used by Downs et al. (1996) in the
cytological diagnosis of fine needle aspirates of the breast.
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high rate (5.5%); but the multisurface separation method was superior, with

completely correct classiWcation of the test set although the statistical signiWcance

of this was not reported.

Downs et al. (1995a,b, 1996, 1998) have reported similar studies on breast

cytology using deWned human observations but using the adaptive resonance

theory mapping (ARTMAP) neural network architecture (Carpenter & Grossberg

1987a,b; Carpenter et al. 1991, 1992; Carpenter & Tan 1993; Carpenter & Mar-

kuson 1998). In their studies there were 10 observations, each coded in binary

fashion, for example cellular dyshesion coded as 0 if the majority of epithelial cells

were adhesive and 1 if the majority were dyshesive. These data are therefore less

information rich than those used by Wolberg & Mangasarian (1993) but are more

suitable for some biologically dichotomous variables such as the presence or

absence of intracytoplasmic lumina. The networks were trained on 313 cases and

tested on a further 100. ARTMAP networks cluster the input data in an unsuper-

vised learning stage before these clusters are linked to the outcome (in this case a

diagnosis of benignity or malignancy) and the formation of the input clusters is

dependent on the order in which the data are presented. Downs et al. (1996)

exploited this property to produce multiple networks trained on diVerent orders

of the training data and then either selected the best performers or combined them

into majority voting systems and Wnally into a cascaded voting system (Figure

2.1). The cascaded voting system gives an indication of the conWdence in the

neural network prediction, since if Wve networks optimized for sensitivity give a
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unanimous benign decision then the prediction is highly likely to be correct. Using

this system, 89% of cases were predicted by unanimous decisions of Wve networks

pruned for either sensitivity or speciWcity and the accuracy for these cases was

100%. This left 11% of cases that were predicted by a majority decision of Wve

networks optimized equally for sensitivity and speciWcity and these could have the

Nottingham system of reporting suspicious cases applied to them with the reports

of ‘suspicious, probably benign’ and ‘suspicious, probably malignant’ according to

the majority decision (Downs et al. 1998). An advantage of the ARTMAP architec-

ture is that explicit rules can be extracted from trained networks that give an

indication of the decision-making process and help to overcome the user resis-

tance to the impenetrable ‘black-box’ technology (Hart & Wyatt 1990a; Wyatt &

Spiegelhalter 1991; Wyatt 1995). Downs et al. (1996) extracted rules from their

trained networks and compared these with canonical lists of diagnostic criteria in

the published literature (Wells et al. 1994). They found a close agreement, with the

exception of one feature (presence or absence of foamy macrophages) that in the

published literature was said to favour a benign diagnosis but in the network rules

appeared with an equal frequency in benign and malignant extracted rules.

The same investigators have also published a study using image analysis par-

ameters from Wne needle aspirates of the breast to train a multilayer perceptron

(Cross et al. 1997). The measured parameters included integrated optical density,

fractal textural dimension, number of cellular objects, distance between cellular

objects and derivatives (e.g. kurtosis and skewness) of these. The training set

contained 200 cases and the test set 162 cases, the perceptron had a 15–12–1

architecture. The neural network produced a sensitivity of 83%, speciWcity of 85%

and a positive predictive value of a malignant result of 85%. Logistic regression

produced a virtually identical performance with no statistical diVerence. These

performance values are well below what would be acceptable in a diagnostic

situation but all the image analysis was performed automatically on a single

low-power Weld of view of each specimen. At this magniWcation, nuclear detail was

not resolvable (a single nucleus would be represented as a single pixel) and most of

the features cited as being important in the diagnosis of breast cytology are related

to nuclear detail. It is thus possible that the reported system would give much

better results if combined with an analysis of nuclear images.

Cytological diagnosis of pleural and peritoneal effusions

Truong et al. (1995) have used measurements from image analysis as input data

for a multilayer perceptron to classify lymphocyte-rich pleural and peritoneal

eVusions into malignant or reactive categories. They used data from 112 cases in a

jack-knife method of training and testing, with a Wnal neural network architecture

of seven input neurons, one hidden layer of 10 neurons and a single output
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neuron. Measurements had been made on 200 nuclei from each case. The network

gave an overall accuracy of 89% with a sensitivity of 77% and a speciWcity of 93%;

there was no comparison with conventional statistical methods.

Cytological diagnosis of oral epithelial lesions

A study with a similar design, but applied to cells from oral smears, has been

reported by Brickley et al. (1996). They made measurements of nuclear and

cytoplasmic areas on 50 cells from each of 348 specimens that represented a

mixture of normal, dysplastic and cancerous oral epithelium. They used patient

age, patient gender, mean nuclear area, mean cytoplasmic area and mean nuclear/
cytoplasmic ratio as the inputs to a multilayer perceptron of unspeciWed architec-

ture. They used two-thirds of the cases for training and the remaining one-third

for testing to give discrimination between normal and dysplastic/malignant epi-

thelium with a speciWcity of 82% and a sensitivity of 76%. This performance was

not compared with conventional statistical analysis or human performance (the

‘gold standard’ outcome measure was the histological, rather than cytological,

diagnosis of the excised tissue).

Cytological diagnosis of thyroid lesions

Karakitsos et al. (1996a) have used image analysis measurements of cytological

specimens from thyroid lesions to train a multilayer perceptron classiWer. One

methodological weakness of this study is that they use single nuclei as individual

items in the training and test sets. Each nucleus has 26 measurements made on it

and, since 100 nuclei were measured from each of 51 patients, the investigators

describe a training set of 2770 items with a test set of 11 080 items. However,

within the 51 cases there were only two cases of follicular carcinoma of the thyroid

and three cases of oncocytic carcinoma so the data could well have an ‘oligoclonal’

artefact. The authors also preprocessed the training set data, excluding any similar

input vectors that had disparate outcomes. The optimal neural network had 26

input neurons, a single hidden layer of 22 neurons and one output neuron. This

gave correct classiWcation in 98% of cases, which was statistically better than the

original human cytological diagnosis (p = 0.03).

Cytological diagnosis of gastric lesions

Karakitsos et al. (1996b) have also made a similar study of diagnosis of gastric

lesions by image analysis measurements on cell nuclei. Again individual nuclei

were taken as the unit item in training and test sets but in this case the possibility

of ‘oligoclonal’ artefact was reduced, since there were 23 cases of carcinoma in

the total study population of 100. Twenty-six image analysis parameters were

again presented as the input data: there was a single hidden layer of 32 neurons
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and one output neuron. This trained system gave an overall accuracy of 98% but

was not compared with human performance or conventional statistical methods.

Molnar et al. (1993) have also used image analysis data (such as DNA content

from Feulgen-stained preparations) from gastric cytology specimens to train a

neural network classiWer of multilayer perceptron type with an architecture of

eight input neurons, two hidden layers each with 25 neurons, and three output

neurons. Fifty-nine cases in total were used in a cross-validation training/testing

method using 53 cases to train and six cases to test in each cycle. This system gave

100% accuracy of classiWcation of benign and malignant cases and 98% accuracy

for dysplastic cases (one incorrectly classiWed) but the huge size of the network

(15 000 connections) for the small sample size suggests that there may be an

element of overtraining in this study and that the classiWer might not generalize to

any entirely separate test set with a large number of cases. The PAPNET system has

also been applied to the domain of oesophageal cytology (Koss et al. 1998) and

abnormal cells were selected by the system in all cases of oesophageal cancer.

Cytological diagnosis of urothelial lesions

Hurst et al. (1997) have published a study in which they use a number of diVerent

input data sets to train multilayer perceptrons to discriminate between benign and

malignant urothelial cells. The cells were all stained using a Xuorescent dye linked

to an antibody directed against a bladder cancer tumour-associated antigen but

artefacts such as autoXuorescene still produced non-cancerous cells that stained

positive, but in a pattern diVerent from that of the true tumour antigen staining.

The investigators employed low and high magniWcation views of the cells and used

both raw digitized images and image analysis measurements as input data. At high

power the raw digitized images presented in a 60 ] 60 pixel array as grey scale

values and trained the networks using human interpretation of each cell as the

‘gold standard’ with a jack-knife (‘leave one out’) training and testing process on

the 20 images. This system produced 100% agreement with the human classiWca-

tion but there is a huge (144 000) number of network connections compared with

the size of the sample population, so overtraining may be a problem. At lower

magniWcations much larger training and test sets were used (216 in each) and the

overall accuracy was 75%. Using image analysis measurements derived from low

magniWcation images in a network with four input neurons, four hidden neurons

and two output neurons, an accuracy of 69% was obtained. The PAPNET system

has also been applied to urine cytology with good results (Hoda et al. 1997).

Histopathology

Histopathology is a discipline that is based almost entirely on subjective human

interpretation of visual images; only in a very few specialist areas (such as the
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diagnosis of partial hydatidiform mole by Xow cytometry) have quantitative

techniques found routine use in histopathology. The dominant role of human

interpretation is explained by the complexity of the images seen down the

microscope and the very eYcient processing of this information by the human

brain. A single binary image at a resolution of 256 ] 256 pixels contains over

65 000 bits of information, which places an enormous computational burden on a

neural network if this is presented as raw input data, but which is a very crude

representation of a microscopic image. Images at a resolution of 1024 ] 1024

pixels and 64 000 colours are closer to the appearances seen down the microscope

but still have less resolution and Wner detail, which may be important diagnosti-

cally but is not visible. Neural networks have been proposed as tools that may be

used in the pattern recognition and machine vision areas of histopathology (Dytch

& Wied 1990; Becker 1994; Cohen 1996) and some of these potentials are being

realized, but at present many neural network applications are using parameters

measured from image analysis as the input data rather than the raw digitized

images.

Histological diagnosis of breast carcinoma

O’Leary et al. (1992) have used data from image analysis of histological slides to

train a neural network to distinguish between sclerosing adenosis (a benign

process) and tubular carcinoma of the breast. They used an image analysis system

to measure 18 morphological parameters and then used modiWed Bonferroni

analysis to select those features that were signiWcant in discriminating between the

two diagnoses. These two parameters (glandular surface density and the coeY-

cient of variation of luminal form factor) were used as the input data to a

multilayer perceptron with a single hidden layer of four neurons and one output

neuron. The network was trained on 36 cases and tested on a separate set of 19

cases. It classiWed 33 out of 36 of the training cases correctly and all 19 in the test

set. Comparison was not made with conventional statistical methods or human

performance but the authors comment that they would have expected a pathol-

ogist exposed to the 36 training cases to be able to correctly assign the test cases,

and the ‘gold standard’ in this study was expert human diagnosis. The preselection

of input variables is worthy of comment, since one of the postulated advantages of

neural networks is that noisy or irrelevant input data is ignored as the weighting

on the routes from those neurons will be adjusted during training to give no

overall eVect. In this study the authors could have submitted all 18 measurements

on each case to the network and it is possible that subtle interactions between these

variables, not revealed by the Bonferroni analysis, could have acted to improve the

performance. However, since the training set was small, 36 cases, using 18 input

variables would risk overtraining, with each case occupying a unique location in
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18-dimensional space and a consequent loss of generalization and poor perform-

ance on independent test sets. Although the results of this study appear promising,

they would need to be validated on much larger data sets and a problem with the

overall system is that generation of the image analysis data is extremely time-

consuming, requiring tracing of glandular proWles with a light pen after some

image preprocessing and selection.

Naguib et al. (1996, 1997; Naguib & Sherbet 1997; Albertazzi et al. 1998) have

used neural networks to predict axillary lymph node metastasis using features

derived from the histopathological features of the primary tumours. The study

contained 81 unselected patients with breast cancer who had had mastectomies

and axillary lymph node sampling and these were split into a training set of 50 and

a test set of 31. The histopathology features used included grade, tumour size,

oestrogen receptor status, progesterone receptor status, nm23 oncogene protein

staining, and RB1-RB3 oncogene protein staining. They used a multilayer percep-

tron-type neural network with training by back-propagation of errors. The results

on the test set gave a sensitivity of 73% and speciWcity of 90%. Since the presence

of axillary lymph node metastases means that a patient should receive adjuvant

chemotherapy the sensitivity would need to be increased before axillary lymph

node sampling could be discontinued and the system used as a substitute.

Automated segmentation of renal biopsies

Neural networks have found several applications in the Weld of image processing

and quantiWcation in histopathology. Applications that focus on a particular

histopathological problem are reviewed in the relevantly titled section below; this

section deals with technique-led studies. Serón et al. (1996) have used a multilayer

perceptron to segment automatically images from renal biopsies into tubules and

interstitium (the ratio of these two areas correlates with renal function measured

as the glomerular Wltration rate). In digitized images they applied a local

granulometry method to each pixel to derive eight numerical values, which were

input to the neural network together with the grey scale value of that pixel. The

network had nine input neurons, two hidden layers of 10 and three neurons and a

single output neuron. One hundred and sixty pixels were selected randomly from

images of eight biopsies and the pixel visually classiWed as tubule or interstitium by

a human observer; these values were used to train the network. The trained

network was applied to all pixels in 202 images (a total of more than 13 million

pixels) and the output (interstitium or tubule) was used to create a visual image

and to calculate the ratio of area of tubule to area of interstitium. The images

produced had diVerent qualitative appearances from a simple grey scale threshol-

ded image but the correlation of both methods with the subject’s glomerular

Wltration rate was the same (r = 0.73). The neural network method showed very
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close correlation with a manual point-counting method (r = 0.92), so it is possible

that this could be implemented as an automated method of measuring these

parameters.

Histological diagnosis of parathyroid lesions

Einstein et al. (1994) have used quantitative measurements of nuclear diVuseness

and nuclear proWle area to train a multilayer perceptron (neuron number/archi-

tecture 2–10–3) to distinguish between normal parathyroid tissue, parathyroid

adenoma and parathyroid carcinoma. They used a jack-knife system of training

and testing but had a very small study population of 16 cases (for a network with

50 weighted connections). The network classiWed 15 of the 16 cases correctly but

clearly many more cases need to be examined to be able to evaluate the perform-

ance of this system.

Histological diagnosis of hepatocellular carcinoma

Erler et al. (1994) have used measurements from an image analysis system to train

a neural network to discriminate between well-diVerentiated hepatocellular car-

cinoma and dysplastic hepatocytes. An image analysis system was used to measure

35 nuclear morphometric and densitometric parameters of 100 nuclei from each

of 90 cases (56 hepatocellular carcinomas, 34 normal or dysplastic). Stepwise

discriminant analysis was used to identify the parameters that gave the lowest

classiWcation error rates, which were then used as input data. The morphometric

variables used were area, skewness of area, length of major axis, nuclear roundness

factor and circularity factor. The network was a multilayer perceptron with an

architecture of Wve input neurons, a single hidden layer of Wve neurons and one

output neuron that was trained with 45 cases and then tested with a further 45. On

the test set the neural network gave a positive predictive value of 100% and a

negative predictive value of 85%, which compared favourably with 86% and 81%,

respectively, for linear discriminant analysis and 86% and 77% for quadratic

discriminant analysis. The criticisms that can be made of this study are similar to

those of the breast carcinoma study reviewed above (O’Leary et al. 1992) that the

image analysis process is too time-consuming to be used in routine practice and

that the validation of the outcome (by expert human diagnosis) is open to some

doubt, since this diagnostic area has been identiWed as too problematic to justify

the undertaking of the study.

Histological grading of astrocytomas

The histological grading of astrocytomas is important for the selection of appro-

priate therapies, disease prognosis and a standardization of disease for comparison

of trials of diVerent therapies. Studies using the World Health Organization



42 S. S. Cross

(WHO) classiWcation have shown a large amount of inter- and intra-observer

variation in assigning tumours to one of the four grades, especially in the two

intermediate grades. Kolles et al. (1995) have developed an automated image

analysis grading system based on neural networks. From previous studies they

selected four morphometric parameters – the relative nuclear area of all cells per

Weld of vision, the relative volume-weighted mean nuclear volumes of proliferat-

ing (i.e. proliferating cellular nuclear antigen, MIB1, positive) nuclei and the mean

value and variation coeYcient of the secant lengths of the minimal spanning trees

per Weld of vision. They used these parameters on a set of 68 tumours and applied

cluster analysis to derive their own quantitative system of grading astrocytomas

into three grades. They then used neural networks (multilayer perceptron with a

4–30–10–3 neuron/layer architecture) and discriminant analysis on training and

testing sets to classify the tumours using their own unique grading system. The

neural networks showed a 60% accuracy of assigning tumours to the WHO grades

(as subjectively assessed by a neuropathologist) and a 99% accuracy of assigning

tumours to the authors’ cluster analysis-derived grades. By comparison, dis-

criminant analysis gave overall accuracies of 62% and 92%, respectively. The main

defect of this study is that the authors derived their own grading system by cluster

analysis, which the neural network could reproduce very well. This shows merely

that neural networks are eYcient at approximating the technique of cluster

analysis that the authors used. In a follow-up study Kolles et al. (1996) used a

number of diVerent neural networks on a data set similar to the Wrst study. As well

as standard multilayer perceptrons they used Kohonen and self-editing nearest

neighbour networks (SEN3). All the employed neural networks showed similar

performances in classifying the astrocytomas into grades of the three diVerent

systems examined (WHO, St Anne-Mayo system and the authors’ own mor-

phometric grading system (HOM)) and again the accuracy of classiWcation was

highest with the morphometric cluster-derived HOM system (about 90%). The

SEN3 network was much less computer intensive (1 hour of Sun SPARC2 process-

ing time versus 1 day for the Kohonen networks) and has the advantages of

incremental learning and possible rule extraction. An important follow-up to

these studies would be a prospective collection of tumours and then investigation

of the relationship between tumour prognosis and the automated tumour grade.

Prediction of staging in testicular teratomas

Moul et al. (Moul 1995; Moul et al. 1995; Douglas & Moul 1998) have used

histological features of testicular teratomas to predict the stage of the tumour at

presentation. The seven histological features used included vascular invasion in

the primary tumour and percentage of tumour composed of embryonal carcino-

ma component and they predicted stage with an accuracy of 92%.
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Histological grading of prostate cancer

The grading of prostate carcinoma is important for prognosis and associated

therapeutic decisions. As is common with all tumour-grading systems, the grading

of well and poorly diVerentiated tumours is quite reliable between observers but

there is wide intra- and inter-observer variability on intermediate grades. Stotzka

et al. (1995) have published a comprehensive study of a sophisticated image

analysis-based system of grading prostatic carcinomas. The basic data structure

used in the study was a 64 ] 64 binary pixel array representing the spatial position

of the nuclei in an area of prostatic carcinoma. When viewed alongside the

photographic image of the same area this array is an enormous simpliWcation of

the original image that would be viewed down the microscope by a histopathol-

ogist but it still contains 4096 items of information, which requires an immense

amount of computation if this is input into an artiWcial neural network in its raw

unprocessed form. In one part of this paper the investigators reduced the size of

the binary pixel array to 45] 45 and presented this to a multilayer perceptron

with 2025 input neurons, a single layer of 35 neurons and one output neuron

(Figure 2.2). Training of this network required 3 weeks of computing time on a

Sun SPARC workstation! Using as outcome a dichotomous grading system de-

rived from quadratic Bayes classiWers applied to features extracted from image

analysis this trained network classiWed the training set with an accuracy of 82%

and 65% for the test set. The authors then developed an interesting hybrid system

with a partially trained multilayer perceptron used to preprocess the binary image

before presentation of outputs from the hidden layer of neurons to a set of

statistical classiWers. This system produced an accuracy of classiWcation of 96% on

a training set and 77% on a test set but this was an improvement of only 2% on test

set performance when compared with a pure Bayes classiWer. This well-written

paper contains much useful discussion for any investigators contemplating using

image analysis systems and artiWcial neural networks as classiWers.

Microbiology

Rapid identification of bacteria and fungi by pyrolysis mass spectroscopy

Curie-point pyrolysis mass spectrometry is becoming a popular technique for

identifying microorganisms. In this technique, pyrolysis fragments are derived

from the thermal degradation of whole organisms in an inert atmosphere and

these are then detected and quantiWed by mass spectrometry. The output data thus

form a spectrum of integrated ion counts at unit mass intervals that in the past has

been analysed using conventional multivariate statistical analysis. There are now

several published studies (Chun et al. 1993; Goodacre et al. 1996a–c; Nilsson et al.

1996) that describe the use of artiWcial neural networks to interpret the mass



Figure 2.2. The hybrid classifier system with neural network processing and statistical classifiers used by
Stotzka et al. (1995) to grade prostatic carcinoma.
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spectra. Chun et al. used multilayer perceptrons, trained by the back-propagation

method, to identify novel species of Streptomyces and to discriminate between

these and unknown organisms (Chun et al. 1993). They used a network with 150

input neurons entering scaled and normalized integrated ion counts at unit mass

intervals from 51 to 200. The network contained a hidden layer of 10 neurons and,

in its Wnal version, four output neurons. Initially the network was trained with just

the Streptomyces species groups A, B and C and testing of this showed complete

accuracy of classiWcation of these species but misclassiWcation of unknown species

(e.g. mycobacteria). A revised network was developed which was trained with

Streptomyces species and other species, with the latter being given the global

outcome of ‘unknown’. Using a cascaded output classiWcation this network gave

100% accuracy in identifying the individual Streptomyces species and classifying

other species as unknown (Figure 2.3) (Chun et al. 1993). The authors suggest that

clusters of neural networks could be developed and used for the sequential

identiWcation of diverse taxa. Goodacre et al. (1996b) have extended this tech-

nique to provide quantitative analysis of mixtures of bacteria such as Staphylococ-



Figure 2.3. The cascaded output system used by Chun et al. (1993) to classify Streptomyces from
pyrolysis mass spectra.
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cus aureus and Escherichia coli. After appropriate development and training the

authors have produced a multilayer perceptron that will provide quantitative

estimates from pyrolysis data in less than 2 minutes. Goodacre et al. (1996a) have

also used a diVerent neural network architecture, of the Kohonen type, for

unsupervised learning of pyrolysis data from Propionibacterium acnes isolated

from human skin. The neural network analysis was compared with canonical

variates analysis and hierarchical cluster analysis and all three methods gave

similar results, showing that three of the human hosts examined had more than

one strain of P. acnes (Goodacre et al. 1996a). Neural network analysis of pyrolysis

data has also been used in the classiWcation of Penicillium species (Nilsson et al.

1996). In this study conventional statistical analyses – such as principal compo-

nents analysis, canonical variates analysis and hierarchical cluster analysis – could

not discriminate between the closely related species P. commune and P. palitans,

despite inclusion of data from more isolates and limiting the analysis to Wve

species. Use of a suitably trained multilayer perceptron resulted in correct classiW-

cation of all species in the test set (Nilsson et al. 1996). Another technique that

produces spectra as output data is diVuse reXectance–absorbance Fourier trans-

form infrared spectroscopy, which has the advantage of using intact cells without

destruction by pyrolysis. Goodacre et al. (1996c) have used neural networks

applied to the output data from this technique to identify Streptococcus and

Enterococcus species, again with complete accuracy, which principal components

analysis failed to match.
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Diagnosis of acute toxoplasmosis

AWW et al. (1995) have used a multilayer perceptron to classify results of serological

tests on patients with acute toxoplasmic infection. They took the results from

three serological tests as the data for three input neurons and used clinical history,

lymph node biopsy and the results of serological tests to determine the outcome of

acute infection. The artiWcial neural network appeared to detect all cases of acute

infection in the test set but this performance was not compared with conventional

multivariate statistical analysis. There are some methodological weaknesses in this

study in that some of the serological data used as input data were also used to

verify the outcome, the number of cases in the training and test sets was small (65

and 61, respectively), and the Wnal architecture of the network contains a greater

number of neurons in the hidden layer (four) than the input layer (three) (AWW et

al. 1995).

Prediction of outcome in septic shock

Input data from laboratory tests has been used in an artiWcial neural network

system to predict survival in patients with septic shock (Warner et al. 1996). The

input data consisted of septic shock factors interleukin-6 level, interleukin-6

soluble receptor level and a composite score derived from physiological measure-

ments including temperature and blood pressure. The neural network was of the

multilayer perceptron architecture with four input neurons, Wve neurons in a

single hidden layer and a single output neuron. A training set of 50 patients and a

test set of 18 patients were used. The best performance correctly classiWed 16 of the

18 patient test set into surviving and non-surviving groups. The rationale for

developing the classiWcation was to allow allocation of resources to patients who

would most beneWt from them, with the implication that some expensive new

treatment might be withheld from those predicted to have a negligible chance of

survival. However, this whole concept is Xawed, since a new treatment could alter

the prognosis for all the patients and this will not be taken into account during the

initial training of the neural network; all new treatments require randomized

controlled trials to evaluate their potential beneWt.

Prediction of outcome in pneumonia

Cooper et al. (1997) have produced a paper that could be used as an exemplar for

all studies examining the eYcacy of neural network classiWers. The study concerns

prediction of mortality from pneumonia with the aim of selecting patients for

inpatient or outpatient care. The data come from a large set covering patients

discharged from 78 hospitals in 23 states of the USA allowing a training set of 9847

cases and a separate test set of 4352 cases. Using these data the authors employ a

wide range of diVerent statistical classiWers: neural networks, a rule-learning
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technique, two casual discovery methods, a simple Bayesian classiWer, a generaliz-

ed decision tree induction method, logistic regression and a k-nearest neighbour

method. The artiWcial neural network system was a multilayer perceptron with 67

input neurons, a single hidden layer of eight neurons and one output neuron. The

authors compared all these methods by calculating the error rate when predicting

that a given fraction of patients will survive and at a 30% survival rate all the

methods had an error rate of less than 1.5%. Over a wide range of survival

fractions each method’s error rate was within 1% of the error rate of every other

model. Since there was no statistically signiWcant diVerence between the methods

the usefulness of particular models was more related to the number of input

variables used and the ease with which they could be implemented. In this respect

the neural network used all 67 available input neurons and required a computer to

implement it. In contrast a hybrid learning belief network/logistic regression

method required only nine variables and 10 parameters, and could be implemen-

ted as a paper-based model. The authors comment that no attempt was made to

minimize the number of input variables for techniques such as neural networks

and that it is likely that a restricted subset of input variables could maintain the

levels of performance.

Modelling viral epidemics

Cristea & Zaharia (1994) have used neural networks to model the course of viral

epidemics in a closed community. They have used the activation thresholds of the

artiWcial neurons to represent the immune status of the individual to the speciWc

virus and the overall activation state of the neuron to represent the contagiousness

of that person. The model is most easily constructed for viruses that confer a

persistent immunity after infection and do not induce a healthy carrier state: the

mumps or hepatitis A viruses are natural examples of such agents. Using this

model implemented in a multilayer perceptron the authors have demonstrated the

diVerent patterns that may occur with viruses with diVerent levels of contagious-

ness (Cristea & Zaharia 1994).

Prediction of gentamicin concentration

Gentamicin is an antibiotic used in intravenous form to treat some serious

infections. It is nephrotoxic and monitoring its peak concentration (to prevent

nephrotoxicity) and its trough concentration (to ensure a continuing adequate

antimicrobial level) is required. Dosage may vary widely from patient to patient

owing to many factors, including size and pre-existing renal function. Corrigan et

al. (1997) have used a neural network to predict gentamicin levels at peak and

trough concentrations. They used a multilayer perceptron (with architecture of

8–5–1) inputing age, sex, height, dose, dosing interval, serum creatinine level and
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time of sampling; there were 220 training cases and 20 test cases. The linear

correlation coeYcients for observed versus predicted concentrations were 0.90 for

peak concentration and 0.89 for trough concentrations. These results appear

promising and could be used to produce a system that would predict the correct

initial dosage for a patient but they were not compared with conventional

statistical methods that are well-developed in this area.

Radiology

The advent of digital storage of radiographs and the vast amounts of data from

magnetic resonance imaging (MRI) and computed axial tomography (CT) pro-

vide an enormous amount of material that could be input into artiWcial neural

networks in the diagnostic setting (El-Deredy 1997).

Mammography

Mammography is the primary screening modality for breast carcinoma and recent

years have seen a huge increase in the number of mammograms performed (and

hence radiologists required to interpret them) as a result of the introduction of

breast screening programmes in many Western countries. Two approaches to the

use of artiWcial neural networks in assisting interpretation of mammograms have

been reported; one method uses human observations as the input data (Wu et al.

1993; Floyd et al. 1994; Baker et al. 1996), while an alternative method is to use

direct information from digitized mammograms as input data (Giger et al. 1994;

Zhang et al. 1994). Wu et al. (1993) used human observations of 43 deWned

features as input data for a three-layer perceptron trained by the back-propagation

of errors method. A training set of 133 cases was generated from a textbook of

mammographic images and a test set of 60 clinical cases with known outcome. If a

neural network is to be used in a real clinical situation then its training and testing

should represent that situation as closely as possible so possible criticisms of this

study are the use of a textbook to derive training cases and the use of a test set that

contained a considerably higher number of malignant cases than is indicated by

the prior probabilities for the usual clinical context. The performance of the neural

network was not compared with any conventional statistical methods but it was

compared with the performance of experienced and trainee radiologists. It was

found that a reduced set of 14 input features produced a larger area under the

receiver operator characteristic (ROC) curve than all 43 features (0.89 versus 0.84)

and this network was used in the comparisons with human performance. The

performance of the artiWcial neural network using features extracted by an experi-

enced radiologist was better than that of the radiologist alone (0.89 versus 0.84),

but this diVerence was not statistically signiWcant. The neural network was signiW-
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cantly better than trainee radiologists (0.89 versus 0.80) but no comparison is

given for the neural network using features extracted by the trainees so it may be

that the quality of feature extraction is the most important factor in making the

correct diagnosis. A similar study has been performed by Floyd et al. (1994) using

eight observed features on 260 cases. The neural network gave an area of 0.94

under the ROC curve compared with 0.91 for unassisted radiologists, which was

statistically signiWcant at p = 0.08. A follow-up study to this (Baker et al. 1996)

used a separate prospectively collected set of 60 cases to test a modiWed version of

the original network (Floyd et al. 1994). The artiWcial neural network gave a

sensitivity for a malignant diagnosis of 100%, with a positive predictive value of

66%. Since mammography is a screening test, the result of which is conWrmed by

subsequent cytology or histology, then this performance is acceptable and was

statistically better than that of unassisted human observers. The study also exam-

ined the eVect of human inter-observer variation on the performance of the neural

network and showed that the output from the network was virtually identical with

all observer input data despite there being variations in this input data. This

illustrates the potential advantages of neural networks over conventional statistical

methods in generalization and error tolerance. In a further study this group of

investigators (Lo et al. 1997) used an artiWcial neural network to predict whether a

lesion was in situ or invasive carcinoma on mammography, since these categories

require diVerent therapies (i.e. axillary lymph node dissection for invasive car-

cinomas) that could be performed as a one-step procedure if mammographic

prediction was accurate. Ninety-six malignant lesions (68 invasive, 28 in situ were

used with seven deWned human observations of mammographic features, pres-

ence/absence of axillary lymphadenopathy and asymmetric breast tissue and the

patient’s age. A multilayer perceptron with a 10–15–1 architecture was trained by

a jack-knife procedure to produce an area of 0.91 under the ROC curve, with a

speciWcity of 100% for carcinoma in situ and a sensitivity of 71% for invasive

carcinoma. These results appear promising but the total data set contained 96

cases for a network with 165 connections so overtraining could be a problem and

the eVect of individual parameters is not assessed (e.g. did the vast majority of

invasive carcinomas have axillary lymphadenopathy?). Another study in a similar

vein by Lo et al. (1995) used only four features extracted by radiologists to produce

an area under the ROC of 0.96, which was signiWcantly better than the radiologist’s

unassisted performance of 0.90.

Giger et al. (1994) have used features extracted from digitized mammograms as

input data for a multilayer perceptron network. The two features assess the

spiculation of the edge of discrete lesions seen on mammography, one summating

margin Xuctuations and the other a normalized area diVerence. Using these

features on a jack-knifed data set of 53 cases produced an area of 0.82 under an
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ROC curve, which was signiWcantly better than either feature alone (0.66 and 0.63,

respectively) but similar to the subjective rating of spiculation by a radiologist

(0.83). A follow-up study (Zhang et al. 1994) used a shift-invariant multilayer

perceptron to detect clustered microcalciWcations in mammograms using a jack-

knifed study population of 168 cases. The area under the ROC was 0.91; that was

signiWcantly better than the previous neural network performance (0.81).

Sahiner et al. (1996) have used a genetic algorithm to select parameters from a

wide range (587 variables) generated by image analysis of digitized mammograms

and then used these to train a multilayer perceptron (with a 16–4–1 architecture).

They used separate training and test sets of adequate size (504 and 168, respective-

ly) and compared the performance of the neural network with linear discriminant

analysis using ROC curves. The area under the curve for the neural network was

0.90 and it was 0.89 for the discriminant analysis, with no signiWcant diVerence

between the two. This suggests that in this domain it is selection of the input

features that has a greater eVect on the performance than the type of classiWer that

is used.

Wu et al. (1995b) have used convolution neural networks to analyse the pattern

of microcalciWcation on radiographs of excised samples of breast tissue that were

known to have pathological lesions within them. They used digital images as the

input features and achieved an area under the ROC of 0.90 for classiWcation of

clusters of microcalciWcations into benign or malignant categories. These results

are impressive, but since the tissue had been excised much background noise

would have been removed from the images and, unless this study leads to a system

that works on mammograms of the intact breast, it will not be useful since

histopathology examination of the excised tissue would provide the deWnitive

diagnosis on such samples.

Diagnosis of pulmonary embolism

The diagnosis of pulmonary embolism is important, since immediate treatment

by anticoagulation is required but this treatment has a signiWcant morbidity and

mortality so a test with high sensitivity and high speciWcity is required. The

deWnitive method of diagnosing pulmonary embolism is by pulmonary angiogra-

phy but this is an invasive procedure with an associated morbidity. Ventilation–

perfusion (VQ) scanning is used as the initial investigation in patients with

suspected pulmonary embolism because it is non-invasive. The interpretation of

these scans is made by subjective human assessment and the criteria for assessing

them has not reached a satisfactory consensus. Tourassi et al. (1993) have used

semiquantitative data from VQ scans and a multilayer perceptron to diagnose

pulmonary embolism. Their study has many exemplary features: the outcome was

validated by the deWnitive method of diagnosis (pulmonary angiography) in all
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cases, the training and test sets were large (532 cases in each), performance was

assessed using ROC curves, and comparison was made with unassisted human

diagnosis at the time of the VQ scan. Twenty-one input features were used that

represented the presence and size of a defect in a particular lung zone on

ventilation scan, perfusion scan or chest radiograph. When the network was

trained with 532 cases for 50 iterations, the area under the ROC curve was 0.80,

which was similar to that of the human diagnosis (0.81). With 500 iterations an

overtraining eVect appeared, with the area under the curve reduced to 0.78, which

was worse than the human performance. In a jack-knife method training and

testing (so now with 1063 cases in the training set), the performance improved to

give an area of 0.91 under the ROC curve, which was signiWcantly better than the

human performance (p \ 0.01). This result emphasizes the need for large numb-

ers of cases in the training sets for most medical applications of artiWcial neural

networks. A follow-up study by Tourassi et al. (1995) is also exemplary in that it is

testing the established neural network model on a prospectively collected data set.

The data set consisted of a further 104 patients who had VQ scans and then went

on to have pulmonary angiography. The area under the ROC curve for these

patients was 0.80, which is similar to the non-jack-knife results from their

previous study (Tourassi et al. 1993) and was not signiWcantly better than the

results of two experienced clinicians whose diagnoses were used for comparison

(0.81). In a further study, using optimally selected clinical and chest radiographic

Wndings, Tourassi et al. (1996) produced a trained neural network with an area of

0.77 under the ROC curve, which was signiWcantly better than the human

performance on the same data (0.72). The human performance in this study was

from all clinicians participating in a large prospective study rather than the two

experienced clinicians in the smaller prospective study (Tourassi et al. 1995).

Using data from the same large study of pulmonary embolism, Patil et al. (1993)

used clinical and laboratory data (e.g. arterial blood gas analysis) together with VQ

scan assessment to train a multilayer perceptron to predict whether or not

pulmonary embolism was present. The network had 54 input variables, a four

neuron hidden layer and a single output neuron, it was trained with 606 cases and

tested on a further 607. The ROC curve area was 0.82, which was not signiWcantly

diVerent from the performance of experienced physicians (0.85) and the authors;

the trained network could therefore be a useful decision support system for less

experienced clinicians.

Positron emission tomography scans and the diagnosis of dementia

Positron emission tomography (PET) scans of the brain can show many

abnormalities of brain metabolism and in Alzheimer’s-type dementia typical

patterns of abnormality have been described. However, the patterns are not totally
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characteristic in all cases, particularly early dementia, and interpretation is cur-

rently made subjectively. Kippenhan et al. have published two studies (Kippenhan

et al. 1992, 1994) that used objective measurements from PET scans as input data

for multilayer perceptrons. The data related to the metabolic activity of deWned

areas of the brain and the number of input neurons varied according to the

resolution of the PET cameras. In the earlier study (Kippenhan et al. 1992) there

were eight input neurons, a single layer of two neurons and a single output neuron

(dementia/not dementia). A total of 130 cases was used (50 normal, 41

Alzheimer’s dementia, 39 probable Alzheimer’s dementia) in a jack-knife training/
testing methodology. For probable cases of dementia the area under the ROC

curve was 0.85 for the neural network and 0.89 for subjective assessment by an

expert interpreter, for possible cases the area under both curves was 0.81. In the

later study, with more input data from a higher resolution PET camera, the area

increased to 0.95.

Diagnosis of liver disease by ultrasound examination

Ultrasonic examination of the liver is a useful test for the diagnosis of hepatic

disease, particularly the diVerentiation of hepatic tumours into primary hepatic

tumours (which may be amenable to surgical resection) and multiple deposits of

metastatic tumour (which are usually not amenable to surgical resection). The

images seen on ultrasound are usually viewed in conjunction with biochemical

tests of liver function when a diagnosis is made. Maclin & Dempsey (1992) have

coded features (such as size of mass, whether single or multiple, hyper- hypo- or

anechoic) from liver ultrasound scans and used these, in conjunction with the

results of liver enzyme studies, to train a multilayer perceptron to diagnose hepatic

masses. The training outcomes were validated by histological or cytological

samples from the masses, 64 cases were used with a jack-knife technique of

training and testing. Several diVerent architectures were used but the most

successful had the unusual conWguration of 35 input neurons, two hidden layers

each of 35 neurons and Wve output neurons. The overall accuracy of classiWcation

was 75%, which was better than that of radiologists in training (50%) but far short

of the performance by board-certiWed radiologists (90%). A follow-up paper by

the same authors (Maclin & Dempsey 1994) presents the same data but discusses

improvements that could be made to the system, including using digitized images

of the ultrasound examination as raw input data. Gebbinck et al. (1993) have used

parameters calculated directly from ultrasound data that describe texture and

other features to train both a multilayer perceptron and a non-supervised self-

organizing feature map. They used a jack-knife training/test technique on a study

population of 163 cases, of which 79% were normal, but they increased the data set

to 1000 cases by statistical generation of more ‘cases’. In discriminating between
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diseased liver and normal the multilayer perceptron produced speciWcities of

87–99%, the self-organizing network 82–95% and linear discriminant analysis

90–96%; no statistical tests were used to investigate the signiWcance of the diVerent

performances. Analysis of the performance for assigning diseased liver to diVerent

diagnostic categories is diYcult to extrapolate from the paper but the multilayer

perceptron did appear to have a performance superior to that of linear dis-

criminant analysis.

Interpretation of chest radiographs

Plain chest radiographs are used for many purposes in medicine, including the

detection and diagnosis of lung infections, lung tumours and other pulmonary

abnormalities; interpretation of the radiographs is made by well trained radi-

ologists. There are several studies in the literature where artiWcial neural networks

have been used to assist the interpretation of chest radiographs, the largest

category centres on the detection and interpretation of nodules in the lung Welds.

Lo et al. (1993) have developed an automated system of detecting lung nodules

using digitized chest radiographs, some image preprocessing and then direct use

of the digitized image as input data for a multilayer perceptron neural network.

The digitized radiographs were processed to enhance nodules using median Wlters

and Fourier transforms. Areas of 32] 32 pixels were then used as the input data

for a three-layer perceptron with 1024 input neurons, 200 neurons in a single

hidden layer and two output neurons. The network was trained with 60 images

and tested with 153, giving an area under the ROC curve of 0.78, which appears

promising but it was not formally compared with other statistical methods or

human performance. A similar system has been developed by Chiou & Lure

(1994) that also used 32 ] 32 pixel blocks as input data to a multilayer perceptron

with two hidden layers of 128 and 64 neurons and two output neurons. They

divided the image blocks into eight classes, which includes true nodules and

known causes of false positives (rib crossing, vessel cluster, etc.). A total of 157

blocks was used to train the network and 235 to test it. The overall accuracy of the

system was 97.5%, with a 6.7% false positive rate and a 1.3% false negative rate but

no comparisons were made with other statistical methods or human performance.

Another study using 32] 32 pixel blocks of digitized radiographs has been

reported by Lin et al. (1993). Again some preprocessing of the image was made

using ring-background subtraction before submission to a two-layer convolution

neural network with 1024 input neurons, Wve groups in the hidden layer and Wve

output neurons. There were 92 image blocks in the training set (40 true nodules,

52 false positive nodules) and 554 image blocks in the test set. This network gave

an area of 0.80 under the ROC curve, which was equivalent to a sensitivity of 80%

with two or three false detections per chest radiograph; there was no comparison
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with other methods. A further example of this type of methodology is that of Wu

et al. (1995a) again using preprocessed digitized images presented to a multilayer

perceptron. This study investigated several aspects of the system, including the

eVect of diVerent numbers of pixels in the input data (blocks of 8 ] 8 pixels were

found to be most eVective but this may have been due to the small numbers of

cases, 32, in the whole study) and the eVects of diVerent methods of presentation

of this information to the network (line by line presentation of the image was

more eVective than a ‘square spiral’ approach). The area under the ROC curve for

‘obvious’ nodules was 0.93 but the performance was much less impressive for

‘subtle’ nodules. A system using human observations of chest radiographs as input

data has been reported (Gurney & Swensen 1995); it used a multilayer perceptron

with seven input neurons, three neurons in a single hidden layer and one output

neuron to give a dichotomous benign/malignant prediction. A jack-knife training/
testing method was used on the 320 cases that all had a proven histological

diagnosis. The area under the ROC curve was 0.87, which was signiWcantly less

than the 0.89 for Bayesian analysis on the same data. One study on chest

radiographs that did not look at pulmonary nodules is that of Gross et al. (1990),

which used 21 deWned observations on neonatal chest radiographs to train a

multilayer perceptron to diagnose 12 possible cases, including amniotic Xuid

aspiration and respiratory distress syndrome. Seventy-seven cases were used to

train the network and 103 cases were used in testing. The network had 21 input

neurons, a single hidden layer of 15 neurons and 12 output neurons. Since there

was no ‘gold standard’ by which outcome could be validated, the performance of

the network was only compared in terms of agreement with the observations of

two experienced radiologists. The results showed that the agreement between the

network and each of the radiologists was greater than between the radiologists but

it is diYcult to draw any conclusions about absolute performance.

Ultrasound diagnosis of gallbladder disease

Rinast et al. (1993) have extracted 19 image analysis parameters from digitized

ultrasound images of the gallbladder in 90 cases and used these to train a

multilayer perceptron using human interpretation of the image as the ‘gold

standard’ of outcome. They used a jack-knife method of training and validation

and compared the artiWcial neural network performance with that of nearest

neighbour analysis and linear discriminant analysis. The neural network gave the

best performance, with 99% accuracy, but linear discriminant analysis produced

97% accuracy and no formal tests were made to compare the relative performance

of these methods.

Diagnosis of dementia and cocaine abuse using cerebral perfusion scans

The cerebral perfusion scan, where a radiolabelled agent that remains in the blood



55 ANNs in laboratory medicine

is injected, is another radiological test subjectively interpreted by trained ob-

servers. Chan et al. (1994) have used quantitative data from such scans to train a

multilayer perceptron to distinguish between normal and demented subjects and

between normal and chronic cocaine polydrug abusers. They used quantitative

measures of cerebral perfusion (i.e. the count of radiolabel) in 120 identiWed

volume units (voxels) for each scan and then trained a network with 120 input

neurons, eight neurons in a single hidden layer and one output neuron (for the

normal/dementia distinction) and 120 input neurons, two hidden layers with 28

and four neurons, and a single output neuron (for the normal/cocaine abuse

distinction). They used separate training and test sets with a total of 81 cases for

the dementia study and 61 cases for the cocaine abuse limb. The area under the

ROC curve for the dementia diagnosis was 0.93 and it was 0.89 for the diagnosis of

chronic cocaine abuse, but the network performance was not compared with

conventional statistical methods or human interpretation.

ID number recognition

An apparently trivial (in the sense of use of technology) problem for which

artiWcial neural networks have been used is the recognition of identiWcation (ID)

numbers on radiographs (Itoh 1994). The justiWcation for this use is that if

automated analysis of radiographs is to be possible then automatic recognition of

ID numbers will be required and these will be subject to some distorting processes

during the exposure and processing of the radiographs. Itoh (1994) used 550

characters on radiographs (10 arabic numbers and the alphabetic characters S and

M in the distribution of usual prior probabilities) to train a two-layer perceptron

and then tested this with a further 575 characters. The network failed to recognise

three characters in the test set but identiWed all the others correctly.

Focal bone lesions

Reinus et al. (1994) have used a multilayer perceptron to diagnose focal bone

lesions (both benign and malignant) using 95 input variables that ranged from

measurements made by human observers (e.g. maximal diameter of the lesion) to

subjective human observations (e.g. degree of edge deWnition). They used a

jack-knife training and test strategy on 709 lesions. There were no comparisons

with other statistical methods but comparison with human performance was

implicit (though not comparable), since the outcome used to train the network

was human diagnosis. The network diagnosed 56% of lesions correctly if its Wrst

choice was taken and included the correct diagnosis in a diVerential of three in

72% of cases. This rather poor performance is not surprising if the human

diagnoses used as outcome in training are examined, since nine diagnoses were

represented by single cases and 24 diagnoses by fewer than 10 cases each. The cases

were split into four groups and three-quarters used to train each network and a
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quarter to test it so it is very likely that some diagnoses were not represented in the

test set but were present in the training set. Since focal bone lesions represent

discrete diagnostic categories with little overlap, and not continuous spectra, it is

very unlikely that such training deWciencies would be compensated for by the

inherent generalization properties of neural networks.

Magnetic resonance imaging of astrocytomas

Christy et al. (1995) have used deWned human observations of features of magnetic

resonance images (MRI) of astrocytomas to train a multilayer perceptron to

predict whether the astrocytoma would have a low or high histological grade when

biopsied and examined histologically. A problem with the design of this study is

that the ‘gold standard’ for histological grade is taken as the subjective grading of

the tumour by a neuropathologist into one of four categories without examination

of the intra- or inter-observer variability of this process. The study also uses

deWned human observations of features on the MRI images as input data without

testing the reproducibility of the data. The accuracy of the artiWcial neural network

in a dichotomous division of the tumours into low and high grade was 61%, which

compared with 59̈% for multivariate linear regression and 57% for subjective

assessment by a radiologist and there was no statistically signiWcant diVerence

between any of these results.

A more sophisticated study has been carried out by Usenius et al. (1996) and has

the immediate advantage of using raw objective data as the input material to the

neural network. The study used in vivo nuclear magnetic resonance spectro-scopy

with a water-suppressed 1H scanning technique. The data were preprocessed to

remove residual water-associated spectra and then 207 points from the spectra

were presented to the input neurons of a multilayer perceptron that had two

hidden layers of 60 and 30 neurons and four output neurons. Data from 33

tumours and 28 normal controls were used with a jack-knife technique of training

and testing. The neural network gave 100% accuracy in discriminating between

normal and abnormal tissue and 82% accuracy for the histological type of tumour

but there were some misdiagnoses across the benign/malignant classiWcation

boundary. This study shows considerable promise as a non-invasive means of

classifying human brain tumours. The results might be improved just by expan-

sion of the training set, since six diagnostic categories were represented only by a

single case, which by deWnition would be excluded from the training set by the

jack-knife technique used in this study.

Brain ventricular size on computed tomography

Fukuda et al. (1995) have made linear measurements from computed tomo-

graphic (CT) scans of brains and used these, together with patient age, as input
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data for an artiWcial neural network to assess ventricular size. The main defect of

this study is the outcome measure used for training, which was a consensus

subjective grading of the scans into three categories – normal, slightly enlarged or

deWnitely enlarged. Since CT scans provide three-dimensional data it would have

been possible to use a reconstruction method that would have provided an

accurate objective estimate of ventricular volume as the outcome measure. The

study used a multilayer perceptron with a training set of 38 patients and a test set

of 47 patients with relatively small numbers of cases of deWnite enlargement (12%

of the total population). The neural network misclassiWed only one case in the test

set but there was no comparison with other statistical methods.

Skeletal age

The determination of skeletal maturity is often performed in paediatric practice

and if it diVers signiWcantly from the subject’s chronological age this indicates

skeletal growth abnormality. Skeletal maturity is usually performed by a paediatric

radiologist, who compares the appearances of a radiograph of the subject’s hand

with those in a specialist atlas. Gross et al. (1995) have taken seven linear

measurements from hand radiographs and calculated four parameters that they

have used as input data for a multilayer perceptron. They used a population of 521

subjects with a jack-kniWng training and test strategy. The results from the neural

network were compared with observations of a consultant radiologist. There was

no diVerence between human and artiWcial neural network performance, with a

mean diVerence from the chronological age of −0.23 years for the radiologist and

−0.26 for the neural network so the neural network could only have a potential

advantage if less experienced human observers produced less reliable results.

Isotope scans

Isotope scans, in which a patient ingests or is injected with a radiolabelled

substance that is then distributed according to some aspect of function, provide

relatively low resolution images that could be used as direct input data for artiWcial

neural networks. Ikeda (1996) has used data from isotopic liver scans to train a

multilayer perceptron but the data were linear measurements from the images

such as the ratio of sizes of the left and right lobes. Thirty-six patients were

included with a histopathological diagnosis (chronic hepatitis, severe Wbrosis,

frank cirrhosis) from liver biopsy as validation of the outcome. Fifteen cases were

used for training and 21 for testing. The overall accuracy of assignment to the

diagnostic categories was 77%, which was better than the fuzzy inference method

also used, but statistical comparison of the methods was not made.
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Clinical chemistry

Clinical chemistry is now a specialty dominated by massive parallel analysers

capable of producing thousands of results each hour and it is natural that

investigators have applied artiWcial neural networks to the data produced by these

machines (Winkel 1994; Shultz 1996). Whether this application has been an

indiscriminant search for relationships between unconnected data or a more

considered approach to diagnosis is discussed in the reviews of individual studies

under speciWc headings below.

Diagnosis of cancer from blood tests

Astion & Wilding (1992) conducted a study of the utility of nine parameters

measured in patient serum to discriminate between patients with malignant and

benign breast disease. The study is interesting because none of the parameters

(triglycerides, cholesterol, high-density lipoprotein (HDL)-cholesterol, apolipo-

protein A, apolipoprotein B, albumin, ‘tumour marker’ CA15-3, nuclear magnetic

resonance linewidth and age) are a direct measurement of a product of a

malignant breast tumour and only two showed a univariate statistical diVerence

between the benign and malignant groups. Any discrimination between the two

groups must therefore be due to diVerences in patterns of these nine paraneoplas-

tic markers. The authors used a multilayer perceptron with training by back-

propagation of errors in an architecture with nine input neurons, one hidden layer

of 15 neurons and two output neurons. The training set contained 57 cases and the

test set 20 cases; comparison was made with quadratic discriminant function

analysis.

The neural network correctly classiWed all cases in the training set and 80% of

cases in the test set, which was better than the performance of the discriminant

function analysis (84% correct classiWcation on the training set, 75% on the test

set). The numbers in the study are small but show encouraging results and,

although the diagnosis of the primary breast carcinoma will always be by direct

means (e.g. Wne needle aspiration cytology), this may be a method of detecting

metastatic disease after resection of the primary tumour. A follow-up study by

Wilding et al. (1994) using larger numbers of cases gave rather lower performance,

with a sensitivity of 56% and speciWcity of 73% for breast cancer patients, which

was little better than the tumour marker CA15-3 alone (61% and 64%, respective-

ly). Results on ovarian cancer patients gave a sensitivity of 81% and a speciWcity of

86%, but the performance of CA15-3 alone was again close to these levels (78%

and 82%). A similar study (Dwarakanath et al. 1994) used the methyl and

methylene regions of nuclear magnetic resonance spectra of patient’s blood to

distinguish between those with and those without colorectal carcinoma. A multi-
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layer perceptron with 27 input neurons, two neurons in a single hidden layer and

one output neuron was used and produced complete discrimination on a 37-case

training set, but no separate test set was reported in this study.

Prediction of ischaemic events due to coronary artery atherosclerosis from

serum lipid profiles

Several diVerent serum lipids have proven associations with the development of

coronary artery atherosclerosis and subsequent ischaemic events in the myocar-

dium but measurement of these gives a population-based statistical risk rather

than an individual prediction. Lapuerta et al. (1995) have used a multilayer

perceptron neural network to predict ischaemic events (e.g. myocardial infarc-

tion) from measurement of seven diVerent serum lipids. The data they used came

from a randomized placebo-controlled clinical trial evaluating the eVects of

lipid-lowering drugs on clinical outcomes in patients with known coronary artery

disease. The study highlights many of the problems that can arise when using

artiWcial neural networks to predict temporally related events. The main problem

is how to deal with censored data, i.e. patients who do not have complete

follow-up for the whole trial. Such patients may have follow-up with no disease for

a year but are then lost to follow-up and no further data are available. If such

patients are excluded then this can introduce selection bias into a study, since

those without further disease are more likely to be lost to follow-up (those with

further disease, in this study myocardial infarction, are likely to re-present to

medical services even if they do not attend regular follow-up appointments). The

study of Lapuerta et al. (1995) uses an unusual strategy to deal with censored data

by imputing the outcome for patients lost to follow-up using neural networks

trained on the uncensored data for that time period. They divided the study into

three time periods and then trained multilayer perceptrons for each period using

patients on whom complete data were available. If a patient was lost to follow-up

during the second period then the input data for that patient was put into the

trained network for the second period and the prediction of the network was used

as the outcome in the Wnal complete analysis. Since the authors also used a

modiWed jack-knife approach to segregation of training and test sets this appears

to be a rather circular way of dealing with censored data and not as secure as other

methods proposed for tackling this problem (Burke 1994; Clark et al. 1994; De

Laurentiis & Ravdin 1994a,b; Liestol et al. 1994; Ohno-Machado et al. 1995; Burke

et al. 1996). The performance of the Wnal network was relatively modest, with a

66% accuracy of prediction, but this was statistically better than a Cox regression

model developed on the same data (56%, p = 0.005) (Lapuerta et al. 1995). This

study has another methodological problem because the data were taken from a

randomized trial of lipid-lowering drugs but the data used appear to be for all
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patients in the trial rather than just those on the placebo, which may well distort

the relationship between serum lipids and ischaemic events.

Prediction of acute myocardial infarction from serum myoglobin measurements

Kennedy et al. (1997) have used serum myoglobin measurements, in combination

with clinical features, to diagnose acute myocardial infarction in accident and

emergency departments. They used a multilayer perceptron with training by

back-propagation of errors. Ninety cases were used to train the network and 200

cases to test it. The sensitivity and speciWcity on the test set were 91.2% and 90.2%,

which were signiWcantly better than linear discriminant analysis (77.9% and

82.6%, respectively). Myoglobin measurements on their own were highly speciWc

but relatively insensitive (38%) but when combined with the clinical features in

the neural network system the results are good enough to be used in the working

environment.

Prediction of the activity of hepatitis from isoforms of serum alkaline phosphatase

Wallace et al. (1996) have used a multilayer perceptron neural network to predict

whether or not a hepatitic process was active employing data of the isoforms of

serum alkaline phosphatase and other liver-associated enzymes. They used a

training set of 34 patients and a test set of 34 and constructed various network

architectures by varying the number and selection of input variables. It is interest-

ing that the best performance was achieved with either four selected input

variables (alkaline phosphatase, aspartate aminotransferase, alanine aminotrans-

ferase and total bilirubin) or all 11 measured variables. From theoretical consider-

ations it is thought that most artiWcial neural network architectures should ignore

noisy or irrelevant input data during the training period with no decrease in

performance (or subsequent improvement in performance if noisy input data is

excluded), which this study conWrms in contrast to other studies (Narayanan &

Lucas 1993).

Haematology

Control of anticoagulation with warfarin

Warfarin is a drug widely used for anticoagulation but it is often diYcult to titrate

the dose to produce the desired degree of eVect. This is because of the complex

pharmacodynamics of warfarin, which include a long biological half-life and

complex interactions with other drugs including alcohol. Narayanan & Lucas

(1993) have developed multilayer perceptrons that predict the degree of anti-

coagulation, using the information of the dosage of warfarin on the preceding 7

days, the degree of anticoagulation when last measured and the time since
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anticoagulation was last measured. The method of developing trained neural

networks was complex, using a genetic algorithm to select Wve out of the nine

possible input data and an architecture that included two hidden layers. Networks

were developed for individual patients and then its prediction performance was

compared with actual measurements of anticoagulation. The performance of the

artiWcial neural networks was not compared with any conventional statistical

techniques. It is diYcult to assess the utility of these networks given the lack of

comparison with other techniques but it appears that the use of the genetic

algorithm in selecting input variables reduced the error to 25% of that found when

using all the variables (Narayanan & Lucas 1993). This in itself may be an

anomalous result, since one of the postulated theoretical advantages of neural

networks over conventional statistical techniques is a resistance to noise in the

input data.

Molecular biology

The advent of rapid methods of sequencing DNA and RNA have led to an

explosion of information in the Weld of molecular biology and one direct use of

neural networks is in the interpretation of output from automated sequencers into

one of the four speciWc base types (Golden et al. 1993). The Human Genome

Project has completed the sequencing of the human genome and the data on

mutations in disease are proliferating at an ever-increasing rate. There is thus a

huge requirement for software that can assist in the interpretation of the data.

Much of the requirement is for database software that allows the comparison and

alignment of newly sequenced nucleotides with known sequences and artiWcial

neural networks have been used as associative memory in such software (Wu et al.

1993) but the main areas of use have been the detection of coding regions in DNA

and the prediction of protein structure (Rawlings & Fox 1994; Wu 1997).

Gene classification from DNA sequences

Eukaryotic DNA is made of genes and intervening lengths of DNA whose function

is currently uncertain (so-called ‘junk’ DNA). Within each gene there are regions

that code for proteins (exons) and non-coding regions called introns. The code at

the start and Wnish of a gene, or the start and Wnish of an exon, has some statistical

similarity with the start and stop regions of other genes but there are no unique

combinations of base-pairs that can be used to Wnd these points with 100%

accuracy. This poses obvious problems for those who are sequencing unknown

regions of DNA that may, or may not, contain genes with coding regions. Several

systems with artiWcial neural networks have been developed to assist in the

identiWcation and classiWcation of genes.
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A problem with the use of neural networks in classiWcation of DNA sequences is

the coding of the input vectors for the network. DNA consists of chains of

nucleotide bases of four types – adenosine (A), thymine (T), guanine (G) and

cytosine (C) – but there is no logical ordinal sequence for these bases. This means

that they cannot be coded directly as four digits (e.g. 0,1,2,3) for one input neuron.

If direct coding of the sequence is required, it is usually done as binary coding for

four input neurons (e.g. 0,0,0,1 represents adenosine; 0,1,0,0 represents thymine,

etc.) but whilst an improvement on the numerical coding for a single neuron it

attributes some artiWcial positional data to the diVerent bases. Direct coding also

produces a huge input vector, since a single gene can be composed of thousands of

base-pairs. An alternative strategy is to use some statistical condensation of the

information in the DNA as input data that reduces the size of the input vector but

could be losing some unknown information during this preprocessing phase. Wu

(1996) has used the latter approach to produce a neural network-based gene

classiWcation system. She has used an n-gram hashing method of coding the

sequence. This extracts and counts the occurrence of patterns of n consecutive

bases using a sliding window across the entire sequence producing frequency,

rather than positional, data that is length invariant. This method still produced

input vectors that were too large to present to the neural network (sometimes 8000

items) so a singular value decomposition method was used to extract the seman-

tics from the patterns and reduce the overall size. Wu used conventional back-

propagation three-layer perceptrons and a more sophisticated counter-propaga-

tion network with an input layer, hidden Kohonen layer and a Grossberg outstar

conditioning layer. From existing sequence databases, 12 572 examples were used

to train the network to make predictions as to which protein superfamily the

sequence was coding (training took 1.4 hours of Cray central processor unit

(CPU) time). At a low threshold for Wt, 81% of sequences were classiWed correctly,

at a more stringent threshold only 52% were correctly classiWed but incorrectly

classiWed sequences were reduced to 0.23%.

Cai & Chen (1995) developed a neural network discrimination model to

identify the promoter, poly(A) signal, splice site position of introns and noose

structures within genes. They used 256 eukaryotic genes in the training set and 48

genes in the test set and used a multilayer perceptron architecture. They found that

as long as the coding length was Wxed the artiWcial neural network would always

recognize these gene substructures with 100% accuracy but if the length was

variable there was a steep decline in performance. This latter result is disappoint-

ing, since in the usual situation of a newly characterized sequence the alignment of

that sequence, and hence length between objects, will be unknown.

Sun et al. (1995) have used a back-propagation multilayer perceptron to

recognize transfer RNA (tRNA) gene sequences. They used a relatively novel
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strategy to test for homology between sequences. They take a sequence of DNA as

the input data for a network but omit the middle base and train the network to

predict what that base will be. The network can be trained on genes from one

species, for example Homo sapiens, and then tested on a diVerent species. The rate

of correct prediction of the middle base will then give an index of the homology of

the bases in these regions of DNA for the diVerent species. They used a sliding

window of 15 bases as the input layer, a single hidden layer of up to 60 neurons

and four output neurons. When using tRNA sequences from mammals the

network gave a correct base prediction rate of 73% when trained with mammalian

sequences but this fell to 46% when tested on invertebrate tRNA sequences,

indicating some, but by no means total, homology in these sequences (there was a

27% correct classiWcation rate for random test sequences, as would be expected

with four diVerent bases). The advantages of using this system over straight base

homology comparisons is not entirely clear but it could evaluate the pattern of the

bases as well as their occurrence in speciWc locations.

Prediction of protein structure from amino acid sequences

When a segment of DNA has been sequenced and the exons identiWed within a

gene then the chain of amino acid residues for which this DNA will code can be

deduced from a simple table. What is much more diYcult is the prediction of the

structure of the protein that these residues will form. For protein sequences that

have signiWcant similarity to sequences with a deWned structure then quite accu-

rate predictions of three-dimensional structure can be made but for all other

sequences structure prediction is diYcult.

Rost (1996) has applied artiWcial neural network technology to this problem

and has developed a sophisticated hybrid system that can predict such features as

secondary structure, relative solvent accessibility and transmembrane helices. The

part of the system predicting secondary structure and transmembrane helices

consists of two consecutive multilayer perceptrons. The input data to the Wrst

perceptron is composed of a sequence of 13 amino acid residues (from a sliding

window along the sequence) and four other terms – the percentage of each amino

acid in the protein, the length of the protein, the distance of the central input

residue from the N-terminal end and the distance from the C-terminal end. The

network contains a single hidden layer and three output neurons predicting

whether the central input residue is in a structural helix, strand or a loop. The

network was trained on sequences from proteins with known three-dimensional

structures. The second network in the chain has the same structure as the Wrst

except that the output prediction from the Wrst network is included as an input.

The author explains the rationale behind this by pointing out that training

exemplars are chosen at random so adjacent sequences are most unlikely to be
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presented to the network consecutively. This means that the network does not

have the opportunity to learn patterns involving correlations between adjacent

sequences such as the known structural fact that helices contain at least three

residues. The second network introduced a correlation between adjacent residues,

with the eVect that predicted secondary structure segments or transmembrane

helices have length distributions similar to those observed. The network for

predicting relative solvent accessibility was single and had 10 output neurons

splitting the prediction into 10 percentage bands (e.g. maximal value in the fourth

output neuron indicated a relative solvent accessibility of between 9% and 16%).

The author used ‘jury’ decisions by multiple networks to increase overall accuracy

and applied simple Wlters to the outputs to correct wildly unrealistic predictions

(e.g. a helix of fewer than three residues). The accuracy of prediction was 72 ± 9%

for secondary structure, 75 ± 7% for relative solvent accessibility and 94 ± 6% for

transmembrane helices, which appear quite promising, although it must be

remembered that there are a limited number of predictions that can be made

(three states for the secondary structure). The author has made the prediction

system available to users by email

(http://www.embl-heidelberg.de/predictprotein/predictprotein.html)

and the system had dealt with 30 000 predictions at the time of publication.

Chandonia & Karplus (1996) have also used a multilayer perceptron to predict

protein secondary structure. They entered only the amino acid sequence and

coded each amino acid by a binary coding in an array of 21 input neurons so the

optimal window of 15 amino acid residues required 315 input neurons. They

experimented with many diVerent numbers of neurons in the single layer and

found eight produced optimal performance. Using this optimized system they

produced a 67% accuracy of prediction, which was an improvement on their

previous results (63%), which were generated using a smaller training set and

fewer hidden neurons. The introduction of sequence proWles to the prediction

improved the accuracy to 73%, suggesting that the sequence proWles contain

some information that the neural network was not extracting from the raw amino

acid input data. A system of predicting the tertiary structure of proteins, by

predicting two dihedral angles for each residue, has been developed by Vanhala &

Kaski (1993) using a multilayer perceptron. It is diYcult to perform formal

statistical analysis of the results but the computer-generated pictures of the

structure from the neural network predictions are similar to those obtained from

crystallographic data. Thompson et al. (1995) have developed a neural network

system that predicts the pattern of polypeptides that can be cleaved by human

immunodeWciency virus (HIV) 1 protease. The input data was a window of amino

acid residues from the protein together with the calculated hydrophobic, a-helix
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and b-sheet propensities of the protein. The output was a single neuron predicting

whether or not the protein would be cleavable. The network achieved an accuracy

of 89% on the test set. The authors then used the trained network to investigate the

eVects of mutations in the protein (producing changes in single amino acid

residues) on the cleavability.

Prediction of amino acid sequences from NMR spectra of proteins

In the previous section systems were described that predict protein structure from

given amino acid sequences. This section describes a system that acts in reverse;

taking a whole protein, examining it by nuclear magnetic resonance (NMR) and

predicting the amino acid content from this. The system that Hare & Prestegard

(1994) have developed takes an NMR spectra divided into 71 segments (and thus

71 input neurons) and uses this to predict the amino acid residue (one of 17 in

their training and test systems). They experimented with diVerent numbers of

neurons in a single hidden layer and found four to be optimal; Wve gave better

results on the training set but gave a lower performance on the test set due to a lack

of generalization. Using a constraint satisfaction algorithm produced the best

results, with 75% correct sequential assignments. The training and test sets

contained proteins with 37% sequence homology, which could have led to a bias

in the performance, and training on a large database of proteins would be required

to produce a more generalized system.

Prediction of chemical mutagenicity

There is a great need to predict the mutagenicity of chemicals from their structural

characteristics, since testing for mutagenicity is time-consuming, expensive and

cannot be performed at a rate to keep up with the discovery of new chemicals.

Brinn et al. (1993) have developed an artiWcial neural network system that makes

prediction of mutagenicity from chemical structure information. The investiga-

tors took 607 substances that had been tested for mutagenicity in validated

biological systems (488 mutagens, 119 non-mutagens) and deconstructed these

into chemical fragments using an established method. Using the 100 most dis-

criminant fragments they trained a multilayer perceptron (with a 100–10–2

architecture) to predict mutagenicity. The network performed with 89% accuracy

on the training set and 94% accuracy on the test set (an apparently anomalous

increase in performance that is not easily explained). This performance would not

be suYcient to classify chemicals as mutagenic or non-mutagenic without biologi-

cal testing but it does enable the relative risk to be assessed and particular

chemicals to have their biological testing prioritized. The authors also used a

technique that enabled them to describe the trained weights in the hidden layer in

terms of clusters of mutagens and non-mutagens and they found that some of
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these clusters were structurally homogeneous, providing some demonstration of

how the neural network classiWer was operating.

Prediction of metastasis from gene expression

Albertazzi et al. (1998) have used neural networks to predict disease progression in

breast cancer from the relative expression of the oncogenes h-mts-1 and nm23.

They used Kohonen’s self-organizing maps and the back-propagation of errors.

The input data consisted of levels of expression of h-mts-1 and nm23 together with

patient age, tumour size, tumour grade, percentage of oestrogen receptor-express-

ing cells and percentage of progesterone-expressing cells. The study population

was relatively small, with 17 cases in the training set and 20 in the test set. The

authors state that care was taken to ensure that overtraining did not occur but do

not specify the methods that they used to avoid this. Their results appear to show

that the presence or absence of metastases in axillary lymph nodes in these patients

with breast cancer could be predicted with 100% sensitivity and 80% speciWcity

but they do not explicitly state that these results are for only the test set and it is

possible that the results for the training set are included in these Wgures.

Laboratory information systems

Laboratory medicine generates a large amount of data in both visual (e.g. radio-

graphs, cytology and histology slides) and numerical (e.g. output from parallel

chemistry analysers) forms for a large number of patients. Laboratory information

systems have to be developed that can assist in the interpretation, storage and

retrieval of these data and artiWcial neural networks can play a role in all three

aspects. The theoretical advantages of using neural networks in the interpretation

of data in laboratory medicine have been expounded (Eklund & Forsström 1995;

Fogel et al. 1995) and many examples are reviewed in the problem-speciWc

sections above. More general references covering generic techniques in image

processing and storage are reviewed in the section below.

Image processing

Images in medicine, such as radiographs or histology slides, are interpreted by

trained human observers in virtually all applications, with very little contribution

from automated measurement systems. The human brain has evolved into a

highly eYcient processor of visual information that can handle a much higher load

of information than any currently available computer systems. In a few environ-

ments, such as histological diagnosis of muscle disorders or quantiWcation of

metabolic bone disease, objective measurements are made on image analysis

systems, but even in these instances the segmentation of the image is usually
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performed by a human operator in interaction with the computerized system.

There is a continuing impetus to develop automated systems that will interpret

medical images and so provide objective and reproducible interpretation but the

problems in developing such systems are immense and currently the trained

human observer provides the most accurate and cost-eVective method. ArtiWcial

neural networks can play a role in several parts of the automated process including

image segmentation (Lin et al. 1996; Schenone et al. 1996; Zhu & Yan 1997), image

compression (Dony et al. 1996), feature selection (Sahiner et al. 1996), and higher

level interpretation (Nazeran et al. 1995).

Schenone et al. (1996) have used a neural network model, based on a standard

competitive self-organization, to produce a completely unsupervised approach to

clustering and classiWcation in the process of segmenting images of the brain

obtained by MRI. The advantages of this system are two-fold. Firstly, the number

of clusters that the network has to partition data is not a parameter for the network

but is autonomously discovered during the learning phase. Secondly, the partition

of data that comes out of the learning phase takes into account the natural scale of

spatial density within the distribution of the data. The authors demonstrate the

utility of their system by pictures of processed MR images and graphical represen-

tations of voxel classiWcation in the feature space. The classiWcation of voxels to

diVerent features appears stable but it is diYcult to carry out statistical compari-

son with other methods. Two independent groups (Lin et al. 1996; Zhu & Yan

1997) have used variants of the HopWeld neural network architecture with un-

supervised learning to segment cerebral MRI scans. Lin et al. (1996) have used a

fuzzy variant of the HopWeld neural network to segment MRI scans into white

matter, grey matter, cerebrospinal Xuid, cerebral infarction and background.

Their results show correct classiWcation rates varying from 99% for background to

94% for cerebrospinal Xuid on normal scans. The classiWcation rate fell to 90% for

areas of cerebral infarction but it might be expected that such areas would have

properties falling on the boundaries of segmentation of normal tissues. One large

advantage of this system is that it interprets multispectral information from the

MRI scans, integrating them into a single image. Zhu et al. (Zhu & Yan 1997) have

also used a HopWeld neural network to segment the boundaries of cerebral

tumours on MRI scans (Figure 2.4). Images presented in that paper show accurate

segmentation of the tumours but again comparison with other statistical methods

is diYcult to perform.

Digitized medical images occupy a huge amount of memory in uncompressed

format. With the advent of optical storage devices, such as recordable compact

discs, the storage of such images at source is less problematic than it was but it is

still a huge problem if these images are to be transmitted to other sites. Any

compression method must retain the detail required for diagnosis and must not
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add spurious information that could be misinterpreted. Dony et al. (1996) have

used a neural network-based image compression method to reduce the Wle size of

digital chest radiographs. The method partitions data into a number of discrete

regions that form M-dimensional subspaces of the original N-dimensional space.

Within each subspace the data are represented by M principal components of the

subspace so the technique is a hybrid non-linear principal component/neural

network method. Using this method the investigators compressed a number of

digital chest radiographs at ratios from 10: 1 to 40: 1 and by another method (the

Karhunen–Loève transform). The images were assessed by seven radiologists and

those compressed by the neural network method scored at least as well as the other

method, even at lower compression ratios for the other method.

Flow cytometry

Flow cytometry is a widely used technique that can sort cells into diVerent

classiWcations according to their reXectance or absorbance of laser-generated light
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at a particular wavelength. The technique is often used in ploidy studies including

the classiWcation of trophoblastic disease. The usual method of analysis is by

analogue circuits in the apparatus but some authors have shown that digital

acquisition of the data reveals useful information that is smoothed out by the

analogue process. Godavarti et al. (1996) have applied neural network analysis to

digital data from Xow cytometry with the intention of developing generic tech-

niques of cell classiWcation. They applied both multilayer perceptron and

Kohonen-type neural networks to the problem using either features extracted

from the pulse waveforms (such as pulse height, pulse width, pulse skewness and

discrete Fourier transform) or the raw digital data of the waveform. The networks

were trained on 40 waveforms (20 of each dichotomous category) and tested on

1000 waveforms. The most accurate classiWcations, mean 93.5%, were achieved by

a multilayer perceptron with seven input neurons, a single hidden layer of Wve

neurons and two output neurons or by using the unmodiWed waveform as input

data. The performance of the Kohonen network was only slightly inferior, with a

mean classiWcation accuracy of 93.2% and all the networks performed better than

the k-means algorithm that was used for comparison. Frankel et al. (1996) have

also used multilayer perceptrons to analyse Xow cytometric data and have devel-

oped a system that can operate in real time. They used a neural network classiWer

to sort human peripheral blood into Wve categories (CD8 − lymphocytes, CD8 +

lymphocytes, monocytes, granulocytes and lymphocytes) training the network

(with a 5–8–5 architecture) on 5000 cells and testing it on a further 9443. The

network produced accurate classiWcation for each category in the image of 94–

100% but this was not compared with conventional statistical methods.

Risk analysis

The introduction of a new laboratory diagnostic test into daily practice is often an

economic problem involving many risk factors and it would be useful to model

this process before the introduction of the new test. Jabor et al. (1996) have

designed such a simulation model that uses neural networks of an unspeciWed

architecture as the CPU. The model is given 10 items of input data and simula-

tions are run on a daily simulation cycle. The output from the model includes total

expenses, income, net present value of the project, total number of control

samples used, total number of patients evaluated and total number of used kits.

The results of the model appear realistic but it would be easier to assess its

eVectiveness if it were compared with real data from the introduction of a

laboratory test.
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Summary

This chapter has shown that there are numerous potential applications for artiW-

cial neural networks in the analysis of the profusion of data that is produced by

laboratory medicine. The fact that many of these applications have not yet been

implemented in the live laboratory environment may be due to the problems of

interfacing various items of electronic equipment but it also relates to the quality

of the current studies and the problems with licensing medical equipment. The

population size in the reviewed studies has been stated throughout and it can be

seen that many of the studies use small numbers of cases and there is insuYcient

evidence that the developed method will generalize to an unselected population in

a working laboratory. Large numbers of cases are required to show that a system

can work in its intended situation. The law on licensing decision support technol-

ogy varies from country to country but in all cases there must be some proof that

use of the decision support system enhances the medical process (Brahams &

Wyatt 1989; Hurwitz 1995) and that a neural network system is better than a

conventional statistical classiWer, such as logistic regression (Hart & Wyatt 1990b;

Wyatt & Spiegelhalter 1991; Wyatt 1995; Feinstein 1996). This again requires large

numbers of cases and carefully designed trials of the system in the live situation

(HeathWeld & Wyatt 1993). At present few systems fulWl these requirements.
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Using artificial neural networks to screen
cervical smears: how new technology
enhances health care

Mathilde E. Boon and Lambrecht P. Kok

Screening for carcinoma of the cervix

In this chapter, we present our experience of 9 years of using neural network

technology to screen for cervical carcinoma. In 1928 Papanicolaou presented

in Battle Creek, Michigan, his chance observation that cervical cancer cells can

be found in a vaginal smear. He realized that the method could be used to

recognize cervical carcinoma and treat it in its early stages thereby preventing

death from cancer in these women. In addition, he found that the preinvasive

stages of cervical carcinoma could be detected in the smear. Removal of the

abnormal tissue at this stage before spread would in essence therefore provide

‘curative’ treatment. Mass screening of asymptomatic women to detect cervical

carcinoma at a curable stage began in the USA in 1945. Abnormal cells were to be

detected in cervical smears by trained cytotechnologists, cytologists, or pathol-

ogists by means of light microscopy, a technique still used in the vast majority of

modern laboratories.

Human screening is far from ideal as cancer cells can easily be overlooked,

resulting in a ‘false negative’ diagnosis. The risk of consequent litigation has

become a major concern within the cytology community in the USA (Frable 1994;

DeMay 1996) and Australia (Mitchell 1995). SigniWcant laboratory incidents with

adverse medicolegal consequences have also been reported in the UK (Cogan

2000). One of the approaches taken to facilitate the detection of abnormal cells in

cervical smears has been the application of neural network technology.

Population screening for cervical cancer implies screening women who con-

sider themselves to be healthy. Without an invitation by the screening organiz-

ation, there would be no reason at all for women to perceive the need for a cervical

smear. Screening is therefore a diYcult balancing act. This is because women who

need treatment have to undergo further gynaecological examination, whilst

women without important cervical abnormalities must be kept out of hospital.

Because of the (relatively) low prevalence of true abnormality, the system must be
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capable of high speciWcity, in order to minimize both unnecessary repeat investi-

gation and anxiety. At the same time, sensitivity must be high enough to produce

an acceptable false negative rate. One is necessarily a trade-oV for the other.

With conventional screening by light microscopy it is virtually impossible to

increase sensitivity without simultaneously decreasing speciWcity. If the rate of

histological diagnosis of cancer is higher than the cytological one, we speak of

cytological underdiagnosis, with cytological overdiagnosis representing a higher

pick-up rate with cytology rather than histology. Note that not only overdiagnosis

but also regression and progression are directly related to degree of abnormality:

mild dysplasias regress more often and display less progression than carcinomas in

situ.

Definitions of cytologic and histologic entities

The aim of screening is to detect the preinvasive and early invasive stage of cervical

carcinoma such that deeply invasive carcinoma cannot develop. In this chapter,

the following terms for the various stages of preinvasive lesions are used. ASCUS

stands for atypical squamous cells of unknown signiWcance. The pre-invasive

lesions are, in increasing severity, mild dysplasia, moderate dysplasia, severe

dysplasia, and carcinoma in situ. With the exception of ASCUS (a purely cytologi-

cal concept; in the UK the term ‘borderline smear’ is used), these terms are used

throughout the text for both cytology and histology, as is the term ‘invasive

carcinoma’. In this context it is important to mention that certainly not all

preinvasive lesions progress into invasive carcinoma: many regress in time.

Screening cervical smears using neural network technology: the PAPNET system

Neural network-based systems for cervical screening have been available since the

early 1990s. For practising pathologists the literature on neural networks seems

complex and diYcult to understand: the systems made available to us at the time

were, however, apparently easy to understand in their operation, and were pres-

ented as a Wnished product ready for laboratory implementation. The original

neural network-based systems were, however, to remain separate from the labora-

tory, with slides being sent away for remote analysis.

This chapter concerns our experience with the PAPNET system, developed by

Neuromedical Systems, Inc. (SuVern, New York). We wished to use this neural

network-based technology to:

1. analyse conventionally prepared smears, without changing standard clinical

practice,
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2. automate only the search for diagnostic images, not the diagnostic decision

itself,

3. reduce the amount of non-diagnostic visual information, and

4. exploit fully the ability of the screeners to recognize diagnostic information as

presented by the system.

Neural network-based systems have been shown not only to be as capable as

human beings as image recognition tools, but in some cases possibly superior, in

that they are capable of Xagging abnormalities in smears established as false

negative (Kok & Boon, 1996b). It should be noted that this was a study, and it is

well known that screeners working in an unsupervised ‘real life’ situation perform

quite diVerently (Van Ballegooijen et al. 1998). Whether neural network-based

screening (NNS) should be adopted depends on its applicability in a routine

setting which in turn depends on how it interacts with the staV of the diagnostic

screening laboratory.

The hardware employed by PAPNET consists of two units: the scanning station

and the review station. They are fully separate instruments that can be located far

apart. The scanner includes a robotic arm for loading and unloading slides, an

automated microscope plus colour camera, a high-speed image processor, and an

80486 computer for operator interface and system control. Three objectives (50],

200], and 400] magniWcation) are used in diVerent stages of scanning. The Wrst

(low-power) scan maps slide cellularity and optimises focusing. The second

(medium-power) scan enables an algorithmic image processor using colour pro-

cessing and mathematical morphology to locate the set of potentially abnormal

cells and clusters. One neural network then processes the individual cells and a

second neural network processes the clusters. Both neural networks use a feedfor-

ward architecture, trained by back-propagation. The two neural networks used

during the processing of each smear produce similarity scores for each object.

These scores depend on how closely the object resembles those in the training

libraries (containing a large number of positive and negative cells, and clusters,

respectively). During scanning, the 64 highest scoring objects for each neural

network are chosen as the most diagnostic. A Wnal rescan collects high-resolution

colour images of the 64 objects selected by each of the two neural networks. These

128 cellular Welds include diagnostic cells, epithelial fragments, and backgrounds,

which are stored on a digital tape (DAT) or a CD-ROM. The object’s coordinates,

identifying its location on the slide, are also recorded on this medium. The 128

images contain diagnostic information, which is reviewed by the cytologist.

The diagnostic station is located in the cytology laboratory. It includes a

desktop computer with mouse and keyboard, a tape drive for reading the digital

tapes (or CD-ROM), and a large high-resolution monitor for displaying colour
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images. Our laboratory protocol consists of a summary screen of each case

displaying the 16 most diagnostic tiles selected from the original NNS-selected 128

video images or ‘tiles’. The light microscope is calibrated such that the coordinates

of the tiles match the x/y coordinates in the smear, in order that the cytologist can

easily Wnd the cells selected and displayed by the system on the original slide.

Figure 3.1 demonstrates the nature of the objects the networks detect.

The Wgure demonstrates camera lucida drawings, obtained from the printouts

of cells detected and highlighted by PAPNET as needing review. Figure 3.1a shows

cells detected by the system in a case originally diagnosed as ASCUS. This case

subsequently had a histological diagnosis of CIN III. Note that the system has

detected cells with a high nuclear/cytoplasmic ratio, consistent with the eventual

histological diagnosis. Figure 3.1b shows cells highlighted by the system in a case

originally diagnosed as ASCUS. This case was subsequently found to be normal at

follow up. Note that the nuclear/cytoplasmic ratio is low.

In order to exploit the NNS, the cytologist must be trained to interpret the video

images and to make informative summary screens. This is because it is necessary

to develop an appreciation of the novel way in which diagnostic data are represen-

ted by the system. In this case, cytologists are trained with known examples (cases

with known follow-up and/or histologic validation) in order that they may

appreciate the diagnostic potential of the video images provided by the system,

and to exploit the information of the summary screen.

The screener’s detection role can be divided into three steps:

Step 1: amongst the more than 300 000 normal cells the (potentially) abnormal

cells are recognized (the screening step).

Step 2: the degree of abnormality of these selected cells is established.
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Step 3: on the basis of the sum of the selected cells and on other diagnostic

information (‘soft signs’ visible in the background of the smear), the

smear diagnosis is described in histological terms.

Step 1 is performed by the neural networks. In this case, the networks’ ability to

extract the most abnormal cellular appearances from the slide consistently and

reliably is of vital importance. We investigated this by scanning twice 1200 smears

from Zurich, Switzerland, including 516 smears obtained from patients with

positive histological Wndings (Jenny et al. 1997). We saw that in both scans, the

diagnostic cells were selected by PAPNET (Jenny et al. 1997). In the very few cases

erroneously signed out as negative by the pathologist examining the network-

selected tiles, we found that the negative diagnosis had been released as a result of

the cytologist’s faulty interpretation of the tiles containing abnormal cells. Thus,

in these cases, step 2 of the screening process was incorrectly carried out. From

1992 to 2000, we have screened over 500 000 cases with the NNS. We did Wnd a few

false negatives (smears erroneously signed out as negative) in this large series.

Once again, in all these cases it was not the neural network that failed to select the

abnormal cells (step 1 of the screening process). Instead, the human diagnostician

failed to realize that the selected cells were from a signiWcant cervical lesion, and

failed to construct an informative summary screen of these cells to come to the

correct diagnosis (steps 2 and 3).

With increasing use, the screener learns to rely more on the videotiles and the

power of the summary screen, and needs less light microscopy. When we started

neural network-based screening in our laboratory in 1992, we used a protocol

based on the premise that the technology was not proven. In cases in which the

videoscreen might not display the diagnostic information, we turned to the light

microscope. In short, we were not certain about the abilities of the neural network.

As a result, over 70% of the smears needed additional light microscopy (Ouwer-

kerk-Noordam et al. 1994). Screening by light microscopy, however, revealed no

new diagnoses so we changed our protocol, spending more time looking closely at

the videotiles and less on light microscopy.

The decision for additional light microscopy depends on the videoscreen and

the macroscopic appearance of the smear. Bloody smears need extra attention,

since the cancer cells can be hidden in the blood and are diYcult to see on the

videoscreen.

In summary, more recently we have proWted not from designing better neural

network-based systems, but from adapting our screening methods to make full use

of the strategic advantage that neural network-based technology oVers us.
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The parties involved

There are several parties involved in screening for cervical cancer, and each one

has a diVerent view of what neural network technology has to oVer for screening

cervical smears.

Firstly, the epidemiologist plays a part in shaping the screening policy. For the

epidemiologist, it is important that the cytologic diagnosis will predict the his-

tological one accurately. In the ideal world, cytological diagnosis is always equal to

the histological diagnosis. In the real world, this is often not the case. Because the

diagnostician using NNS can collect the individual malignant cells (which in

reality are scattered over the microscope slide) on the computer screen, he/she can

‘glue’ these together into a ‘histological section’ and accordingly it is easier to

predict what the histologic diagnosis of the lesion will be. The improved match

between cytology and histology which NNS deliver has accordingly been demon-

strated (Boon et al. 1995). This fact alone should prompt the epidemiologist to

favour NNS.

Secondly, there is then the healthy woman who is invited for a smear to be

taken. Her main concern is that no cancer cells are missed. Any pathologist who

has tried to explain to a woman why the cancer cells in her smear were left

undetected is confronted with her strong opinion that this only happened because

the screener failed to do a good job while screening her smear. Litigation against

the laboratory might ensue, as has been seen both in the USA (Frable 1994) and in

Europe (Cogan 2000). False negatives do, however, occur, even in the best

laboratories. These concerns prompted us to keep smears of women who were

subsequently proven to have invasive carcinoma which were originally incorrectly

reported by us. These ‘false negative’ smears often contain few, small cancer cells,

frequently obscured by blood. These cells would therefore be very diYcult to

detect by conventional means. We submitted these smears to neural network-

based analysis: PAPNET detected the cancer cells in all 10 cases (Boon & Kok

1993). These Wndings were reconWrmed in a study using 63 false negative smears

from a population screening program in Denmark (Boon et al. 1994). PAPNET

proved to be superior in Wnding abnormal cells of the reserve cell lineage,

diagnostically the most important subgroup (Kok et al. 1998). In Jenny et al.’s

(1997) study of a large clinical material it was shown that the false negative rate of

5.7% in conventional screening was reduced to 0.4%.

Thirdly, there is also the clinician who takes the smear, who expects consistency

of laboratory results, which in turn depends on consistent diagnostic performance

on the part of the cytologists. The degree to which individual cytologists vary in

their diagnostic performance is reduced when neural networks are used in the

screening process (Kok & Boon 1996b), which can be anticipated because the
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abnormal cells are selected by the same neural network. To evaluate the consist-

ency of diagnostic performance in our own laboratory for both neural network-

and conventionally based screening, we followed up seven of our screeners in the 3

years 1992, 1993 and 1994. Diagnostic consistency was enhanced by PAPNET,

especially for the more severe lesions, which are also clinically the most important

ones (Kok & Boon 1996b).

Fourthly, there are the screeners themselves. For the screener it is important

that the fear of missing a diagnostic cell decreases, making the job of screening less

stressful (Boon et al. 1994, 1995). One should also realize that screening means

looking at moving cells, which is very tiring. With NNS, the cells are shown on the

computer screen and are static, allowing for physically less demanding observa-

tion.

Lastly, there is the pathologist, who must not only have insight but also a Wrm

control on the screening procedure performed by his/her coworkers, the screeners.

The pathologist must be able to audit a screening colleague’s performance and

actions – something that is diYcult with conventional microscopy. However, with

NNS, the summary screens of the screened cases can be stored and these can be

checked by the pathologist. We have learned to evaluate summary screens to gain

insight into whether the screener scrutinizes the important cells in the smear, and

whether informative summary screens are made of the cases. Hard copies of

summary screens of pathological cases can be used during the screening process as

‘gold standards’ for upcoming cases. The hard copies can serve as visual examples

and for streamlining the diagnostic process. Recently, it has become possible to

view summary screens at all work stations in the laboratory, because the images

can be retrieved from storage units (virtually instantaneously) via the computer

local area network.

Of all these parties, the screener is most aware of the dangers of human

screening. In this context it is important to mention that not one of our 11

screeners is willing to go back to conventional screening after having got experi-

ence with NNS. This is at least partly because any system which ‘enriches’ for

abnormality must by deWnition be found to be more inviting to the scrutineer.

Our laboratory has no problem in attracting young people into screening cervical

smears (in a tense labour market) because they all like working with computers.

The new technology not only enhanced health care for our patients, but also

improved the quality of the jobs in our laboratory.
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Summary

The careful, evidence-based stepwise development of screening with neural net-

work technology in our laboratory in the past 9 years has had a signiWcant impact

on our screening performance.

The woman has become more certain that the laboratory does not miss cancer

cells in her smear because these are brought to the attention of the screener

evaluating her smear.

The clinician can be more conWdent that the cytological diagnosis coming back

from the laboratory is correct.

The screener, eVectively presented with diagnostic images, has learned to exploit

this type of visual information. His/her job has become more satisfactory.

The pathologist can now monitor and control the screening process in an eVective

manner.

The gynaecologist is less often confronted with unnecessary referrals, because the

diagnosis has become more precise (Kok & Boon 1996a).
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Neural network analysis of sleep disorders

Lionel Tarassenko, Mayela Zamora and James Pardey

Introduction

It is well known that quality of life is critically dependent on quality of sleep.

Consequently, the evaluation of sleep disorders is one of the fastest growing

sectors of US and European health care. Patients suVering from sleep disorders or

excessive daytime sleepiness are referred to sleep laboratories. In these laboratories,

sleep is monitored continuously for a whole night using the electroencephalogram

(EEG) recorded from the scalp, the electro-oculogram (EOG), the chin elec-

tromyogram (EMG) and other physiological signals. There is a need for an

automated analysis system to identify anomalies in the sleep patterns (primarily

from the EEG) and help to decide on possible therapeutic measures. The standard

method for analysing the EEG during sleep is a rule-based system (RechtschaVen &

Kales 1968) developed 30 years ago, which assigns consecutive 30-second seg-

ments uniquely to one of six categories (wakefulness, dreaming sleep or rapid eye

movement (REM) sleep, and four stages of progressively deeper sleep, stages 1 to

4). The rules, however, are notoriously diYcult to apply and inter-observer

correlation can be as low as 51% in the classiWcation of intermediate stages (Kelley

et al. 1985). The lack of agreement amongst trained human experts has made the

automation of the rule-based ‘sleep scoring’ process a very diYcult task.

A problem such as this presents an ideal application domain for neural net-

works. We have developed an approach for the analysis of the sleep EEG that

combines both unsupervised and supervised learning. In the initial unsupervised

learning phase, we attempt to learn as much as possible about the distribution of

the parameterized EEG signal in input space. The results obtained with unsuper-

vised learning are then used in a subsequent supervised learning phase that is

governed by the results obtained in the initial phase. We have previously reported

on this approach in some detail (Roberts & Tarassenko 1992, 1995; Pardey et al.

1996a,b) and so this chapter presents only a broad overview and gives our latest

results from its application to one of the commonest disorders, obstructive sleep

apnoea (OSA).
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Materials and methods

The database that we used in our original studies was assembled from nine

whole-night sleep records (total sleep time = 71 hours), acquired from healthy

adults with no history of sleep disorders. Three human experts, all trained in the

same clinical department, used the standard rules to ‘score’ each sleep record from

visual inspection of the central EEG, EOG and chin EMG, the last two being used

to decide when the subject is in dreaming sleep. As the classiWcation of consecutive

30-second EEG segments over several hours is required, it takes between 2 and 5

hours for an expert to score a typical sleep record. Those 30-second epochs from

each EEG record to which all three experts independently assigned the same sleep

stage were archived.

In the neural network analysis system, the EEG signal is sampled at a rate of

128 Hz with 8-bit accuracy, following an anti-aliasing Wlter. The digitized signal is

low-pass Wltered with a linear-phase (Wnite impulse response) digital Wlter with a

pass-band cut-oV frequency of 30 Hz and then parameterized as described below.

Input representation

Since conventional neural networks are static pattern classiWers, the EEG signal

must be segmented into ‘frames’ during which the statistical properties are

assumed to be stationary. The EEG is usually considered to be quasi-stationary

over intervals of the order of 1 second, as this is the characteristic time of key

transient features such as sleep spindles. The important information in the EEG is

in the frequency domain. In our earlier work (Roberts & Tarassenko 1992), we

used a 10-coeYcient Kalman Wlter as an autoregressive (AR) model of the EEG

signal. Filter coeYcients were calculated for each input sample and then averaged

over 1 second to give a 10-dimensional input vector for every 1-second segment.

The problem with this approach is the high computational overhead incurred in

computing these coeYcients: the time required to analyse a whole night’s sleep

was not acceptable for a commercial system. As a result, we switched to a less

computationally intensive representation that required the AR coeYcients to be

computed only once for each 1-second frame.

Frequency-domain representation

AR modelling is best known as an alternative to the discrete Fourier transform

(DFT), which is traditionally used for the spectral analysis of sampled signals.

With 1-second segments and a sampling rate of 128 Hz, there would be 64 DFT or

fast Fourier transform (FFT) coeYcients to characterize the amplitude spectrum

of each segment. A low-dimensional representation is essential for a trained neural



92 L. Tarassenko et al.

network to be able to generalize on previously unseen patterns (Tarassenko 1998).

A coarse, low-dimensional representation of the amplitude spectrum could be

generated by grouping successive FFT coeYcients together; for example, averaging

each block of eight coeYcients to obtain a single value over that frequency band

would give a reduction from 64 to 8 input dimensions. However, this succeeds

only in blurring the details of the EEG spectrum to such an extent that the

discriminatory information is mostly lost. What is required is an accurate charac-

terization of the dominant frequencies in the EEG so that changes in these over

time can be tracked as a function of sleep state. Such a characterization is provided

by an all-pole AR model that allows the spectral peaks to be tracked even with a

low-order model (Pardey et al. 1996a).

The theoretical basis for AR modelling of the EEG has been explored in detail

elsewhere (Pardey et al. 1996a). The key concept is the assumption that the

sequence Ms
k
N of values from the sampled EEG signal is the output of a linear

system driven by white noise. If successive samples from the output sequence

s
j
, j = 0, 1, . . ., (N − 1) are available, we can estimate a sample s

k
by the linearly

weighted summation of the previous p sample values:

ŝ
k
= −

p

;
i=1

a
i
s
k−i

,

where p is the model order. At time t = kT, where T is the sampling interval (equal

to 1/128 second, i.e. 7.8 milliseconds in our work), we can calculate the error e
k

between the actual value and the predicted one;

e
k
= s

k
− ŝ

k
= s

k
+

p

;
i=1

a
i
s
k−i

.

The parameters a
i
of the model (the AR coeYcients) are estimated by minimizing

the expectation of the squared error E over the N samples in the sequence:

E =
1

N

N

;
k=1

e2
k
=

1

N

N

;
k=1
As

k
+

p

;
i=1

a
i
s
k−iB

2

.

The minimization is performed by setting LE/La
i
to zero, which yields p linear

equations known as the Yule–Walker equations from which the p AR coeYcients

can be determined by inverting a p ] p matrix. Since this matrix is a Toeplitz

matrix (the elements along any diagonal are identical), a more eYcient solution is

to use a recursive procedure known as the Levinson–Durbin algorithm.

An intermediate set of values, known as the partial correlation or reXection

coeYcients, are also produced as part of this recursive procedure. The i
i
reXection

coeYcients encode the same information as the AR coeYcients but they have an



93 Neural network analysis of sleep disorders

important advantage in that it can be ensured that they satisfy the following

condition

D i
i
D p 1.

This means that the distribution of values is bounded for each reXection coeY-

cient and hence no scaling needs to be applied before they are used as inputs to a

neural network. For these reasons, all of our recent sleep EEG analysis work has

used reXection coeYcients as input features in preference to AR coeYcients (Holt

et al. 1998; Tarassenko et al. 1998).

Unsupervised learning – 2-D visualization

There are a number of clustering algorithms (for example, k-means clustering;

Tarassenko 1998) that could be used to investigate the structure of the 10-

dimensional (10-D) parameterization of the EEG data (the 10 reXection coeY-

cients generated for each 1-second frame). In our early work, we used mainly

Kohonen’s feature map (Kohonen 1982, 1990), which can be viewed as a form of

k-means clustering with a neighbourhood that allows the preservation of topology

in the structuring of the 2-D representation. The units (also known as centres) in a

Kohonen map are ordered on a grid such that nearest neighbours in the grid

correspond to prototypical input vectors that are also close in the original

high-dimensional input space (10-D in our case). The number of centres is usually

Wxed a priori (most often, we chose 100 centres distributed on a 10] 10 square

grid). In more recent work (Holt et al. 1998), we have used instead the generative

topographic mapping (GTM) algorithm (Bishop et al. 1998) for 2-D visualization

of EEG data. The GTM algorithm is a generative model that deWnes a mapping

from the visualization or latent space onto the n-dimensional space of the input

vectors. For the purposes of data visualization, the mapping is then inverted using

Bayes’ theorem.

Visualization algorithms invariably assume that the diVerent types of input

vector occur in roughly equal numbers in the training set (i.e. that they have

approximately equal prior probabilities). This is manifestly not true in the case of

the sleep EEG, as periods of wakefulness will normally be few and far between.

Thus the input vectors generated when the subject is awake are hardly represented

at all in the training set. It is therefore important to construct a training database

in which this imbalance is corrected, otherwise an underrepresented class of

feature vectors will hardly have any centres assigned to it and will occupy only a

small area of the 2-D visualization map.

A balanced training database was therefore constructed, consisting of 24 000

vectors of 10-D reXection coeYcients, i.e. 4000 vectors for each of the six stages of
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the standard rule-based system, as assessed independently by the three expert

scorers. When this dataset is visualized in 2-D, three non-overlapping clusters are

clearly visible on the map. These can readily be identiWed (from the consensus-

scored labels) as corresponding to wakefulness, dreaming or light sleep (REM/
stage 1, which cannot be separated without either EOG or chin EMG information)

and deep sleep (stage 4). Most importantly, the intermediate stages (stages 2 and 3

of the rule-based system) are not mapped onto separate clusters. The evolution of

the sleep–wake continuum throughout the night can thus be described in its

entirety as a combination of three time-varying processes.

Supervised learning

The conclusions drawn from the unsupervised learning phase suggest the con-

struction of a supervised neural network mapping from the input reXection

coeYcients to three output classes corresponding to wakefulness (W), REM/light

sleep (R) and stage 4 (deep sleep) (S). In our early work (Tarassenko & Roberts

1994; Roberts & Tarassenko 1995), the neural network was a radial basis function

(RBF) network, but the BioSleep system (see below) uses a standard multilayer

perceptron (MLP) with one layer of hidden units. This network is trained using

gradient descent to minimize the squared output error, the error back-propaga-

tion algorithm (Tarassenko 1998) being used to calculate the weight updates in

each layer of the network. (Typically, a learning rate of 0.01 and a momentum

term of 0.5 may be used, but these values are not critical.)

The hidden layer activities of the MLP, h
j
, are calculated from the weighted

summation of the input reXection coeYcients, x
i
, passed through a saturating

non-linearity known as a sigmoid, fp (Tarassenko 1998):

h
j
= fpA

10

;
i=1

w
ij
x

i
+ w

0jB,

where h
j
is the output of the j-th hidden unit, w

ij
is the weight connecting the i-th

input to it and w
0j

is a bias weight.

The output classiWcation vector y is generated in the second layer of the MLP

from the weighted summation of the hidden-layer activities, also passed through a

sigmoid:

y
k
= fpA

J

;
j=1

w
jk
h

j
+ w

0kB,

where y
k

is the k-th component of the classiWcation vector, w
jk

is the weight

connecting the j-th hidden unit to it and w
0k

is a bias weight. The target value for y
k
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is 1 if the input vector x belongs to class k and 0 otherwise (1-out-of-k coding).

Thus, for all patterns in the training database for the supervised learning phase, we

have the following target vectors: y = M1, 0, 0N for the W class, y = M0, 1, 0N for the R

class and y = M0, 0, 1Nfor the S class.

As the number of inputs in the MLP is set by the number of reXection

coeYcients (usually 10 in our work), the network architecture is eVectively

determined by the choice of number of hidden units. For a given network

architecture, the weights are initialized with small random values and the patterns

in the training set are repeatedly presented in random order to the network. The

weight update equations are applied after the presentation of each pattern. The

training process is controlled by monitoring the classiWcation error on an inde-

pendent set of labelled patterns called the validation set. When this error stops

decreasing or even starts to rise, training should stop. The stopping criterion is

therefore the point at which the minimum classiWcation error on the validation set

is reached (a method known as ‘early stopping’ Tarassenko 1998).

Training runs are repeated with the number of hidden units gradually increased

from a small initial value. As more hidden units are added, the minimum

classiWcation error obtained on the validation set decreases: the complexity of the

neural network model more closely matches the complexity of the required

input–output mapping. The optimal number of hidden units is that number for

which the lowest classiWcation error is achieved on the validation set. (If the

number of hidden units is increased beyond this, performance does not improve

and soon begins to deteriorate as the complexity of the neural network model is

increased beyond that which is required for the problem.) Once the optimal

network architecture has been determined, the performance can be evaluated on a

third dataset, the test set, which should always consist of independent data not

used in the training procedure, either to determine the weights (training set) or

decide when to stop training (validation set). In biomedical signal processing, an

independent data set is one that consists of signals recorded from subjects not in

the training or validation sets.

When the intermediate stages of sleep (stages 2 or 3 in the conventional

rule-based system) occur in test data, they are indicated at the output of the

trained classiWer by y
k
values which lie between 0 and 1 (&

k
y

k
always being equal to

1.0). Thus we use the interpolation properties of neural networks to quantify the

depth of sleep. This description of the sleep–wake continuum in terms of three

values that can vary continuously between 1 and 0 turns out to be much more

precise than the discrete six-state classiWcation of the rule-based system. The three

outputs y
W

, y
R

and y
S

correspond to the (posterior) probabilities of the subject

being awake, in REM/light sleep or in deep sleep. Since these probabilities always

sum to 1.0, they are not independent and the preferred option for tracking the
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sleep–wake continuum has been to display the diVerence between y
W

and y
S

on a

second-by-second basis (1.0 corresponding to wakefulness, 0.0 to light sleep and

− 1.0 to deep sleep).

Development of QUESTAR/BioSleep

Between 1993 and 1995, we collaborated with the Medical Systems Division of

Oxford Instruments to develop a commercial version of our neural network

system, known as QUESTAR (QUantiWcation of EEG and Sleep Technologies

Analysis and Review). In the QUESTAR system, the neural network software

developed at the University of Oxford on a Unix workstation was ported onto a

Windows-based environment running on a desktop computer.

For QUESTAR to be adopted as a new system for sleep analysis, there were two

essential steps that had to be taken; Wrstly, the neural analysis had to be related to

the method in regular clinical use, in this case the traditional rule-based sleep

scoring. This was done in an extensive submission to the Food and Drug Adminis-

tration (FDA), in which the correlation of the neural network outputs with the six

discrete stages of the rule-based system was demonstrated. FDA approval was

granted in 1996, one of the Wrst neural network systems to obtain this certiWcation.

Secondly, extensive clinical studies needed to be carried out in order to demon-

strate the value of the novel analysis. The system has already proved its clinical

usefulness in studies carried out on patients with a variety of sleep disorders

(Stradling et al. 1996; Davies et al. 1999) and with major learning disabilities

(Espie et al. 1998). The latest version of the commercial system is known as

BioSleep (available from Oxford BioSignals Ltd) and is an upgraded version of

QUESTAR. In the rest of this chapter, we report on our work on the analysis of

obstructive sleep apnoea (OSA).

Obstructive sleep apnoea

About 2% of the population is aVected by daytime sleepiness, mainly caused by

sleep breathing disorders. Most patients (85%) are middle-aged men, about half of

them weighing at least 30% more than their ideal body weight. Sleep breathing

disorders fragment the sleep continuum with hundreds of micro-arousals, but the

patient is rarely aware of this. During sleep, some patients experience apnoeic

events, when the upper airway, usually crowded by obesity, enlarged glands, or

other kinds of obstruction, collapses as the muscles lose their tone. Then, as is

shown in Figure 4.1, the patient increases his respiratory eVorts gradually, until the

intrathoracic pressure drops to a subatmospheric value. Either the repeated

attempts to breathe or the rise in carbon dioxide level and the drop in oxygen level,



Figure 4.1. Central EEG signal, nasal air flow and respiratory effort during a 15-second apnoeic event.
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eventually awake the cortex respiratory mechanism, and the returning muscle

tone unblocks the upper airways and restores ventilation. This kind of arousal is

short in time, the subject rarely noticing it, and is known in the literature as a

micro-arousal. A patient with a chronic history of OSA may experience more than

one micro-arousal per minute, and up to 400 micro-arousals per night (Stradling

1993). The quality of sleep deteriorates as a result of the large number of micro-

arousal disturbances.

About 10% of the male population suVers from this sleep disorder. The

problem usually arises in middle age, when the muscles become less rigid, and a

decrease in subject daily activity increases their weight. The main consequence is

progressive sleepiness during daytime, starting with some loss of vigilance when

performing repetitive tasks, and ending with a severe condition in which the

subject falls asleep during the day.
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In order to diagnose the disorder, a sleep study is performed, consisting of a

night of sleep in hospital during which the EEG and other respiratory related

signals are monitored continuously. A video recording is also made to follow body

movements. The number of micro-arousals is determined primarily from the

visual assessment of the EEG trace, following a set of rules deWned by the American

Sleep Disorders Association (ASDA) (Atlas Task Force 1992). According to these

rules, a micro-arousal is deWned as an abrupt shift in the EEG frequency, which

may include h frequencies (4 to 8 Hz), a frequencies (8 to 12 Hz), and/or frequen-

cies above 16 Hz, but not spindles (bursts of 12 to 14 Hz activity). Its duration can

vary between 3 and 20 seconds. The ASDA scoring rules for micro-arousals may be

summarized as follows:

A minimum of 10 continuous seconds of sleep in any stage must precede an EEG

micro-arousal to be scored.

The minimum micro-arousal duration is 3 seconds. Reliable scoring of events

shorter than this is diYcult to achieve visually.

Analysis of OSA with BioSleep

OSA does not alter the physiology of sleep but instead causes rapid transitions

from light sleep to wakefulness and vice versa. A neural network system such as

BioSleep, trained using a database of normal sleep EEG, can therefore be used to

analyse the sleep of OSA subjects.

Seven 20-minute recordings from patients with diVerent levels of OSA are used

as test data. The EEG has been scored by one expert according to the ASDA rules.

ReXection coeYcients are extracted from the segmented EEG signal as described

above, before being passed to the trained MLP. The output of the MLP, y
W

− y
S

is

thresholded in order to identify the micro-arousals. Any micro-arousal detected

by the MLP within 10 seconds of the expert label is considered to be a match (true

positive). Transients shorter than 3 seconds are discarded.

Figure 4.2 shows a 2-minute section of EEG from one of the OSA patients, the

corresponding scores from the expert and the MLP output y
W

− y
S
. The latter is

highly oscillatory around the time of an arousal, a phenomenon that has no

physiological explanation. The oscillations are caused by instabilities in the values

of the reXection coeYcients as the assumption of stationarity begins to break

down at the time of an arousal. A 5-point median Wlter is therefore applied to the

MLP output and this has the eVect of removing short pulses of 1 to 2 second

duration. The Wltered output and the resulting detection of an arousal after

thresholding are also shown in Figure 4.2. The latter indicates that the identiWca-

tion of an arousal by the MLP is highly correlated with the expert’s scoring, as

conWrmed by Figure 4.3, which shows the whole 20-minute record.

Values of sensitivity (Se) and positive predictive accuracy (PPA) can also be



Figure 4.2. Two minutes of OSA sleep. From the top: EEG signal, expert scoring according to ASDA rules,
yW − yS, 5-point median filtering of yW − yS, MLP scoring (thresholded version of trace immedi-
ately above).

Table 4.1. Sensitivity (Se) and positive predictive accuracy (PPA) for each of the seven
patients in the OSA database

Patient 1 2 3 4 5 6 7

Se 0.94 1.00 0.92 0.71 0.97 1.00 1.00

PPA 0.94 0.96 0.92 0.96 0.90 0.88 1.00
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calculated in order to quantify the MLP’s performance for each of the seven

patients. Sensitivity and positive predictive accuracy are deWned as follows;

Se =
TP

TP + FN
,

PPA =
TP

TP + FP
,

where TP is the number of true positives, FP is the number of false positives and

FN is the number of false negatives. The results are given in Table 4.1 for the whole

database. These numbers (except perhaps for the sensitivity for patient 4) conWrm

the very high correlation between the neural network analysis and the expert’s

scoring.



Figure 4.3. Twenty minutes of OSA sleep. From the top: EEG signal, expert scoring according to ASDA
rules, yW − yS, 5-point median filtering of yW − yS, MLP scoring (thresholded version of trace
immediately above).
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Conclusion

This chapter has reviewed the design, training and use of BioSleep, a neural

network system for the analysis of sleep disorders. The sleep EEG is segmented

into consecutive 1-second frames, or epochs, and its frequency content during

each of these intervals is characterized by a set of autoregressive reXection coeY-

cients. As a result of visualizing the distribution of these in a balanced database

recorded from nine healthy subjects, it is clear that there are three main clusters of

reXection coeYcients, corresponding to wakefulness, REM/light sleep and deep

sleep. A neural network is therefore trained to construct a mapping from the 10

input reXection coeYcients to the three output classes, using examples that are

typical of each class. The ability of a neural network to interpolate on test data

allows the sleep–wake continuum to be tracked on a second-by-second basis.

When the trained network is tested on EEG recordings made from patients

suVering from OSA, it is clearly able to detect micro-arousals accurately with

excellent sensitivity and speciWcity, an important result because it has not been

possible, up until now, to automate the scoring of this type of disturbed sleep.
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Artificial neural networks for neonatal
intensive care

Emma A. Braithwaite, Jimmy Dripps, Andrew J. Lyon and Alan Murray

Introduction

Neonatal units care for sick newborn babies. Although problems can arise in

infants of all gestational ages, the premature infant with immature lung develop-

ment contributes a signiWcant workload to these units. These babies often require

respiratory support, and throughout their clinical course need careful monitoring

to detect changes in their respiratory status. In many cases important changes are

detected only once there has been a signiWcant deterioration in respiratory status.

Earlier detection of these changes will allow intervention to prevent serious

deterioration and will improve the outcome for the baby.

The use of artiWcial neural networks in medicine is increasing, predominantly in

the areas of image processing (Farnsworth et al. 1996; Hintz-Madsen et al. 1996)

and pattern recognition (Reddy et al. 1992; Reggia 1993). This chapter describes a

prototype system developed at Edinburgh to investigate the use of neural networks

for the early diagnosis of common physiological conditions found in neonatal

infants by using multiple time-series traces that are already stored as part of the

current monitoring system.

Results show that, although it may be possible to use neural networks in this

domain, substantial work is needed into both the current monitoring processes

and the techniques to be used before a system can be developed that will be

usable.

Neonatal intensive care

The neonatal unit in Edinburgh uses a computerized monitoring system to collect,

display and log physiological data from the dedicated monitors surrounding any

incubator (see Figure 5.1). The system, called Mary (named after the Wrst nurse to

use it), is also networked to enable clinical staV to access patient history and to

enable data collected to be used as part of the teaching process. Mary is also

capable of storing clinical information by ‘time-stamping’ clinical treatment



Figure 5.1. A schematic of the single cot Mary data-logging system.
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entries, and these can then be recalled when previous physiological data are

examined. This system relies on clinicians to enter details of treatment pro-

grammes as they are completed. Data from other non-standard monitors or

measuring devices can also be stored by Mary but not in the same time-indexed

manner.

Problems faced in intensive care

An intensive care unit (ICU) is often seen as a working environment where

clinicians are constantly Wghting to save the lives of people who are seriously ill

and require round the clock attention. This portrayal is not entirely accurate.

Although the majority of patients in an ICU require greater attention than other

patients within a hospital, the patient is not in a state of permanent crisis and often

has sustained periods of stability. During these periods, problems can develop

undetected and it is only when a crisis point is reached that a diagnosis is made or

clinicians are alerted to the condition. The development of respiratory problems is

an example of this.

Many patients in ICUs need respiratory support with ventilators. This is

especially true in the preterm neonate as the respiratory system is one of the last to



Figure 5.2. Lung/pulmonary anatomy, including trachea.
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develop in utero. ArtiWcial respiration can exacerbate problems associated with

weakened pulmonary function as well as introducing further complications. In

artiWcial ventilation, a tube is commonly passed into the trachea (see Figure 5.2) of

the patient (and hence called an endotracheal tube). This supplies an air/oxygen

mixture under pressure to the lungs of the patient when he or she is unable to

provide either the musculatory movement that would enable them to complete

the respiratory process or the correct levels of gaseous exchange in the lungs. In

neonates, the trachea is approximately 1 cm in diameter and the endotracheal tube

even smaller and it can block easily with mucus. If the tube becomes blocked the

patient can be starved of oxygen and in severe cases brain damage can result. Also

when a tube is blocked the treatment involves removing and replacing the tube

(reintubation) and this can damage the trachea. High pressure ventilation itself

damages the lungs and can lead to an air leak outside the lung (pneumothorax).

These are associated with a collapse of the lung and severe deterioration in the

clinical state of the baby. Although the fabric of the lung can heal, the scarring can

permanently reduce pulmonary function and the neonate may require further

therapy. If a system can be designed to detect the development of these common

problems, a substantial improvement in patient care and future prognosis could

be made. The methods described in this chapter were designed to perform this task

and were an initial investigation into the use of a neural network for this type of

application.

Another problem faced by clinicians is that every patient is unique. This is

particularly true in the neonatal ICU (NICU), as each patient has developed

diVerently and what may be normal behaviour for one patient may cause concern

if exhibited by another.
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One approach

As multilayer perceptron (MLP) neural networks have previously been used in

medical applications (Jansen 1990; Artis et al. 1992), fault detection (Ayanoglu

1992; Smyth & Mellstrom 1994) and condition monitoring (Hatzipantelis et al.

1995; Ramdén 1995) it was decided that initial investigations into the use of neural

networks for this application would include their use. It was also decided that the

maximum amount of expert knowledge on the development of the problems

under investigation would also be included in the preprocessing phase of the

system.

Expert knowledge and preprocessing

The build-up of secretions resulting in the blockage of an endotracheal tube can

take several hours (A. Lyon & N. McIntosh, personal communication) therefore

the system must contain some temporal information of the previous behaviour of

the patient. Expert knowledge also tells us that, despite the development of certain

respiratory problems remaining undiagnosed, clinicians can often, with hindsight,

identify the onset of a particular problem. In respiratory diYculties the precursors

to a condition are often present in the blood gas concentrations. Carbon dioxide

(CO
2
) and oxygen (O

2
) play an important part in determining the current

pulmonary function of an individual and therefore should be included in any

system designed to aid the diagnosis of respiratory problems (Guyton 1956).

Clinicians at Edinburgh also wondered whether the inclusion of a further

measure, that of the fraction of inspired oxygen concentration (FiO
2
), would have

an eVect on the ability of the system to determine the onset of respiratory

diYculties. This last hypothesis was made because, during ventilation, the O
2

value of the baby is controlled by altering the FiO
2
. This means that the O

2
value

can be artiWcially maintained and that if FiO
2

is ignored the underlying process

may be disguised.

For this application, expert knowledge of the development of the conditions

was essential to the design of the initial stages of the system. Firstly, the signals of

interest were isolated from the data archived by Mary and treated identically (i.e.

each selected signal was processed using the same methods). In each case minute-

average data are used. These are generated by averaging the standard 1-second

data from Mary every minute and are available from clinical archives. Second-

average data are also available but it was thought that it would be unnecessary to

use these as the conditions under investigation develop over hours rather than

minutes. Each of these signals were low-pass Wltered to extract the long-term trend

information and to remove artefact. Artefact was often due to the monitoring

probe being moved to another location on the body. This lasted a few minutes.
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The Wltered signals were then passed to the feature extraction stage of preprocess-

ing. Here, information corresponding to the development of respiratory problems

was maximized by including temporal information regarding the previous behav-

iour of each of the physiological signals. Figure 5.3a and b shows graphical

representations of the feature extraction processes. Two processes were tested to

determine whether the method of inclusion of the temporal information had an

impact on the ability of the system to determine the development of respiratory

problems. In both cases clinical data of previous patients have been used to

identify regions that should be typical of both a developing problem and an area

where no concern was expressed. This was achieved by examining the clinical

treatment records stored by Mary, and where a blocked tube or pneumothorax

was entered or where the patient had been reintubated (endotracheal tube re-

placed) the area preceding the entry was assumed to be indicative of the problem.

Conversely, where no clinical comment was made for a period of at least 3 hours,

the central hour was assumed to be indicative of normal patient behaviour for that

particular patient. Where a problem had developed, the time of diagnosis was

taken to be T and features were extracted back from that. In the case of the

non-concern examples, T was taken to be 120 minutes into the 3 hour period. The

overall period over which features were extracted was 30 minutes prior to diag-

nosis. The subdivision of time t was deWned to be 10 minutes (during the project,

investigation of other time periods was also made but the results will not be

presented here; Braithwaite 1998). Therefore two feature extraction processes

could be tested:

Three non-overlapping features

Three nested (overlapping) features
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The two approaches were designed to determine whether the system would

require long-term trend (nested) or a series of shorter-term trends (non-overlap-

ping). Once features were extracted from the three signals (CO
2
, O

2
and FiO

2
) the

resultant vector was passed on to the classiWcation stage of the process (see Figure

5.4).

Multilayer perceptron

The classiWer chosen for this application was a simple MLP classiWer trained using

conjugant gradient descent. The size of the input layer was determined by which

physiological signals were being used and therefore consisted of either six or nine

neurons. The output layer was two dimensional, the two neurons representing

either concern or no concern with regards to a developing respiratory problem.

The size of the hidden layer was determined by successive tests, and results from

the optimum network found will be presented. Training, validation and test

vectors were formed from the sets of feature vectors generated. In total, approxi-

mately 6000 feature vectors were produced and these were not biased to either

concern or no-concern. For each network, 50% of the total available data set was

used for training (again unbiased) as the remainder divided between validation

and test. Each network architecture was tested 10 times in order to produce an

average network performance. In each case the data set was randomly partitioned

into its respective parts and the progress of training was checked using the

validation set.

The output of the MLP was therefore designed to produce an indicator that the

particular patient was developing respiratory diYculties. A comparison was also

made with results obtained from a general linear discriminant classiWer.

Final system

The Wnal system used was designed to test a number of hypotheses:

Can a neural network (MLP) be used to detect the onset of certain respiratory

problems?

Does the use of the fraction of inspired oxygen have an eVect on the ability of the

system?
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Does the method by which temporal information is included aVect the perform-

ance of the system?

Figure 5.5 shows a graphical representation of the Wnal system.

Results and discussion

Results obtained from the study can be separated into three categories:

Neural network for neonatal intensive care

Impact of including fraction of inspired oxygen

DiVerences between two feature extraction processes

Neural network for neonatal intensive care

To ascertain the eVectiveness of the MLP as a classiWer of multiple physiological

time series, results obtained from the classiWer were compared with those obtained

from a general linear discriminant classiWer. Results of this comparison are shown

in Table 5.1, where the percentage classiWcation rate of a linear classiWer is

compared with that of the optimal MLP architecture.

Comparison of feature extraction techniques

As it can be seen, the MLP classiWer consistently outperforms the linear classiWer

in terms of its accuracy or classiWcation rate on the test set. Using this knowledge,

further tests could be carried out to determine which feature extraction process

should be used and which signals are of most relevance to the diagnostic process.

Table 5.1 also indicates that the overlapping feature extraction approach yields

greater accuracy. This does not, however, completely compare the two ap-

proaches. Table 5.2 shows some performance characteristics of the classiWer when

the two diVerent feature extraction processes are used. As it is shown, the

approach of overlapping feature extraction yields better accuracy (classiWcation

rate), sensitivity (detection of problem rate) and lower speciWcity (correct identiW-

cation of no-concern areas) and selectivity (a measure of the false alarm rate

(Tarassenko et al. 1997)). Therefore the conclusion can be drawn that, from a

clinical point of view, if this time interval is used overlapping features should be

chosen as they yield a higher classiWer accuracy and sensitivity rate.

It should be noted that during the development phase of a system being

designed for a medical application, the selectivity measure is important as it gives

an indication of how many false alarms the system will eventually produce. This is

extremely important when the Wnal clinical system requires low levels of false

alarm. However, in the clinical environment, sensitivity is of extreme importance
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Table 5.1. MLP classifier accuracy compared with that of a linear classifier (%)

Feature extraction process Linear classiWer MLP classiWer Change

Non-overlapping 65.65 67.86 3.37

Overlapping 64.76 69.04 4.28

Table 5.2. Performance characteristics of the system when two different feature
extraction processes are used (%)

Feature extraction process Accuracy Sensitivity SpeciWcity Selectivity

Non-overlapping 67.86± 1.85 53.49± 6.07 83.12± 8.16 76.04± 3.85

Overlapping 69.04± 1.64 56.86± 1.52 81.31± 2.62 75.28± 2.74
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as clinicians need an indication of how many actual occurrences of a condition

remain undiagnosed. A balance must be made between a high sensitivity measure

and detection of all possible problems and a high false alarm rate, and hence

habituation of the staV to the alarm level and a lower sensitivity and lower false

alarm rate. In this application a lower false alarm rate was deemed to be of high

signiWcance as habituation to alarm is already experienced by the clinicians at

Edinburgh. The system is also designed to be a predictive diagnostic aid and, as

such, it is hoped that even when the system misdiagnosed the early signs of a

developing condition it will identify it as the condition develops.

The inclusion of FiO2

In Edinburgh the measurement and logging of FiO
2

can vary depending on the

type of monitor used. In certain cases a type of monitor is used that cannot

interface with Mary and hence FiO
2
is not automatically collected into the system.

Clinicians hypothesized that the inclusion of FiO
2

in the diagnostic process may

have an impact on the overall ability of the system. Experiments were carried out

to investigate this by applying all three physiological measures (CO
2
, O

2
and FiO

2
)

to the system and then omitting either the FiO
2

or the O
2

measure. Table 5.3

summarizes these results for all measures of performance and Figure 5.6a–d shows

graphically the results of these experiments.

As both Table 5.3 and Figure 5.6 show, there is an improvement in all the

performance measures when FiO
2

is included in the classiWcation process. The

improvement can also be seen, but to a lesser extent, when the fraction of inspired

oxygen is substituted for the blood gas oxygen measure. These results suggest that

the measure of the fraction of inspired oxygen in the air/oxygen mixture should be



Table 5.3. Performance measures (%) when different physiological signals are used

Physiological measures Accuracy Sensitivity SpeciWcity Selectivity

CO
2
, O

2
and FiO

2
69.04± 1.64 56.86± 1.52 81.31± 2.62 75.28± 2.74

CO
2
and O

2
63.66± 1.52 49.31± 4.65 78.61± 4.05 69.86± 3.49

CO
2
and FiO

2
66.11± 1.79 49.18± 5.34 83.71± 4.68 75.2 ± 2.98
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Figure 5.6. Physiological signal relevance (using performance measures).
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used in the diagnosis of developing respiratory problems to increase the likelihood

of diagnosis before further invasive therapy is required.

Testing on real-time data

Although these results are encouraging and tentative conclusions can be drawn,

the classiWer has not yet been tested for the purpose for which it was designed: the

early diagnosis of respiratory problems. The method chosen to evaluate this aspect

of the classiWer was to train the classiWer on the preselected regions of interest and

then test it on a series of complete days of physiological data. For the purposes of

illustration, 4 days of physiological data will be used. However, the results shown
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are representative of all the results obtained over a period of 15 days from 15

patients. The Wrst 2 days used contain known events and in the remainder no

clinical event was recorded. Figure 5.7 shows the output of the classiWer under

these circumstances. The output of the classiWer corresponds to an increasing level

of concern.

As it can be seen in the Wrst two patients (patients a and b) where the patient has

been reintubated (denoted by R on the x-axis of Figure 5.7), the classiWer output

exhibits a signiWcant peak. The peak also appears at least 30 minutes before the

diagnosis (denoted by the grey shaded area in the Wgure). However, in the case of

patient a other equally large peaks appear in the output, indicating that the system

detected problems with the patient that clinicians had not identiWed at the time of

entry into the record. On examination of the record there were entries made

around the times of these peaks that may partially explain the classiWer output. In

the Wrst instance the patient underwent ‘all-care’, which can include a suctioning

of the endotracheal tube. This means that the condition may have been developing

and was stopped before clinicians diagnosed any problems. In the case of the

second peak the patient experienced a heel stab, which is a stressful procedure and

may have had an adverse aVect on some of the physiological control processes. In
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the patients where no concern was entered onto the clinical record (patients c and

d) it would be expected that little or no activity would occur; however, as it can be

seen this is not the case. In particular in patient c multiple peaks occur that

indicate a high level of concern. Examining the patient record yields no clues as to

the reason for the peaks; however, returning to the physiological data (see Figure

5.8) it can be seen that, throughout the day, clinicians increased the levels of

oxygen in the air/oxygen mixture, i.e. they had some concern about the respiratory

function of the patient but no clinical comment was made to this eVect. This

illustrates the need for complete clinical records and close collaboration between

clinical staV and designer. It also illustrates that, by using expert knowledge as the

core of the feature extraction and preprocessing stages of the system, it is possible

to determine why the classiWer may have behaved in certain ways. The graph

generated by patient d also shows signiWcant peaks; however, these are lower than

in the case of patient c and in the Wrst case correspond to all care being carried out
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and in the second to an increase in the fraction of inspired oxygen in the

air/oxygen mixture.

These results show promise; however, they also illustrate a number of problems

with this type of approach. Using supervised learning relies entirely on the

historical clinical record of what actually happened to the patient. If the record is

incomplete, errors will occur. This is especially true in the case of false high levels

of concern, which will occur when the physiological data suggest concern and the

clinical record does not. Given the assumptions that were used in the generation of

the ‘no-concern’ training and test patterns (i.e. that no clinical comment implied

no concern), if clinical concern is present and not entered, the classiWer is being

trained on incorrect examples. This can partially explain both the peaks in the

complete days of data and also the relatively low classiWcation rate for the classiWer

on the exemplars of patient behaviour. These results suggest that alternative

classiWcation and signal analysis approaches may yield better results.

An alternative approach

Given the problems associated with supervised training in this application area,

i.e. that the generation of the training and test sets relies heavily on the available

clinical record, a reasonable alternative approach would seem to be to use an

unsupervised method in an attempt to cluster the data and to further analyse its

structure.

In this case it was decided that the same data sets of exemplars, with their

associated problems, would be used and preprocessing and feature extraction

would be carried out as before. This time, however, the feature vectors would be

applied to a Kohonen network (Pao 1989) to determine whether there was any

intrinsic structure in the data set that may correspond to clinical problems. A

Kohonen network was chosen for these trials as a commercial neural network

simulation package was used and Kohonen networks were the only unsupervised

technique available. Again the size of the network was varied but this time the

criteria for choosing the network size were based on which network seemed to

exhibit the most clustering. Figures 5.9 and 5.12 show examples of the activation

frequencies of all the nodes in a network after clustering has occurred and diVerent

data sets were applied. Figure 5.9 shows the activation frequency of the map’s

nodes when the entire data set that it clustered has been applied. It can be seen that

there are signiWcant clusters in the data set. To determine whether these clusters

represent particular examples of patient behaviour, three further data sets were

applied to the network once all weights were Wxed (i.e. once the network had

performed its mapping of the input space). The three data sets were the data that

had previously been used to described normal patient behaviour (Figure 5.10), the
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data that had previously been used to describe abnormal patient behaviour

(Figure 5.11), and a subset of the latter containing examples of patient behaviour

30 minutes prior to diagnosis (Figure 5.12). Examining the frequency activation of

the Kohonen network under these circumstances shows that certain regions of the

network seem to correspond to one type of input data, and that the clusters

associated with abnormal patient behaviour become more pronounced as the

catalogued time of diagnosis approaches.

These results suggest that an unsupervised approach to training a neural

network may be used for this type of application but problems remain. In order to

evaluate and analyse the clusters that have formed it is necessary to use clinical

records (this is true even if complete days of data are used) and therefore

assumptions must be made about the data and clinical record. Given the current

monitoring techniques in place at Edinburgh it will only ever be possible to

analyse the periods in the physiological records of a patient where a clinical entry

has been made to the eVect that the patient suVered some form of respiratory

disorder.

Further work

As the work presented here shows, a signiWcant amount of further investigation

must be carried out before the developed system can operate to the degree of

accuracy that the clinicians require. However, the work also points out several

areas meriting further investigation. Given the problems associated with the

supervised learning approaches of generating good example data sets, it is suggest-

ed that either an unsupervised approach should be adopted or that careful

consideration should be given to the method of collection of clinical data.

Assuming that the collection method remains the same, an unsupervised

approach must surely be used and attention given to the preprocessing and feature

extraction stages of the system. During the Wltering stage of the system it may be

that information is lost which is necessary to the diagnosis of these types of

respiratory problems. Again, close collaboration with clinicians and examining

patient records may point towards a new preprocessing system. Expanding the

number of signals under investigation, for example respiratory rate, may also have

an eVect on the outcome. The feature extraction process should also be reWned. In

other time-series, fault diagnosis application ARX modelling has been used to

parameterize the time-series (Smyth 1994a) and this approach may prove to be

more eVective. However, if this type of approach is used, the historical informa-

tion of previous patient behaviour, which clinicians know to be so important, will

be lost and alternative methods of incorporating it must be found, such as hidden

Markov model/artiWcial neural network hybrids, as previously used in speech

processing (Boite et al. 1994; Reichl & Ruske 1995) and other fault diagnosis
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(Smyth 1994b), and classiWcation problems (Kundu & Ghen 1995) or in novelty

detection.

Conclusions

This chapter has detailed work that has been carried in Edinburgh for the early

diagnosis of common respiratory problems occurring in neonatal intensive care

units. The approaches used combine expert knowledge, historical information of

the patient behaviour, and a simple MLP classiWer to produce an indicator of the

development of a respiratory problem. Results show promise but also illustrate

many of the problems associated with the medical domain. The data on which

analysis is carried out are not ideal and compromises and assumptions must be

made at every stage of the development process. Expert knowledge should be

included to improve the acceptability of the Wnal system to the end user, and this

may in fact be at the expense of performance as more conditions being detected

may be achieved by permitting a high level of false alarm.

To summarize, results from the work described suggest that a neural network

can be used as part of an early diagnosis system for neonatal intensive care.

However, signiWcant work is required before any system could be in place in an

NICU and relied upon by clinicians and diagnosticians.
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Artificial neural networks in urology:
applications, feature extraction and user
implementations

Craig S. Niederberger and Richard M. Golden

Introduction

Urology is a diverse surgical specialty that includes disorders of the urinary and

male reproductive systems. As such, it includes diagnosis and treatment of

cancers, urinary stones, male infertility, impotence, urinary diseases in children,

neurological and anatomical disorders resulting in an inability to properly empty

the bladder, trauma to the urinary and male reproductive systems, and other

diseases. This diversity contributes to the challenging nature of diagnosing and

treating urological disorders, and to the diYculty in modelling urological data

sets.

In this chapter, we review urological diagnostic and prognostic modelling

problems that we found intractable to discriminant function analysis in which

neural computational modelling was superior in performance. Because of its

simplicity and explicit nature, we chose discriminant function analysis (DFA) as a

traditional, linear statistical approach with which we compared neural computa-

tional modelling (Duda & Hart 1973). This analysis does not prove that neural

computational modelling is superior to all forms of classical data modelling;

rather, we found neural computational modelling to be a useful and robust

technique for a variety of diverse urological data sets.

In this chapter we also review two aspects of neural computational modelling

that, while not necessarily central to modelling per se, are of substantial interest to

physicians entrenched in the clinical realm. The Wrst is feature extraction. Phys-

icians encountering our trained and tested neurological models invariably asked

which feature or features were signiWcant to the model. ‘Was it important if the

patient had stone fragments on X-ray to the network that predicted stones on

future exam?’ Did giving patient chemotherapy aVect the outcome of the network

that predicted kidney cancer metastases?’ We applied Wilk’s generalized likeli-

hood ratio test (Wilk’s GLRT) as a feature extraction method for neural computa-

tion, and discuss the technique in this chapter.
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The second aspect of neural computational modelling essential to physicians

that we discuss here is availability of the trained model to practising physicians.

Physicians may read with interest in journals reports of trained models, but

without a readily, widely available, and easily implemented model, the tool will be

little more than a curious toy. We used commonly available resources in conjunc-

tion with the World Wide Web to develop interfaces in which users could run

trained networks on either a centralized server or a distributed client. We end this

chapter with a discussion of these strategies and their implementation.

Neural computational model building for the urological data sets

Because little a priori knowledge was available about the urological modelling

problems, we designed neural computational models with a generic approach. We

built a programming environment to rapidly prototype neural computational

models, naming the environment ‘neUROn’ (neural computational environment

for urological numericals). NeUROn was initially designed as a general purpose

neural programming environment in C rather than a single program, and was

recently ported to C + + . Neural network architecture features are coded in

preprocessor directives, and are speciWed by a single header Wle. By deWning

preprocessor variables, programmers can generate during compilation machine

code highly tailored to a speciWc medical application. The reduction of computing

cost in this approach is desirable, as neural network training may require billions

of iterations through a training data set before a solution is achieved.

Although neUROn contains several training engines as encoded objects, our

approach was to model Wrst with canonical back-propagation, with the exception

that the cross-entropy error function was used at the output node rather than least

mean squared error (Werbos 1974; Golden 1996). This error function is described

in the next section. We built networks with one hidden node layer and bias nodes

on all layers. Ten hidden nodes were initially encoded in the neural architecture,

and hidden nodes were reduced (pruned) until overlearning ceased. Cessation of

overlearning was noted when training and test set classiWcation error versus

training iteration curves were non-divergent. The networks with the hidden node

number so determined were trained to completion, which was deWned either as an

error function value that was less than the numerical precision of the C compiler

(10−12) or if the error increased over a given window width of iterations through

the training set. The strict local minimum thus found was tested by arbitrarily

changing individual weights by small random numbers, and demonstrating that

the weights returned on retraining to the weight vector found on initial training to

completion.
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Feature extraction using Wilk’s GLRT

Although neUROn is typically described as a back-propagation neural network,

neUROn may also be expressed as a non-linear regression model (Golden 1996).

Let matrix v denote the pattern of connections from the m hidden units to the

output unit, let scalar b denote the bias for the output unit, let matrix q
j
denote the

connections from the input layer to the j-th hidden unit (j = 1 . . . m), and let z
denote the biases for the hidden units. The elements of all four of these parameter

vectors may be arranged in a single d-dimensional parameter vector w.

Consider a statistical environment deWned by a sequence of n independent and

identically distributed random vectors (the notation õ is used to indicate that o is a

random variable),

M(s̃
1
, õ

1
), . . ., (s̃

n
, õ

n
)N,

with common probability mass function p([s, o]). Assume that

p([s, o]) = p(s)p(o D s, w);

where p(s) is the probability mass that stimulus input vector s will be presented to

neUROn (which is not functionally dependent upon the connection strength

parameter vector w), and the conditional probability mass function p(o D s, w)

maps a given stimulus input vector s and connection strength parameter vector w
into the probability that outcome o will occur. It is assumed that o can take on

exactly one of two values 0 or 1, so that o M M0, 1N.

Let S be a sigmoidal function deWned such that for any real number x:

S(x) = 1/(1 + exp( − x)). The formula for p(o = 1 D s, w) (which is the activation

level r of the output unit of neUROn) is given by the expression:

r = p(o = 1 D s, w) =SA
m

;
j=1

v
j
h

j
+ bB, (6.1)

where the activation level of the j-th hidden unit (j = 1 . . . m) is given by the

formula:

h
j
=S(qT

j
s + z

j
),

where z
j
is the j-th element of z. Note that since o M M0, 1N, we have p(o D s, w) =

or + (1 − o)(1 − r).

Learning in neURO proceeds by using a gradient descent algorithm that seeks a

strict local minimum of the negative log-likelihood function. A strict local mini-

mum of the error function E is sought, where E is deWned such that, for any given

connection strength parameter vector w,



123 ANNs in urology

E(w) = − (1/n)
n

;
i=1

log[p(oi D si, w)],

where (oi, si) is the i-th record in the set of n data records used to ‘train’ (or

equivalently estimate the parameters of) neUROn. Golden (1996) has noted that,

on completion of network training, Wilk’s generalized likelihood ratio test

(GLRT) may be used to determine which input nodes in the back-propagation

network have connection strengths to the rest of the network that are eVectively

equal to zero. This capability is of particular interest to medical researchers who

desire to ‘open the black box’, and dissect the importance of speciWc clinical

parameters.

Use of Wilk’s GLRT begins with training of a network on a particular data set,

and recording the network error E
full

(wfull) for the full model. One or more input

node(s) representing a feature are then removed from the full model by setting u

of the weights that connect the selected input nodes to the rest of the network

equal to zero. The network is then retrained on the same data set and the network

error E
red

(w
red

) is recorded. The procedure requires that both error estimates are

associated with strict local minima of their respective error surfaces and the same

strict local minimum of the ‘true’ error function. The procedure also requires that

the full model, which contains all of the input nodes, generates probabilities that

are a ‘good Wt’ to the observed statistical data. The question to test is whether the

increase in error is statistically signiWcant (i.e. whether the u weights in the original

network were really equal to zero).

Using Wilk’s GLRT, the null hypothesis that the two networks are equally

eVective (aside from sampling error) in classiWcation can be rejected if

− 2n[E
full

(wfull) − E
red

(wred)] [s2

a, (6.2)

where s2

a is a constant with the property that a chi-squared random variable with u

degrees of freedom exceeds s2

a with probability a.

To summarize, the procedure to use Wilk’s GLRT for feature extraction is as

follows:

1. The full network is trained to a strict local error minimum. The trained

network is then examined to determine whether the model is a ‘good Wt’ (it

would be useless to perform feature extraction if the model was no better than

the Xip of a coin). The modeller also demonstrates that the model was trained

to a strict local error minimum, for example by arbitrarily altering individual

trained weights and observing the network on further training to return to the

same local error minimum.

2. The cross-entropy error function is calculated at the strict local error minimum
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for the full model,

E
full

(w full) = −
n

;
k=1

d

;
i=1

[ok
i
log (rk

i
) + (1 − ok

i
) log(1 − rk

i
)], (6.3)

where n is the number of records in the data set, d is the number of output

nodes, o is an output node’s value derived by the network, and r is the ‘real’

value of that output in the data set. It is important to note that in this use of

Wilk’s GLRT, output values must be constrained to M0, 1N.

3. The number of network connections C
full

is calculated for the full model. For

example, for a fully interconnected network with one hidden node layer and

biases on the input and hidden layers, the number of connections C is

C = (N
i
+ 1)N

h
+ (N

h
+ 1)N

o
, (6.4)

where N
i
is the number of input nodes, N

h
is the number of hidden nodes, and

N
o
is the number of output nodes.

4. A feature-deWcient network is trained by holding all of the input nodes

corresponding to that feature in the data set to 0, and retraining the network to

a strict local error minimum. The strict local error minimum is demonstrated

as in the Wrst step of the procedure, with the additional requirement that the

strict local error minima of the full model and feature deWcient model corre-

spond to the same strict local minimum of the ‘true’ error function. The

modeller observes the error curve while training for rapid changes indicating a

possible ‘leap’ into another, diVerent error minimum.

5. The cross-entropy error function for the feature deWcient network E
red

(w red) is

calculated as in Eq. 6.3.

6. The number of network connections C
red

for the feature deWcient network is

calculated as in Eq. 6.4.

7. A chi-squared value is calculated,

s2

a = − 2n[E
full

(w full) − E
red

(w red)], (6.5)

where n is the number of records in the data set, and the cross-entropy errors

for the full and feature deWcient data sets are calculated as described above.

8. The number of degrees of freedom (df) for the test is calculated by

df = C
full

− C
red

, (6.6)

where C
full

is the number of network connections for the full model, and C
red

is

the number of network connections for the feature deWcient model.

9. The probability pa that the modeller can reject the null hypothesis that the full

network and feature deWcient networks are the same is then determined for the
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chi-squared value s2

a with degrees of freedom df either by examination of a

table of chi-squared values, or using the incomplete gamma function.

A neural network to model testis biopsy outcomes

As an example of neural computational modelling of a diYcult urological diag-

nostic problem, and of use of Wilk’s GLRT for feature extraction, we modelled

outcomes of patients undergoing testis biopsies. A commonly encountered infer-

tile male is one who has no or very few sperm in his semen. These patients are

referred to as ‘azoospermic’ or ‘near azoospermic’. When evaluating such a

patient, the urologist must identify him as one who has no sperm in the semen as a

result of failure to make sperm in the testis, or of blockage of the tiny ductal system

that carries the sperm from the testis to the outside world. This diagnosis is

typically made by surgically removing a small piece of testis, and examining it

under the microscope. If sperm cells are present in the testis in various stages of

development and in normal numbers, then the patient has presumptive ductal

obstruction, and is scheduled for surgery so that a search may begin to identify and

correct the obstruction. If no mature sperm cells are present in the testis specimen,

the patient is counselled that fathering biological children is not yet possible.

Clearly the two outcomes have vastly diVerent implications, and it is desirable to

predict as early on as possible in the diagnostic evaluation of the patient into

which category he belongs.

Urologists have long noticed certain associations of various features of a patient

with the outcome of testis biopsy. Taking a clue from their counterparts in animal

husbandry, urologists have observed that the smaller the testis size, the less likely

the patient is to have sperm made in the testis. However, this association is far

from perfect, as while some men may normally have larger ears than others

without any eVect on hearing, some men may have smaller testes than others

without any eVect on fertility. Urologists have also observed that a speciWc

hormone level in the blood, follicle-stimulating hormone (FSH), is inversely

correlated with the likelihood of Wnding sperm in a testis biopsy. Presumably, as

sperm cells are depleted in the testis, their inXuence wanes on the secretion of an

inhibitory factor, inhibin, by their neighbouring cells, the Sertoli cells. As blood

inhibin levels fall, blood FSH levels rise. However, this too is an imperfect

association. Certainly, the patients with very high levels of FSH, the probability of

Wnding sperm in the testis is low, although this rule is occasionally broken. For

normal or near normal levels of FSH, however, inspection of this single feature

tells us very little about the probability of Wnding sperm on testis biopsy.

In a sense then, urologists have adopted a somewhat imperfect ‘expert system’,

or algorithmic approach, to the problem of modelling testis biopsy outcomes. If
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the FSH level was elevated past a threshold value, usually twice the laboratory

upper limit of normal, then the patient was counselled to use donor sperm or to

adopt. If the FSH level was not elevated, then the patient underwent testis biopsy

to determine whether mature sperm was present in the testis. We sought to

substitute a more robust and accurate model for this simple algorithmic approach

that relied on one single clinical parameter, the FSH level.

We chose neural computation as a non-linear computational method for

modelling testis biopsy outcomes in a pilot study of 36 patients. Five features were

encoded into eight input nodes. The Wrst two input nodes corresponded to the

FSH value, with the Wrst input node representing whether or not (0, 1) that data

value was available for that patient, and the second input node was the normalized

value for FSH, with

FSH =
FSH

value
− FSH

low

FSH
high

− FSH
low

,

where FSH
low

was the lower limit and FSH
high

was the upper limit of normal for the

laboratory determination of FSH
value

. In this way, FSH values from diVerent

laboratories could be used in the built model. In a similar manner, two input

nodes were encoded for blood luteinizing hormone (LH) and two for blood

testosterone levels. As seminal fructose (semen sugar) and testis size measure-

ments were available for all patients, one input node was encoded for each. One

output variable was encoded, with 0 representing no mature sperm, and 1

representing mature sperm seen on testis biopsy. The data set was randomly

divided into a training set of 24 records and a test set of 12 records. Sequential

random sets of training and test sets were generated until the frequency of records

with outputs 1 and 0 was the same in both training and test sets. This procedure

generated test set data with the property that the estimated overall expected

likelihood of observing a mature sperm was the same as the corresponding

training data set, and was designed to bias the generation of the test set data so that

more representative test data sets would be generated (under the assumption that

the training data set was fairly representative of the population distribution).

Canonical back-propagation as described by Werbos (1974) was used as the

training algorithm, with the exception that the cross-entropy error function was

substituted for a least mean squared error at the output node (Golden 1996). Our

general strategy for neural computational model building has been to begin with a

fully interconnected network with one hidden layer and biases on both input and

hidden node layers, and to reduce hidden nodes until overlearning is observed to

cease. Overlearning usually occurs when a network has so many resources (i.e.

parameters) that it can ‘memorize’ the training data and is not forced to extract
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useful discriminatory features from the training data set. Overlearning is detected

by plotting classiWcation errors in the test set at intervals during training. If the test

set error initially decreases, then increases as the training set error continues to

decrease, overlearning is evident. We began with 10 hidden nodes in the hidden

layer, and reduced one at a time until overlearning ceased, at which point two

hidden nodes remained in the hidden layer. The network was then trained to

completion. The Wnal cross-entropy error recorded at completion of training was

3.07e-16. At completion of training, the classiWcation accuracy was 100% in the

training set, and 91% in the test set. In comparison, the classiWcation accuracies of

linear and quadratic discriminant function analysis were both 21% in the training

set, and 25% in the test set.

Feature extraction was then performed using Wilk’s GLRT. Beginning with the

weights and biases of the trained model, the network was retrained with each input

feature removed by setting its respective input node activation levels to 0. For

example, the activation levels of the two nodes representing FSH were held to 0

and the network was retrained, with a Wnal cross-entropy error recorded to be

3.81e-15. Thus, in Eq. 6.5, with n = 24 records in the training set,

s2

a = − 2n[E
full

(w full) − E
red

(w red)],

s2

a = − 2(24)[3.07 ] 10−16 − 3.81 ] 10−15],

s2

a = 1.68 ] 10−13.

It is essential to note that both the full and feature-depleted models were trained

to a critical point, as partial training invalidates Wilk’s GLRT. We empirically

deWned a critical point as either a change in output node error over one training

iteration to be less than the numerical precision of the compiler, or an increase in

output node error after a discrete number of training iterations (error window).

The former deWnition is obvious, as training will conclude when the executable

code is no longer able to process the diVerence in output node error. The latter

deWnition is more ambiguous and is obtained empirically. The error window

cannot be so small as to cease training during a small increase in error prior to a

large decline. However, if the error is Xuctuating over a small value for a large

number of iterations, it can be surmised that the error gradient in weight space is

oscillating in the vicinity of a local error minimum, and training is complete. This

error window is diVerent for every training set, and was determined by empirical

observation of plots of cross-entropy error versus training iterations to be 8000 for

this example.

In order to calculate the degrees of freedom for Wilk’s GLRT, the number of

network interconnects for the full and feature deWcient models are calculated. The

full model consisted of a fully connected network with eight input nodes, two

hidden nodes, one output node, and biases on the input and hidden layers. Thus,



Table 6.1. Wilk’s generalized likelihood ratio test p values for feature deficient
networks trained to model testis biopsy outcomes

Feature extracted s2

a
df p

FSH 1.68e-13 4 [ 1

LH 1.65e-13 4 [ 1

Testosterone 1.67e-13 4 [ 1

Fructose 1.66e-13 2 [ 1

Testis size 2.80 2 0.247

FSH, follicle-stimulating hormone; LH, luteinizing hormone.
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from Eq. 6.4,

C
full

= (N
i
+ 1)N

h
+ (N

h
+ 1)N

o
,

C
full

= (8 + 1)2 + (2 + 1)1 = 21.

The reduced model consisted of six input nodes (two input nodes encoded the

FSH feature, one node for the presence or absence of the feature, and one node for

the FSH value), two hidden nodes, one output node, and biases on the input and

hidden layers. Thus, from Eq. 6.4,

C
red

= (N
i
+ 1)N

h
+ (N

h
+ 1)N

o
,

C
red

= (6 + 1)2 + (2 + 1)1 = 17.

From Eq. 6.6,

df = C
full

− C
red

,

df = 21 − 17 = 4.

Inspection of a table of chi-squared values showed that, for s2

a = 1.68e-13 with 4

degrees of freedom, p [ 1. The null hypothesis that the feature-deWcient model

was the same as the full network cannot be rejected. This result is not surprising, as

simple inspection of the Wnal errors of the full and reduced networks appeared

very similar. Use of Wilk’s GLRT allows the conclusion that FSH, as a single

parameter, does not aVect the model’s performance.

Results of extracting FSH and other single features are shown in Table 6.1. For

no single feature extracted was p \ 0.05. The only single feature extracted with an

obvious diVerence in Wnal trained error was testis size. However, the test did not

reveal a signiWcant diVerence for testis size. This failure to Wnd a signiWcant

diVerence is probably due to the small number (24) of records in the training data

set. Combinations of features were then extracted, Wrst two at a time, then three at

a time. When FSH and testosterone and testis size were extracted together, s2

a was
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18.53, and with 10 degrees of freedom, p = 0.047. Thus, for our chosen level of

signiWcance (p \ 0.05), a feature-deWcient model lacking FSH and testosterone

and testis size performed signiWcantly worse than the full model. We can thus

deduce from the model that these are the three most signiWcant clinical features in

predicting the relevant outcome; that is, whether or not mature sperm will be

found on testis biopsy.

A neural network to model outcomes of patients with renal cancer

Outcomes of patients with renal carcinoma are among the most diYcult to model

in medicine (de Kernion 1986; Williams 1987; Montie 1994). For most cancers,

the prognosis of a patient is fundamentally altered when the tumour migrates to a

distant site, a process known as metastasis. It is generally useless to surgically

remove a metastasis in an attempt to cure cancer, as invariably more metastases

follow. Unlike in other cancers, however, in renal cancer, the removal in certain

patients leads to long-term survival (Jett et al. 1983). Renal cancer thus behaves in

a very ‘illogical’ way.

Physicians have long devised descriptive categories in an attempt to correlate

prognostic outcomes with a categorical state. These categories are referred to as

‘stages’ of cancer, and the application of a stage to a patient is referred to as

‘staging’. Stages are chosen so that, if left unchecked, the cancer would evolve from

one stage to another in an orderly fashion. The staging exercise in cancer is the

basis on which therapeutic choices are made in an algorithmic approach. As an

example, a renal tumour that is smaller than 2.5 cm in diameter and limited to the

kidney, and that has not migrated to the lymph nodes or other distant organs, is

termed ‘stage T1’ in the ‘TNM’ classiWcation system. Surgical removal of such a

tumour results in 60–82% of patients alive at 5 years. A renal tumour that has

pushed its way outside of the kidney’s capsule and into the surrounding fat is

termed ‘stage T3a’, and surgical removal of this type of tumour leads to a 5-year

survival rate of 47–80% (de Kernion 1986). Two additional problems are thus

evident in the staging of renal cancer and render this an ‘illogical’ cancer. The Wrst

is the substantial degree of overlap in the outcomes of patients undergoing surgical

therapy for diVerent stages. One would expect high survival for lower stages, and

lower survival for more advanced stages. This is not necessarily the case for renal

cancer. In addition, renal cancer may remain quiescent for many years and

suddenly erupt with distant metastases, ‘skipping’ stages (de Kernion 1986;

Williams 1987; Montie 1994).

We therefore sought to computationally model outcomes of patients with renal

cancer in an attempt to more accurately predict progression of this odd disease

(Qin et al. 1994; Niederberger et al. 1997). We chose to model two outcomes: the



Table 6.2. Feature encoding for renal cancer data sets

Number

input nodes Variable Type

4 Ethnicity Categorical

1 Gender Binary

1 Diagnosis date available (Yes, No) Binary

1 Age = Date of diagnosis − Date of birth Numerical

1 T stage available (Yes, No) Binary

1 T stage Numerical

1 N stage available (Yes, No) Binary

1 N stage Numerical

1 M stage available (Yes, No) Binary

1 M stage Numerical

1 Nephrectomy (Yes, No) Binary

1 Nephrectomy date available (Yes, No) Binary

1 Date of surgery− Date of birth Numerical

1 Lung metastases information available (Yes, No) Binary

1 Lung metastases (Yes, No) Binary

1 Bone metastases information available (Yes, No) Binary

1 Bone metastases (Yes, No) Binary

10 Histologic subtype Categorical

1 Tumour size (centimetres) Numerical

7 Treatment choice Categorical
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occurrence of metastases and patient mortality, for example whether or not a

patient was alive or dead at a speciWc time point. Encoded input variables are

shown in Table 6.2. Categorical variables such as ethnicity were encoded into

multiple binary variables; for example African-American was encoded as (1,0,0,0),

Caucasian (0,1,0,0), Hispanic (0,0,1,0), and Asian (0,0,0,1). Although this method

of encoding categorical variables is not as eYcient as assigning binary values to

each category, for example African-American would be encoded as (0,0), Cau-

casian (0,1), Hispanic (1,0), and Asian (1,1), the one-node-per-category strategy is

more amenable to subsequent analysis with Wilk’s GLRT. Two data sets were

obtained, one with 341 records of patients with known mortality (alive or dead),

and one with 232 patients in which metastases were known. The data set of 341

patients with known mortality was randomized into a training set of 257 and a test

set of 84 patients in the same manner as described in the previous section

describing modelling of testis biopsy outcomes. The data set containing 232

entries of patients with known metastatic status was randomized into 174 patients

in the training set and 58 in the test set. In the case of the mortality data set, the



Table 6.3. Classification accuracies of methods modelling new metastases in the
renal cancer data set

Data set LDFA (%) QDFA (%) Neural network (%)

Training 68.4 69.0 92.5

Test 67.2 69.0 84.5

Table 6.4. Classification accuracies of methods modelling new mortality in the renal
cancer data set

Data set LDFA (%) QDFA (%) Neural network (%)

Training 40.1 39.3 90.3

Test 40.5 39.3 71.4

LDFA, linear discriminant function analysis; QDFA, quadratic discriminant function analysis.
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outcome node was encoded as (1,0) for alive or dead at the measured time point.

For the metastases data set, the outcome was encoded as (1,0) for new or no

metastases at the measured time point.

Fully interconnected networks with one hidden layer and biases on the input

and hidden layers were constructed for both data sets as described in the testis

biopsy model. Canonical back-propagation was used as the training method,

except for the use of the cross-entropy error function for the output node. Hidden

nodes were sequentially removed from the hidden node layer until cessation of

overlearning was noted. For both data sets, the resulting networks had six hidden

nodes in the hidden layer. These networks were then trained to completion, in a

fashion similar to the testis biopsy experiments. The data sets were previously

modelled with linear and quadratic discriminant function analysis. Performance

of these models is shown in Table 6.3. Performance of discriminant function

analyses and the neural network training to model mortality is shown in Table 6.4.

In both models, neural computation yielded higher classiWcation accuracies in the

test set than discriminant function analysis. However, the neural network

modelling patient mortality fared worse than that modelling the development of

metastases. This is not surprising, as modelling survival involves non-disease

speciWc factors such as the degree of health of the patient’s cardiovascular system

prior to development of the tumour, factors that we could not specify or access for

every patient.

Because the neural network modelling the development of metastases per-

formed reasonably well, it was interesting to ask what patient features were



Table 6.5. Wilk’s GLRT feature extraction
results for the renal cancer metastasis
model

Feature extracted p

Ethnicity 1.000

Gender 0.009a

Age \ 0.001a

T stage 0.004a

N stage 0.007a

M stage 0.428

Nephrectomy 1.000

Surgery date 1.000

Lung metastases 0.807

Bone metastases 1.000

Histologic subtype \ 0.001a

Tumour size 0.739

Treatment choice 1.000

ap \ 0.05.
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signiWcant to the model. For example, did the model rely on tumour size? Did the

type of therapy, surgery or chemotherapy, determine the model’s outcome? Was

the presence of metastases in the past necessary to the model of future metastases?

To answer these questions, we performed feature extraction with Wilk’s GLRT as

described in the previous section detailing feature extraction in modelling testis

biopsy outcomes. The result of Wilk’s GLRT for the metastatic model is shown in

Table 6.5. Inspection of Table 6.5 reveals that patient gender, age, T stage, N stage

and histologic subtype of the tumour all signiWcantly degraded network perform-

ance when these features were extracted from the full network. The Wndings of T

and N stages as signiWcant features to the model substantiate the TNM system as

one that has at least some place in the staging of renal cancer. What are perhaps as

interesting as those features that were signiWcant to the model are those features

that were not. Surprisingly, the presence of a past metastasis was not a feature

essential to the model’s performance in predicting a new metastasis. This observa-

tion is in agreement with the odd behaviour of renal cancer in that surgical

removal of a metastasis may lead to long-term survival. It is also interesting that

the choice of treatment was not one of the features signiWcant to the model.

Surgeons that remove renal tumours and medical oncologists that use chemother-

apy would probably desire to have choice of therapy signiWcantly aVect a model of
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new metastases to argue for the selection of one type of therapy versus another.

Yet, in this model, other features were more signiWcant than type of therapy. This

example of the use of Wilk’s GLRT thus serves as one in which analysis of a model

built without the inherent clinical biases of physicians aids clinicians in making

new inferences about a disease.

A neural network to model extracorporeal shock wave lithotripsy outcomes

One urological disease that has recently undergone a revolution in therapy is

urinary lithiasis, or the formation of stones in the urinary tract (Lange 1986;

Chaussy & Fuchs 1987). Urinary stones form when various inorganic and organic

substances in the urine exceed their solubility product. This process depends on

the urinary pH, as well as various substances that inhibit or promote stone

formation. A wide variety of risk factors have been identiWed that lead to new or

recurrent urinary stones, and these include environmental, nutritional, metabolic,

anatomic, infectious and other factors. When urinary stones do form, they often

obstruct the urinary system, leading to great pain and possible damage to the

kidneys from back pressure.

The traditional therapy for urinary stones was surgical removal. Since the early

1980s, a technological advance, extracorporeal shock wave lithotripsy (ESWL),

obviated surgery for over 90% of patients with large urinary stones. Shock waves

are generated from a submersed spark-plug with opposing electrodes. The under-

water spark vaporizes adjacent water molecules, causing a primary shock wave and

a secondary shock wave from collapse of gas bubbles formed during the spark

discharge. These shock waves are focused by a rotationally symmetrical semi-

ellipsoid bath, and the focused shock waves so generated fragment the stone. Thus

a non-invasive therapy replaced surgery for a majority of patients.

However, the new therapy was not without its new problems. ESWL often left

behind small, non-obstructing fragments, whereas surgery generally removed the

entire stone. The urologist was left with the dilemma of how to manage these

residual stone fragments. Sometimes these fragments would grow into another

obstructing stone. At other times, these stones would remain small and clinically

insigniWcant. At times, even when no fragments were left after ESWL, stones

would recur. We sought to build a computational model that would predict, given

a patient proWle, stone recurrence after ESWL. The clinically relevant outcome was

chosen; that is, if no stone fragments were present after ESWL, the model would

predict whether new stones would form, or, if stone fragments were present after

ESWL, the model would predict whether these fragments would grow.

Data were encoded with the general strategy in the previous section describing

modelling of renal cancer data. Sixteen input variables were encoded into 37 input



Table 6.6. Performance of methods modelling stone recurrence in the ESWL data set

Train Test

Class Class

Acc Acc Sens Spec PPV NPV ROC

Method (%) (%) (%) (%) (%) (%) area

NNET 100 90.9 90.5 91.7 95.0 85.0 0.964

LDFA 32.3 36.4 0 100 NaN 39.4 0.524

QDFA 32.3 36.4 0 100 NaN 39.4 0.524

Sens, sensitivity; Spec, speciWcity; PPV, positive predictive value; NPV, negative predictive value;

ROC area, receiver operator characteristic curve area; NaN indicates division by zero; Acc, accuracy.
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nodes. These included (1) patient age, (2) gender, (3) ethnicity, (4) stone chemis-

try, (5) location, (6) conWguration, (7) metabolic disease, (8) infectious disease,

(9) time since last follow-up, (10) presence of fragments after ESWL, (11) other

procedures, (12) medical therapy, (13) anatomical abnormality, (14) presence of

catheter, (15) history of previous stone and (16) concurrent stones. One output

node was encoded as 0 if no stones were seen on follow-up, or if fragments were

present, they did not grow. The output node was 1 if stones were present on

follow-up, or if fragments were present, they grew. The full data set consisted of 98

records randomized into a training set of 65 and a test set of 38 records using the

strategy described in the previous section describing modelling of testis biopsy

outcomes (Michaels et al. 1998).

Fully interconnected networks with one hidden layer and biases on the input

and hidden layers were constructed for both data sets as described in the testis

biopsy and renal cancer models. Canonical back-propagation was used as the

training method, with the exception of the use of the cross-entropy error function

for the output node. Hidden nodes were sequentially removed from the hidden

node layer until overlearning was noted to cease. The resulting network had Wve

hidden nodes in the hidden layer. The network was then trained to completion, in

a fashion similar to that of the testis biopsy and renal cancer experiments. The data

sets were previously modelled with linear and quadratic discriminant function

analysis. Performance of these models is shown in Table 6.6.

As in the previous examples for models of testis biopsy and renal cancer

outcomes, feature extraction was performed with Wilk’s GLRT. All features

extracted resulted in p values [ 1. This result indicates a high degree of redun-

dancy of informational content of the input feature set. What was perhaps most

surprising was the superior performance in every parameter measured of the

neural computational method compared with discriminant function analysis.
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A perusal of receiver operator characteristic (ROC) curve area alone is revealing,

with 1.0 representing a perfect model, and 0.5 a completely imperfect model, the

neural network resulted in an ROC curve area of 0.964, whereas both discriminant

function analysis methods resulted in an ROC curve area of 0.524. It was thus

desirable to make the trained neural model available for practising physicians

treating patients after ESWL, so that they could use the prognostic information

aVorded by this tool. Our strategy for making available to remote physicians this

and other networks is discussed in the following section.

Remote user implementations of trained neural models

Without the ability to use trained neural computational models, physicians are

unlikely to treat these models as little more than intriguing diversions. It is

desirable to make these models widely available and easy to use. The internet oVers

computational resources that achieve both goals.

Two general strategies are available to modellers using the Internet to increase

availability of their models. Although the details of the implementations will

undoubtedly change, and change rapidly, the two general strategies will remain as

options. In the Wrst strategy, the modeller builds a model and interface on a server

computer, and the remote user accesses the model, using the server computer’s

processes to run the neural network on remote data. We will refer to this as the

‘Central Server’ strategy. The advantage of this strategy is that the remote, or

client, computer needs very few resources of its own to access the model. The

disadvantage is that the server assumes all of the processing burden of all clients

accessing it. In the second strategy, the server simply serves model code to the

client. We will refer to this as the ‘Distributed’ strategy. The advantage of this

strategy is that the only burden placed on the server is that of sending code. The

disadvantage is that the client computer must possess the resources to interpret

the code. Fortunately, with the current state of widely available World Wide Web

browsers supporting the JavaScript language, this disadvantage is lessened sub-

stantially.

The following serves as an example of the ‘Central Server’ strategy. The user is

assumed to have a World Wide Web browser that is capable of the forms standard

protocol. This example uses the Common Gateway Interface (CGI) as the inter-

face between browser and server. The example implementation is from a Unix V

system with an installed http daemon. The HTML scripts were placed in the

directory /export/http/htdocs, and the common gateway interface Wles, Perl pro-

gram, and executable model code were placed in the directory /export/http/cgi-

bin. These locations are not necessary for the implementation, but will serve to

orient the reader to the following code.



Input 0 0 Input 1 0 Run Model

Figure 6.1. HTML form for a neural network interface.
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Three diVerent codes were written. The Wrst was HTML code that the browser

will initially interpret. The HTML code then calls Perl code which handles running

of the neural model, as well as generating HTML code that reports the result back

to the end user. The neural model is executable code that was programmed to take

the input features as arguments and to return a text message that includes the

result of the model. For brevity, a neural network was trained to model the

exclusive–or problem, which is (0,0) = 0, (0,1) = 1, (1,0) = 1, (1,1) = 0.

The following HTML code, xor–example.html, was placed in the /export/http/
htdocs directory:

\FORM ACTION="/cgi-bin/xor.pl" METHOD="POST"[
Input 0 \INPUT TYPE="text" NAME="input–0" VALUE="0" SIZE=3[
Input 1 \INPUT TYPE="text" NAME="input–1" VALUE="0" SIZE=3[
\INPUT TYPE="submit" VALUE="Run Model"[
\/FORM[

The Wrst line of the HTML code identiWes a form that will hand data to a Perl

script, xor.pl. This Perl script is placed in the /export/http/cgi-bin directory. The

next two lines deWne the form. The variables are labelled as Input 0 and Input 1,

and deWned for passage to the Perl script as input–0 and input–1. The variables are

given the arbitrary default value 0, which may then be changed by the user. The

fourth line of the HTML code completes the form, and labels the button that is

assigned to the Perl routine. The appearance of this HTML code as viewed by a

forms-compliant browser is shown in Figure 6.1.

The Perl script referenced by xor–example.html, xor.pl, was placed in the

/export/http/cgi-bin directory:

<!/usr/bin/perl

require "cgi-lib.pl";

&ReadParse();
print &PrintHeader();

$input–0 = $inM’input–0’N;
$input–1 = $inM’input–1’N;

print ‘./xor–model $input–0 $input–1‘;

1; <return true
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The Wrst of the Perl code identiWes the code as a Perl program. The next three

lines reference the Common Gateway Interface library, which must be present on

the server, and contain the routines for the form and passage of arguments. The

Wfth and sixth lines get the input variables from the form. The seventh line runs the

executable code, xor–model, which takes as its arguments the values of the input

variables, and returns a message with the result of the trained neural network. If

xor–model were run directly on the server, the following would result:

$ xor–model 0 0
My guess is 1.546861e-07 which is LESS than the threshold

Thus, when the user ‘presses the button’ on the HTML form, the following is

returned,

My guess is 1.546861e-07 which is LESS than the threshold

We built a number of interfaces to neural networks trained to model urological

data sets using this Central Server strategy. One was even used by a remote

physician who pitted his clinical judgement against the neural model, and re-

ported his Wndings at a meeting where we encountered them for the Wrst time

(Gardner et al. 1996). This then was an implementation in which the remote

physician needed no personal assistance from us to use the model. For model-

builders who are concerned about training physicians to use the model, this is a

clear advantage. However, as we built more models, the load on our server became

more substantial every time a remote physician would access one using this

Central Server strategy. We thus turned to developing user interfaces and trained

models using a Distributed strategy.

Following is a JavaScript program that also implements an exclusive-or neural

network. The network is entirely encoded within JavaScript, including the archi-

tecture and trained weights and biases. The server need only pass the JavaScript

code to the client, and this is generally performed using a JavaScript-compliant

browser. Thus the computational load of actually executing the code is shifted to

the client computer.

1: \html[
2: \head[
3: \title[XOR\/title[
4: \script language="JavaScript"[
5: \!–– hide script
6:
7: function MakeArray (v) M// generic array constructor
8: for (var i = 0; i \= MakeArray.arguments.length; i++) M
9: this[i] = MakeArray.arguments[i];

10: N
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11: N
12:
13: INPUT = new MakeArray();
14: HIDDEN = new MakeArray();
15: NUMBER–INPUT = 2;
16: NUMBER–HIDDEN = 3;
17: INPUT–LBOUND = −0.9;
18: INPUT–HBOUND = 0.9;
19:
20: function Sigmoid(sum) M// sigmoidal transfer function
21: neg–sum = −1.0 * sum;
22: return 1.0 / (1.0 + Math.exp(neg–sum));
23: N
24:
25: // Argument list should be non-radio button values only
26: function Predict(I0) M
27:
28: // Replace INPUT[x] below if it is a radio button with its function
29: INPUT[0] = I0.value;
30: getI1();
31:
32: minimax = new MakeArray();
33: minimax[0] = new MakeArray(1.000000e+01,1.000000e+01,0.000000e+00);
34: minimax[1] = new MakeArray(2.000000e+01,2.000000e+01,1.000000e+00);
35:
36: hidden–weights = new MakeArray();
37: hidden–weights[0] = new MakeArray(−5.631417e+00,5.631364e+00);
38: hidden–weights[1] = new MakeArray(−4.747887e+00,4.747892e+00);
39: hidden–weights[2] = new MakeArray(−4.719451e+00,4.719454e+00);
40:
41: hidden–bias = new MakeArray(−4.985623e+00,4.172563e+00,4.146893e+00);
42:
43: output–weights = new MakeArray(1.935789e+01,−9.816044e+00,−9.656253e+00);
44:
45: output–bias = 9.498419e+00;
46:
47: // Scale input vector
48: for (var i = 0; i \ NUMBER–INPUT; i++)
49: INPUT[i] = (((INPUT[i]− minimax[0][i])
50: / (minimax[1][i] − minimax[0][i]))
51: * (INPUT–HBOUND − INPUT–LBOUND)) + INPUT–LBOUND;
52:
53: // Propagate to hidden layer
54: for (var h = 0; h \ NUMBER–HIDDEN; h++) M
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55: var sum = 0;
56: for (var i = 0; i \NUMBER–INPUT; i++)
57: sum += INPUT[i] * hidden–weights[h][i];
58: sum += hidden–bias[h];
59: HIDDEN[h] = Sigmoid(sum);
60: N
61:
62: // Propagate to output
63: var sum = 0;
64: for (var h = 0; h \ NUMBER–HIDDEN; h++)
65: sum += HIDDEN[h] * output–weights[h];
66: sum += output–bias;
67: var OUTPUT = Sigmoid(sum);
68:
69: if (OUTPUT \ 0.5)
70: document.writeln("Predict: less than threshold\br[");
71: if (OUTPUT [= 0.5)
72: document.writeln("Predict: greater than threshold\br[");
73:
74: N
75:
76: // Put in radio buttons below
77: INPUT[1] = 10;// initialize I1
78: function getI1() M
79: if (document.forms[0].I1[0].checked) INPUT[1] = 10;
80: if (document.forms[0].I1[1].checked) INPUT[1] = 20;
81: N
82:
83: \!–– end of script ––[
84: \/script[
85: \/head[
86:
87: \body[
88: \form method="post"[
89: The exclusive-or problem. In this example, 10 is boolean 0, 20 is boolean
90: 1. Here is given a numeric field type example as well as a radio button
91: type example. Since this program is written in JavaScript, Netscape 2.0 or
92: greater \b[must \/b[ be used.\br[
93: I[0]: \input type="number" name="I0" value=10[\br[
94: I[1]: \input type="radio" name="I1" onClick="getI1()" value=0 checked[ 10
95: \input type="radio" name="I1" onClick="getI1()" value=1[ 20 \br[
96: \input type="button" value="predict" onClick="Predict(this.form.I0);"[
97: \/body[
98: \/html[
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Lines 7–11 set up a two-dimensional array structure in JavaScript that will be

used throughout the program. Lines 13 and 14 initialize the input and hidden

arrays. Lines 15–18 deWne the number of input and hidden nodes, and the bounds

for the input values. Lines 20–23 deWne the sigmoidal transfer function. Lines

26–74 are the main function, which will return the result of the trained model.

Lines 29 and 30 obtain the input variable values from the form at the end of the

code; in this example, the Wrst input variable is accessed as a text box in the form,

whereas the second input variable is a radio button. Lines 32–34 deWne the

minimum and maximum values for the input and output nodes, so that input

nodes may be scaled to the boundaries deWned in lines 17 and 18. Lines 36–39

populate the hidden weight array with the trained hidden weights. Line 41

populates the hidden bias array, line 43 the output weight array and line 45 the

output bias array with the trained hidden biases, output weights and hidden

weights, respectively. Lines 47–51 scale the input variables with the limits deWned

in lines 17, 18 and 32–34. Lines 53–59 propagate to the hidden layer using the

sigmoidal feedforward transfer function, and lines 62–67 propagate to the output

node. Lines 69–72 write the result to a page readable by the JavaScript-compliant

browser. Lines 76–81 serve as an example deWnition for a radio button. Lines

88–96 deWne the user interface form.

The upper region of a JavaScript implementation of the neural network trained

to model ESWL outcomes is shown in Figure 6.2. Advantages of the JavaScript

implementation include decreased server load; the server is required only to serve

the code to the client computer. The client computer executes the JavaScript code,

usually using JavaScript-compliant World Wide Web browsers, which, at this

time, are widely available. An additional advantage is the use of Graphical User

Interface (GUI) tools such as radio buttons with JavaScript. Physicians are more

likely to use models if they are easily available and easy to use.

Conclusions

In this chapter, we give three examples of clinically relevant urologic modelling

problems that were intractable to discriminant function analysis, yet modelled

well with neural computation. However, the challenge to the clinician, engineer or

scientist does not end with the building of a successful model. Clinicians may

glean useful information from examination of the built model by feature extrac-

tion. We describe one method of feature extraction, Wilk’s GLRT, and give

examples and clinical interpretations. We hope that the reader will Wnd this form

of feature extraction useful and insightful. Finally, these models, no matter how

well they perform, would be largely useless without an eVort to make them widely

available and easy to use. Fortunately, at the time of this writing, the internet has



59What is the patient’s age?

Gender? male female

Ethnicity? African American

Stone chemical composition

Was the stone calcium? yes no
Cystine?

Stone location

Was the stone located in the:
Parenchyma?
Pelvis?
Ureter?
Calyx?
Lower pole?
Was the stone staghorn?
Were there bilateral stones?

Patient demographics

You must use a JavaScript capable browser (such as Netscape 2.0 and above) to use 
this neural network.
Enter the patient’s data below, then press the predict button:
Return to ESWL page

ESWL neural model

years

Caucasian AsianHispanic

yes no

yes no
yes no
yes no
yes no

yes no
yes no

yes no

Figure 6.2. JavaScript implementation of trained ESWL neural model.
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developed to the point where clinicians will generally Wnd a connection nearby,

and resources have developed so that ‘point and click’ graphical user interfaces

make user-friendly distributed computing a reality. We give examples of World

Wide Web implementations using a Central Server and a Distributed strategy, and

encourage model-builders to use these examples and strategies to make their own

trained models widely available and easy to use for physicians.
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7

Artificial neural networks as a tool for whole
organism fingerprinting in bacterial taxonomy

Royston Goodacre

Introduction

There is a continuing need for the rapid and accurate identiWcation of micro-

organisms, particularly in the clinical laboratory. Recent advances in analytical

instruments have allowed the characterization of microbes from their phenotypic

make-up, but these techniques tend to produce vast amounts of multivariate data

that can be extremely hard to interpret. There is therefore a need to exploit

modern statistical and related (chemometric) methods to facilitate automatic

microbial identiWcation. A particularly powerful set of methods is based on the use

of artiWcial neural networks (ANNs). Over the last few years the availability of

powerful desktop computers in conjunction with the development of several

user-friendly packages that can simulate such ANNs has led to these ‘intelligent

systems’ increasingly been adopted by the microbial taxonomist for pattern

recognition. The nature, properties and exploitation of ANNs for the classiWcation

and the identiWcation of microorganisms by whole-organism Wngerprinting is

reviewed.

In just about every area of microbiology the more rapid, but still accurate,

characterization of microorganisms is a desirable objective. In medicine, shorten-

ing the time taken to identify a pathogenic bacterium, yeast or fungus will

accelerate targeted prescription and should lead to improvements in epi-

demiological studies. In industry, speedy characterization will allow for better-

quality control procedures on both raw materials and Wnished products, and allow

accurate microbial screening for isolates producing novel pharmacophores, thus

saving time and money. In pure science the ability to characterize numbers of

microorganisms quickly will be beneWcial, for example in ecological studies

involving bacteria from aquatic or soil habitats (Amann et al. 1995).

To achieve accurate classiWcations of bacterial groups at the subspecies level, it

is considered that the number of characters (variables) that should be studied for

each operational taxonomic unit (OTU) should lie between 100 and 200 (Sokal &

Sneath 1963; Austin & Preist 1986); indeed, it has been shown statistically (Sokal &
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Sneath 1963) that the optimum number seems to be between 100 and 150.

Classical bacteriology has traditionally relied upon colonial and microscopic

morphology, although over the last 20 years or so these have been supplemented

by analysing a large number of biochemical characteristics. With the recent

advances in analytical chemistry instruments, various automated easy-to-use

spectroscopic methods that carry out ‘whole-organism Wngerprinting’ (Magee

1993) are now entering the microbial laboratory; of these physicochemical tech-

niques pyrolysis mass spectrometry (PyMS) (Magee 1993; Goodacre 1994),

Fourier transform infrared spectroscopy (FT-IR) (Helm et al. 1991), ultraviolet

(UV) resonance Raman spectroscopy (Nelson et al. 1992) and Xow cytometry

(Boddy & Morris 1993a; Davey & Kell 1996) are the most popular. Other rapid

methods have also been developed to assay only part of the cell, and the more

commonly employed include protein and lipid proWling (Howard & Whitcombe

1995); whilst DNA homologies have been expressed in terms of DNA and 16 S

ribosomal RNA (rRNA) sequences (Howard & Whitcombe 1995), and more rapid

characterization of the organism’s genotype eVected by the random ampliWed

polymorphic DNA method (RAPD) (Williams et al. 1990) and ampliWed fragment

length polymorphisms (AFLP) (Janssen et al. 1996).

Each of the above analytical methods has the potential to create large amounts

of multivariate data characteristic of the OTUs under study. Multivariate data of

this nature consist of the results of many diVerent characters or variables (Martens

& Næs 1989); each of which may be regarded as constituting a diVerent dimen-

sion, such that if there are n variables (characters) each object may be said to reside

at a unique position in an abstract entity referred to as n-dimensional hyperspace.

This hyperspace is necessarily diYcult to visualize, and the underlying theme of

multivariate analysis (MVA) is thus simpliWcation (ChatWeld & Collins 1980) or

dimensionality reduction, which usually means that we want to summarize a large

body of data by means of relatively few parameters, preferably the two or three that

lend themselves to straightforward graphical display, with minimal loss of infor-

mation.

Conventionally, within microbial systematics, the reduction of the multivariate

data is carried out using principal components analysis (PCA; JolliVe 1986) or

discriminant function analysis (DFA; ChatWeld & Collins 1980; Manly 1994),

which typically produce two- or three-dimensional ordination plots; alternatively

hierarchical cluster analysis (HCA) can be employed to produce dendrograms,

cherished by most taxonomists (for the usual taxonomic procedure used please

refer to Figure 7.1). However, the relevant multivariate algorithms used by these

methods seek ‘clusters’ in the data (Everitt 1993), thereby allowing the investigator

to group objects together on the basis of their perceived closeness (Figure 7.2), and

fall into the category of ‘unsupervised learning’, since their chief purpose is merely



PyMS

FT-IR

Raman

Spectra are high dimensional:

PCA transforms the original set of
variables to a new set of uncorrelated
variables called PCs. PCA is a data
reduction process and the first few PCs
will typically account for >95% variance

DFA has a priori information based on
spectral replicates and uses this to
minimize within-group variance and
maximize between-group variance

A similarity matrix can be constructed
from the DFA space. HCA can then use 
this to produce a dendrogram, using
average linkage clustering

- 150 masses from PyMS

- 882 wavenumbers from FT-IR

- 2283 wavenumbers from Raman

Principal Components Analysis

Discriminant Function Analysis

Hierarchical Cluster Analysis

Figure 7.1. Flowchart of the usual taxonomic procedure used to perform cluster analyses on high-
dimensional spectra. PyMS, pyrolysis mass spectrometry; FT-IR, Fourier transform infrared
spectroscopy; PCA, principal components analysis; PC, principal components; DFA, dis-
criminant function analysis; HCA, hierarchical cluster analysis.
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Figure 7.2. Unsupervised learning: when learning is unsupervised, the system is shown a set of inputs
(spectra) and then left to cluster the spectra into groups. For multivariate analysis this
optimization procedure is usually simplification or dimensionality reduction. This means that
a large body of data (the spectral inputs) are summarized by means of a few parameters, with
minimal loss of information. After clustering the results then have to be interpreted.
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to distinguish objects or populations using no a priori knowledge. Moreover, this

approach is often subjective because it relies on human interpretation of compli-

cated ordination plots and dendrograms. More recently, a variety of related but

much more powerful methods, most often referred to within the framework of

chemometrics (Massart et al. 1988; Brereton 1990, 1992; Brown et al. 1994), have

been applied to the ‘supervised’ analysis of multivariate data. In these methods, of

which multiple linear regression, partial least squares regression (PLS) and princi-

pal components regression (PCR) are the most widely used, one seeks to relate the

multivariate inputs to the concentrations of target determinands, i.e. to generate a

quantitative analysis, essentially via suitable types of multidimensional curve

Wtting or regression analysis (Martens & Næs 1989).

A related approach is the use of (artiWcial) neural networks, which are increas-

ingly being exploited because they are an excellent means of uncovering complex,

non-linear relationships in multivariate data, whilst still being able to map the

linearities. In addition to mapping quantitative features they can also eVect

qualitative pattern recognition and thereby be used to identify microorganisms.

Introduction to artificial neural networks

The following texts and books are recommended as excellent introductory texts to

artiWcial neural networks (Rumelhart et al. 1986; Wasserman 1989; Simpson 1990;

Hertz et al. 1991; Richard & Lippmann 1991; Zupan & Gasteiger 1993; Haykin

1994; Ripley 1994, 1996; Werbos 1994; Baxt 1995; Bishop 1995; Dybowski & Gant
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1995; Goodacre et al. 1996b). The following is a brief introduction to the reason-

ing behind and the implementation of ANNs.

ANNs are biologically inspired; they are composed of processing units that act

in a manner that is analogous to the basic function of the biological neuron. In

essence, the functionality of the biological neuron consists in receiving signals, or

stimuli, from other cells at their synapses, processing this information, and

deciding (usually on a threshold basis) whether or not to produce a response that

is passed on to other cells. In ANNs these neurons are replaced by very simple

‘computational units’ that can take a numerical input and transform it (usually via

summation) into an output. These processing units are then organized in a way

that models the organization of the biological neural network, the brain.

Despite the rather superWcial resemblance between the artiWcial and biological

neural network, ANNs do exhibit a surprising number of characteristics similar to

those of the brain. For example, they learn from experience, generalize from

previous examples to new ones, abstract essential characteristics from inputs

containing irrelevant data, and make errors (although this usually because of badly

chosen training data; Zupan & Gasteiger 1993; Kell & Sonnleitner 1995); all these

traits are considered more characteristic of human thought than of serial process-

ing by computers. What these ‘intelligent’ systems can oVer the microbial taxo-

nomist is the capability of performing pattern recognition on very complex

uninterpretable (at least to the naked eye) multivariate data.

For a given analytical system used there are some patterns (e.g. the multivariate

data) that have known desired responses or values (e.g. the identity of a group of

bacteria). These two types of data form pairs called inputs and targets. The goal of

supervised learning is to Wnd a model or mapping that will correctly associate the

inputs with the targets (Figure 7.3).

The relevant principle of supervised learning in ANNs is that the ANNs take

numerical inputs (the training data) and transform them into ‘desired’ (known,

predetermined) outputs. The input and output nodes may be connected to the

‘external world’ and to other nodes within the network (for a diagrammatic

representation see Figure 7.4). The way in which each node transforms its input

depends on the so-called ‘connection weights’ (or ‘connection strengths’) and

‘bias’ inputs of the node, which are modiWable. The output of each node to

another node or the external world then depends on both its weight strength and

bias and on the weighted sum of all its inputs, which are then transformed by a

(normally non-linear) weighting function referred to as its activation or squashing

function. The great power of neural networks stems from the fact that it is possible

to ‘train’ them. One can acquire sets of multivariate data from standard bacteria of

known identities and train ANNs using these identities as the desired outputs.

Training is eVected by continually presenting the networks with the ‘known’



Figure 7.3. Supervised learning: when we know the desired responses (targets) associated with each of
the inputs (spectra) then the system may be supervised. The goal of supervised learning is to
find a model that will correctly associate the inputs with the targets; this is usually achieved
by minimizing the error between the target and the model’s response (output).
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inputs and outputs and modifying the connection weights between the individual

nodes and the biases, typically according to some kind of back-propagation

algorithm (Rumelhart et al. 1986; Werbos 1994; Chauvin & Rumelhart 1995),

until the output nodes of the network match the desired outputs to a stated degree

of accuracy. For any given network, set of weight values, and set of training

patterns there exists an overall root mean squared (RMS) error value. If one

dimension in a multidimensional space is put aside for each weight, and one more

for the RMS error, one can construct an error surface. The back-propagation

algorithm performs gradient descent on this error surface by modifying each

weight in proportion to the gradient of the surface at its location. Two parameters,

learning rate and momentum, control this process. Learning rate scales the size of

the step down the error surface taken by each iteration, and momentum acts as a

low-pass Wlter, smoothing out progress over small bumps in the error surface.

After training, the ANNs may then be exposed to unknown inputs (i.e. spectra)

when they will immediately provide the globally optimal best Wt to the outputs.

It is known (Martens & Næs 1989; Wasserman 1989; Goodacre & Kell 1993;

Goodacre et al. 1994b; Bishop 1995; Kell & Sonnleitner 1995) that supervised

learning methods such as neural networks (and partial least squares) can overWt

data. An overtrained neural network has usually learnt perfectly the stimulus

patterns it has seen but cannot give accurate predictions for unseen stimuli, i.e. it

is no longer able to generalize. For supervised learning methods accurately to learn

and predict the identities of bacteria the model must obviously be calibrated to the

correct point. This is usually accomplished by partitioning the data into three sets:



Figure 7.4. A multilayer perceptron neural network consisting of an input layer connected to a single
node in the output layer by one hidden layer. In the architecture shown, adjacent layers of the
network are fully interconnected, although other architectures are possible. Nodes in the
hidden and output layers consist of processing elements that sum the input applied to it and
scale the signal using a sigmoidal logistic squashing function. PyMS, pyrolysis mass spec-
trometry; FT-IR, Fourier transform infrared spectroscopy.
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1. ‘Training data’, which is used to calibrate the model consist of (a) a matrix of s

rows and n columns in which s is the number of objects and n the number of

variables (for FT-IR these characters may be the absorbance at particular

wavelengths, the normalized ion intensities at a particular m/z for PyMS, or

light scattered or Xuorescence for Xow cytometry), and (b) a second matrix,

again consisting of s rows and the same number of columns as there are classes

to be identiWed. For microbial identiWcation these are binary encoded such that

if there are four classes there would be four variables such that class A would be

represented by 1,0,0,0, class B by 0,1,0,0, class C by 0,0,1,0, and class D encoded



150 R. Goodacre

as 0,0,0,1; these are the result(s) wanted and which for the training set have

actually been determined by classical identiWcation methods, and are always

paired with the patterns in the same row in (a).

2. ‘Cross-validation data’, which also consist of two matrices, (c) and (d), corre-

sponding to those in (a) and (b) above, but this set contains diVerent objects.

As the name suggests, this second pair is used to cross-validate the system.

During training the ANN is interrogated with the cross-validation set and the

error between the output seen and that expected calculated, allowing a calibra-

tion curve to be drawn; training will be stopped when the error on the

cross-validation data is lowest.

3. ‘Test data’, which again also consist of two matrices corresponding to those in

(a) and (b) above. These data are ‘passed’ through the calibrated ANN to test

the accuracy of the system. If these responses are correct then the ANN is said

to have generalized and may then be used to identify real unknown microbes.

Microbial identification

ANNs are now common place in the clinical laboratory (Dybowski & Gant 1995)

and are a valuable aid for decision support (Forsström & Dalton 1995); applica-

tions include diagnosis, imaging, analysis of waveforms (e.g. electrocardiography

(ECG)), and outcome prediction before surgery (Baxt 1995). Perhaps, the most

notable decision-support system is the PAPNET system (Mango 1994), which has

been developed to screen cervical smears for abnormalities that are then brought

to the cytologist’s attention for further investigation. With the increasing demand

on clinicians for rapid automatic (that is to say non-subjective) identiWcation of

bacteria, ANNs are increasingly being explored in a wide range of taxonomic

applications. Simulations of neural networks are computationally intense and it is

likely that the availability of more powerful desktop computers over the last 7

years has given life to these exciting intelligent methods. The following summar-

izes the most signiWcant application areas within whole-organism Wngerprinting.

Flow cytometry

Flow cytometry (FCM) permits the rapid acquisition of light-scattering and

Xuorescence characteristics of individual cells within a (mixed) population (Fig-

ure 7.5); data acquisition is very rapid and 103–104 cells or more can be character-

ized per second (Davey & Kell 1996). The ANN analysis of Xow cytometry data

was Wrst applied to the analysis of phytoplankton (Frankel et al. 1989), and this

approach was later used by Smits and his colleagues to eVect the automatic

identiWcation of groups of cyanobacteria (e.g., algae) (Balfoort et al. 1992; Smits et

al. 1992). In the latter study (Smits et al. 1992), ANNs were trained with the data



Figure 7.5. Raw data from the flow cytometry of Bacillus globigii, Escherichia coli, Micrococcus luteus,
and Saccharomyces cerevisiae cells. The forward scatter and propidium iodide fluorescence
parameters are plotted.
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from axenic cultures of eight algal species. These data were: forward and perpen-

dicular light scattering, which are related to cell size and structure, respectively;

time of Xight, which is related to cell length; and three Xuorescence parameters

that gave information on phycoerythrin, chlorophyll and phycocyanin. After the

6–12–8 ANNs were trained with data from monocultures, they were interrogated

with data from mixtures of laboratory cultures and could distinguish cyanobac-

teria from other algae with 99% accuracy. The identiWcation of the eight algal

species was less accurate, and was generally [ 90%; given that the authors had a

systematic error of 5–10% in the preparation of the mixtures these results were

very encouraging.

A more elegant approach to the identiWcation of marine phytoplankton has

been recently demonstrated by Boddy et al. (1994). Flow cytometry data (time of

Xight, horizontal and vertical forward light scatter, 90° light scatter, and ‘red’ and

‘orange’ autoXuorescence) were collected for laboratory cultures of 40 phyto-

plankton species from Dinophyceae, Bacillariophyceae, Prymnesiophyceae,

Cryptophyceae and other Xagellates. Two back-propagation neural networks were

assessed: the Wrst was a hierarchy of small networks, the Wrst identifying to which

major taxonomic group a cell belonged, and then another ANN for that taxo-

nomic group to identify the species; this was then compared with a single large

network identifying all 40 phytoplankton species. Discrimination of some of the
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major taxonomic groups was successful but others less so. With the smaller ANNs

for speciWc groups, cryptophyte species were all identiWed reliably, but in the other

groups only half of the species were identiWed. With the larger network, dino-

Xagellates, cryptomonads and Xagellates were identiWed almost as well as by

networks speciWc for these groups. Although these results were not completely

satisfactory in that there were some misclassiWcations the authors made the

important point in a follow-up study (Wilkins et al. 1994) that rather than a failing

in the neural computation per se, the algal populations studied contained major

physiological diVerences depending on whether the cultures were from summer or

winter; this might cause two populations of the same organism to be disjoint, and

not easily modelled by a standard back-propagation neural network, which can

only map continuous functions (White 1992). However, they showed that if they

replaced the processing elements in the hidden layer with radial basis functions

(Broomhead & Lowe 1988; Moody & Darken 1989; Park & Sandberg 1991; Haykin

1994; Bishop 1995), which are able to map discontinuous mappings between

inputs and outputs, then satisfactory models could be constructed. More recently

Wilkins et al. (1996) have tested a number of other popular neural network

algorithms for the identiWcation of phytoplankton from Xow cytometry data.

Back-propagation neural networks have also been evaluated for identifying

fungal species from Xow cytometric measurements of spores (Morris et al. 1992).

Only three Xow cytometry parameters were used to train ANNs for the successful

discrimination of Fuligo septica, Oudemansiella radicata, Megacollybia platyphyll

and Tylophilus felleus with an accuracy of 78%, 94%, 86% and 96%, respectively.

With respect to bacterial identiWcation there have been few studies; Boddy &

Morris (1993b) have alluded to some preliminary results that analysed a group of

15 species of pathogenic bacteria, ANNs could not be trained to identify un-

equivocally these bacteria and the authors suggested that the use of more Xow

cytometry parameters, most notably DNA Xuorescence, may allow better classiW-

cation. However, given that this publication was in 1993 and, at the time of writing

of this chapter, nothing has been published yet it seems unlikely that they were

successful. More recently, Davey & Kell (1995, 1997) have exploited Xow cytomet-

ric techniques with neural networks to detect Bacillus globigii spores against a

background of other vegetative bacteria (Micrococcus luteus and Escherichia coli)

and Saccharomyces cerevisiae. The parameters used as the input to back-propaga-

tion ANNs were from a ‘cocktail’ of three Xuorescent stains, together with forward

and wide-angle light scattering; the single output node in their 6–3–1 ANNs was

encoded so that B. globigii scored 1 and non-B. globigii scored 0. After training the

ANN was interrogated with an independent test set of 50 of each of the four cell

types and was able to assess whether the cell under scrutiny was B. globigii or not;

they typically found 2% false negatives and 3% false positives.



Figure 7.6. Normalized pyrolysis mass spectra of Mycobacterium bovis and Mycobacterium
tuberculosis.
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Although the above examples have been aimed at the analysis of eukaryotes or

for the speciWc purpose of detecting target pathogens in high biological back-

grounds, it would seem that there is no technical reason why, after a wider range of

Xuorescence stains are found, this technology cannot be transferred to the clinical

laboratory for the rapid identiWcation of pathogens at the single cell level.

Pyrolysis mass spectrometry

PyMS involves the thermal degradation of non-volatile complex molecules (such

as bacteria) in a vacuum, causing their cleavage to smaller, volatile fragments

separable by a mass spectrometer on the basis of their mass-to-charge ratio (m/z)
(Meuzelaar et al. 1982). PyMS allows the (bio-)chemically based discrimination of

microbial cells and produces complex biochemical Wngerprints (i.e. pyrolysis mass

spectra) that are distinct for diVerent bacteria. It is the automation of the

instrumentation and ease of use that has led to the widespread exploitation of

PyMS as a taxonomic tool for whole-organism Wngerprinting (Magee 1993;

Goodacre 1994). The analytically useful multivariate data (see Figure 7.6 for an

example) are typically constituted by a set of 150 normalized intensities versus m/z
in the range 51 to 200 and these are applied to the nodes on the input layers of

back-propagation ANNs.
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The Wrst demonstration of the ability of ANNs to discriminate between biologi-

cal samples from their pyrolysis mass spectra was the qualitative assessment of the

adulteration of extra virgin olive oils with various seed oils (Goodacre et al. 1992,

1993); in this study, which was performed double-blind, neural networks were

trained with the spectra from 12 virgin olive oils, coded 1 at the output node, and

with the spectra from 12 adulterated oils, which were coded 0. All oils in the test

were correctly identiWed; in a typical run, the virgins were assessed with a code of

0.99976 ± 0.000146 (range 0.99954 to 1.00016) and the adulterated olive oils in the

test set with a code of 0.001079 ± 0.002838 (range 0.00026 to 0.01009). This

permitted their rapid and precise assessment, a task that previously was labour

intensive and very diYcult. It was most signiWcant that the traditional ‘unsuper-

vised’ multivariate analyses of PCA, DFA and HCA failed to separate the oils

according to their virginity or otherwise but rather discriminated them on the

basis of their cultivar (that is to say, the biggest diVerence in the mass spectra was

due to the type of olive tree that the fruit came from, rather than the adulterant).

The Wrst application to microbial populations was by Chun et al. (1993b) who

studied 16 representatives of three morphologically distinct groups of Streptomy-

cetes recovered from soil. Duplicated batches of the 16 strains were examined by

PyMS and the Wrst data set used for training 150–8–3 ANNs; the second duplicate

set was used to test the model. All of the test strains were correctly identiWed using

the ANN, whereas only 15 of the 16 strains were assigned to the correct group

using the conventional operational Wngerprinting procedure. It was, however, not

surprising that the second set was correctly identiWed, since the same strains were

used to train the ANN; indeed all their system was measuring was the reproduci-

bility between the phenotypes of the cultures grown on two batches of the same

media. These authors have subsequently extended their approach to a real un-

known test set containing over 100 strains representing six other actinomycete

genera (Chun et al. 1993a). All of the streptomycetes were correctly identiWed but

many of the other actinomycetes were misidentiWed, because the ANN had not

been exposed to their spectral Wngerprints. A modiWed network topology was then

developed to recognize the mass spectral patterns of the non-streptomycete

strains.

Several studies have now shown that this combination of PyMS and ANNs is

also very eVective for the rapid identiWcation of a variety of bacterial strains of

clinical and veterinary importance. For example, this approach has allowed the

propionibacteria isolated from dogs to be correctly identiWed as human

Propionibacterium acnes (Goodacre et al. 1994c), for detecting Escherichia coli

isolates that produced verocytotoxins (Sisson et al. 1995), and for distinguishing

between Mycobacterium tuberculosis and M. bovis (Freeman et al. 1994). The latter

study trained 150–8–1 ANNs with 16 spectra and was challenged with the spectra
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from 27 other mycobacterial isolates of the M. tuberculosis complex (MTBC).

Mycobacterium tuberculosis could easily be diVerentiated from M. bovis irrespec-

tive of their susceptibility to anti-tuberculosis agents. This was signiWcant because

at the time it was not possible using DNA probes to diVerentiate between all

species of the M. tuberculosis complex.

Another recent study has exploited PyMS and ANNs for the identiWcation and

discrimination of oral asaccharolytic Eubacterium spp. (Goodacre et al. 1996a).

This study illustrated the need for numerical methods that allow easy direct

interpretation of the identiWcation of bacteria from their pyrolysis mass spectra,

since ANNs can be encoded simply and the results read oV in a tabulated format,

compared with the more complex examination of three-dimensional ordination

plots and dendrograms. Twenty-nine oral asaccharolytic Eubacterium strains, and

six abscess isolates previously identiWed as Peptostreptococcus heliotrinreducens

were analysed by PyMS. The spectra from eight diVerent Eubacterium spp. type

strains, and the type strain of P. heliotrinreducens were used to train 150–8–9

ANNs. In the test set all Eubacterium strains were correctly identiWed and the

abscess isolates were identiWed as unnamed Eubacterium taxon C
2

and were

distinct from P. heliotrinreducens. It was also signiWcant that the test set contained

three oral abscess isolates that did not belong to any of the nine classes used to

train the ANN; rather than misidentify these the model gave 0 scores at all nine

output nodes, indicating that the ANN has not been exposed to these types of

spectrum. This is perhaps the exception rather than the rule and ANNs will often

give incorrect identities for spectra outside of their knowledge base (i.e. outliers).

A possible way to circumvent this problem is to include suitable outliers in the

training set and a corresponding ‘dummy’ output variables in the training set;

Goodacre et al. (1994a) have exploited this practice for discriminating non-

propionibacteria from three Propionibacterium spp.

Probably one of the clearest examples of ANNs for Wne discrimination is a

recent study on the diVerentiation between methicillin-susceptible (MSSA) and

methicillin-resistant Staphylococcus aureus (MRSA) (Goodacre et al. 1998a). In

this study, PyMS spectra were obtained from 15 MRSA and 22 MSSA strains.

Cluster analysis showed that the major source of variation between the pyrolysis

mass spectra was due to the phage group of the bacteria (Figure 7.7) and not to

their resistance or susceptibility to methicillin (Figure 7.8). By contrast, ANNs

could be trained to recognize those aspects of the pyrolysis mass spectra that

diVerentiated methicillin-resistant from methicillin-sensitive strains. The trained

neural network could then use pyrolysis mass spectral data to assess whether or

not an unknown strain was resistant to methicillin. The conclusion of this study is

that the application of ANNs can be used to extend the role of PyMS analyses to

more subtle physiological diVerences between strains of the same species of



Figure 7.7. The natural relationship between some Staphylococcus aureus isolates depicted as a
dendrogram. Lytic (/) type is shown. ‘S’ refers to methicillin-susceptible Staphylococcus

aureus and ‘R’ to methicillin-resistant S. aureus. NT, not typeable; Misc., miscellaneous.
(Adapted from Goodacre et al. 1998.)
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Figure 7.8. Discriminant function analysis biplot based on PyMS data showing the relationship between
some Staphylococcus aureus strains. MSSA, methicillin-susceptible S. aureus; MRSA,
methicillin-resistant S. aureus. (Adapted from Goodacre et al. 1998.)
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bacteria, and in this case provides a very rapid and accurate antibiotic susceptibil-

ity testing technique.

With regard to neural network architecture other than the gradient descent

algorithms illustrated above, Harrington (1993a,b) has compared minimal neural

networks (MNN) with BP-ANNs (back-propagation ANNs) for the analysis of

pyrolysis tandem mass spectrometry data. MNNs diVer from BP-ANNs in that

they use localized processing and build classiWcation trees with branches com-

posed of multiple processing units. A global entropy minimization may be

achieved at a branch by combining the processing logic using principles from

fuzzy set theory. Weight vectors are adjusted using an angular coordinate system

and gradients of the fuzzy entropy function. The branches are optimal with respect

to fuzziness and can accommodate non-linearly separable or ill-conditioned data.

The most signiWcant advantage of the MNNs is that relations among the training

data and the mechanism of inference may be directly observed. Thus rule-based

classiWcation trees have been constructed from the mass spectral daughter ions to

discriminate between diesel smoke, dry yeast, Escherichia coli, MS-2 coliphage,

grass pollen, Bacillus subtilis, fog oil, wood smoke, aldolase and Bacillus globigii

(Harrington 1993a).

All the above studies have been classiWcation problems but perhaps the most

signiWcant application of ANNs to the analysis of PyMS data is to gain accurate

and precise quantitative information about the chemical constituents of microbial

samples. For example, it has been shown that it is possible using this method to

measure the concentrations of binary and tertiary mixtures of cells of the bacteria

Bacillus subtilis, Escherichia coli and Staphylococcus aureus (Goodacre et al. 1994b,

1996b; Timmins & Goodacre 1997). Goodacre et al. (1994b) also demonstrated

that other supervised learning methods relying on linear regression, such as PLS
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and PCR, could also be used to extract quantitative information from the spectra

of the tertiary bacterial mixtures. With regard to biotechnology, the combination

of PyMS and ANNs can be exploited to quantify the amount of mammalian

cytochrome b
5

expressed in E. coli (Goodacre et al. 1994a), and to measure the

level of metabolites in fermentor broths (Goodacre et al. 1994d; Goodacre & Kell

1996b). Initially, model systems consisting of mixtures of the antibiotic ampicillin

with either E. coli or S. aureus (to represent a variable biological background) were

studied. It was especially interesting that ANNs trained to predict the amount of

ampicillin in E. coli having seen only mixtures of ampicillin and E. coli were able to

generalize so as to predict the concentration of ampicillin in a S. aureus back-

ground to approximately 5%, illustrating the very great robustness of ANNs to

rather substantial variations in the biological background. Samples from fermen-

tations of a single organism in a complex production medium were also analysed

quantitatively for a drug of commercial interest, and the drug could also be

quantiWed in a variety of mutant-producing strains cultivated in the same me-

dium, thus eVecting a rapid screening for the high-level production of desired

substances (Goodacre et al. 1994d). In related studies Penicillium chrysogenum

fermentation broths were analysed quantitatively for penicillins using PyMS and

ANNs (Goodacre et al. 1995), and to monitor Gibberella fujikuroi fermentations

producing gibberellic acid (Goodacre & Kell 1996b).

Vibrational spectroscopy

Fourier transform infrared spectroscopy (FT-IR) and dispersive Raman micro-

scopy are physicochemical methods that measure predominantly the vibrations of

bonds within functional groups, either through the absorbance of electromagnetic

radiation (FT-IR; Figure 7.9) or from the inelastic scattering of light (Raman shift,

Figure 7.10) (GriYths & de Haseth 1986; Colthup et al. 1990; Drennen et al. 1991;

Graselli & Bulkin 1991; Hendra et al. 1991; Ferraro & Nakamoto 1994; Schrader

1995). Therefore, like PyMS, these hyperspectral methods (Goetz et al. 1985;

Abousleman et al. 1994; Wilson et al. 1995; Winson et al. 1997) also give

quantitative information about the total biochemical composition of a sample.

Naumann and co-workers (e.g. Helm et al. 1991; Naumann et al. 1991) have

shown that FT-IR absorbance spectroscopy (in the mid-IR range, usually deWned

as 4000 to 400 cm−1) provides a powerful tool with suYcient resolving power to

distinguish microbial cells at the strain level. However, the interpretation of the

FT-IR spectra has conventionally been by the application of unsupervised pattern

recognition methods of correspondence analysis maps and cluster analysis

(Naumann et al. 1991), and is often subjective because it relies upon the interpre-

tation of complicated scatter plots and dendrograms.

More recently, we (Goodacre et al. 1996c) have used diVuse reXectance–



Figure 7.9. Fourier transform infrared diffuse reflectance–absorbance spectra of Bacillus cereus and
B. subtilis.

Figure 7.10. Dispersive Raman spectra of Escherichia coli and Proteus mirabilis.
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absorbance FT-IR to analyse 19 hospital isolates that had been identiWed by

conventional means as one of Enterococcus faecalis, E. faecium, Streptococcus bovis,

S. mitis, S. pneumoniae or S. pyogenes. PCA of the FT-IR spectra showed that this

unsupervised learning method failed to form six separable clusters (one for each

species) and thus could not be used to identify these bacteria based on their FT-IR

spectra. The normalized FT-IR spectra were applied to the input nodes of 882–10–

6 ANNs and these failed to identify all spectra in the independent test set. To

remove the eVects of visible baseline shifts in the FT-IR spectra, the Wrst and

second derivative spectra were then used as inputs to ANNs; it was found that the

second derivative gave better results, although only four out of the nine test set



Figure 7.11. Flow chart showing the use of principal components as the input to an artificial neural
network. In the chart shown the first five principal components are based on the smoothed
second derivative of FT-IR data. (Adapted from Goodacre et al. 1996c.)
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spectra were identiWed correctly. Moreover, training to 0.01 root mean-squared

error typically took between 5.103 and 1.104 epochs and because of the large

network topology took 5 to 6 hours. To obey the parsimony principle (Seasholtz &

Kowalski 1993) the number of inputs to the ANN was then reduced to the Wrst Wve

principal components scores (this accounted for 91.3% of the total variance) from

the second derivative FT-IR spectra. These 5–9–6 ANNs took only 2 to 3 minutes

to train (350 to 600 epochs) and correctly identiWed both the training and test sets

unequivocally (Figure 7.11).

Further studies, which also included the Wrst application of dispersive Raman
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microscopy to the identiWcation of bacteria, have shown that it is also possible to

use ANNs and radial basis functions (RBFs) to discriminate between common

infectious agents associated with urinary tract infection (Goodacre et al. 1998b).

One of the most important Wndings in this study was that the ANNs for the very

high dimensional Raman spectra (where 2283 wave numbers were used as inputs)

took a long time to train, and for the full spectral MLPs this was 30 hours. In

contrast, when full spectral RBFs were trained with the same input data the

training time was massively reduced to only 2 minutes, with equivalent perform-

ance compared to the full spectral MLPs. This is because RBFs do not perform the

rather slow computationally intense gradient descent methods used in MLPs. By

contrast, RBFs comprise two stages: the Wrst is the unsupervised clustering of the

mass spectra, typically using k-means (Dillon & Goldstein 1984) followed by the

linear regression of the outputs from the Gaussian kernel functions in the RBF’s

hidden layer onto the identities of the bacteria.

Instrument reproducibility

For the analytical tools discussed above to be used for the routine identiWcation of

microorganisms new (spectral) Wngerprints must be able to be compared with

those previously collected. However, the major problem with most analytical

instruments is that long-term reproducibility is poor and inter-laboratory repro-

ducibility abysmal, and so the biochemical or genetical Wngerprints of the same

material analysed at two diVerent times are diVerent. Because of the uncertainties

over the long-term reproducibility of the PyMS system (as deWned as [ 30 days),

PyMS has really been limited within clinical microbiology to the typing of

short-term outbreaks where all microorganisms are analysed in a single batch

(Magee 1993; Goodfellow 1995).

After tuning the instrument, to correct for drift one would need to analyse the

same standards at the two diVerent times and use some sort of mathematical

correction method. This could simply be subtracting the amount of drift from

new spectra collected; however, this assumes that the drift is uniform (linear) with

time, which is obviously not the case. This method also relies on the variables

(characters) being void of noise, which is also not the case. An alternative method

would be to transform the spectra to look like the spectra of the same material

previously collected using a method that was (a) robust to noisy data and (b) able

to perform non-linear mappings. ANNs carry out non-linear mappings, whilst

still being able to map the linearities, and are purported to be robust to noisy data.

These mathematical methods are therefore ideally suited to be exploited for the

correction of mass spectral drift.

Smits et al. (1993) have implemented a drift correction for pattern recognition



162 R. Goodacre

using neural networks with simulated Xow cytometry data. These data sets con-

tained only two variables and the amount of drift was included in neural networks

as an extra input variable (three input nodes in total). It is, however, often diYcult

to measure the amount of drift accurately in real systems, especially if the number

of input variables is high (typically 150 for PyMS, and [ 800 for FT-IR data), and

it is neither monotonic with time nor does it have a variable index.

Freeman and colleagues (1995) studied a model of three bacteria (two subcul-

tures of the same E. coli and a serologically distinct E. coli) and subcultivated these

for 5 weeks; the 15 cultures were then analysed by PyMS. PCA and DFA were

unable to identify the E. coli from multiple batches and in contrast Wve 150–8–2

ANNs could be trained with data from each batch to improve identiWcation of the

two serologically distinct E. coli; between 90% and 100% of the samples were

identiWed correctly. However, the authors made a fundamental mistake in their

comparison between ANNs and DFA; the coding for the ANN was to separate only

the two diVerent E. coli strains but the DFA was encoded to distinguish all 15

cultures. It was hardly surprising that DFA failed to cluster the E. coli strains, since

the objective of DFA is to minimize the within-group variance and maximize the

between-group variance; that is to say, split the 15 groups apart. A better compari-

son would have been to carry out Wve DFA analyses (one for each batch) with the

same groupings as the ANN analyses and then to project the test set into the

canonical variates space.

A far more elegant approach would be to transform the spectra collected today

to be like those collected previously. Goodacre & Kell (1996a,c) have found that

neural networks can be used successfully to correct for instrumental drift: identical

materials were analysed by PyMS at dates from 4 to 20 months apart, but neural

network models produced at earlier times could not be used to give accurate

estimates of determinand concentrations or bacterial identities. Calibration

samples common to the two data sets were run at the two times, and ANNs set up

in which the inputs were the 150 ‘new’ calibration masses and the outputs were the

150 calibration masses from the ‘old’ spectra. Such associative nets could thus be

used as signal-processing elements to eVect the transformation of data acquired in

one day to those that would have been acquired on a later date. With regard to

bacterial identiWcation, 19 isolates representing three strains of human P. acnes

were analysed; on the day 150–8–3 ANNs could be trained to identify all 19 strains;

however, when new PyMS data collected 125 days later were used to challenge this

model, 6 of the 19 bacteria were incorrectly identiWed. After using an associative

ANN the transformed PyMS spectra were then used to challenge the old ANN

model and now 18 of the 19 bacteria were correctly identiWed; the misclassiWed

bacterium was scored as 0.5 at the correct identity and 0.6 and 0 elsewhere. These

results show clearly that for the Wrst time PyMS can be used to acquire spectra that
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could be compared with those previously collected and held in a database. It

should seem obvious that this approach is not limited solely to PyMS but is

generally applicable to any analytical tool prone to instrumental drift (which

cannot be compensated for by tuning), such as FT-IR, GC and Xow cytometry.

Conclusions

The exploitation of novel multivariate analysis techniques employing ANNs based

on supervised learning, rather than unsupervised methods, has permitted even

better discrimination of industrially and medically important bacteria from the

increasing number of analytical tools that are being ‘highjacked’ by the modern

microbial taxonomist.

ANNs clearly present themselves as extremely powerful and valuable tools.

However, an ANN will only perform as well as the data that are given to it (Kell &

Sonnleitner 1995); as in all other data analysis techniques these supervised learn-

ing methods are not immune from sensitivity to badly chosen initial data.

Therefore the exemplars for the training set must be carefully chosen; the golden

rule is ‘garbage in – garbage out’ (Zupan & Gasteiger 1993). This is also very true

for the unknown interrogation set; if these are outside the knowledge base of the

ANN then they will obviously be misidentiWed.

Training a neural network is not at all cumbersome, since there exists a number

of user-friendly packages that are readily available; in the future it will be possible

to devise automated cross-validation techniques so that the network decides when

it is optimally trained without user interference.

Probably the biggest problem with using analytical tools for identifying

microbes is that they are prone to drift and perform diVerently in diVerent

laboratories. However, our own studies have shown that, at least for mass spectra,

both intra- and inter-instrument drift can be corrected for (Goodacre & Kell

1996a,c; Goodacre et al. 1997). Therefore, it is becoming increasingly possible to

take the spectra of unknown microorganisms and challenge them against libraries

of spectra previously collected and held in a central database.

The future

Raman microscopy, like Xow cytometry, has the major advantage over PyMS and

FT-IR in that it is possible to analyse single cells (Puppels & Greve 1993); but in

contrast to Xow cytometry, the information content in a Raman spectrum is

immense as inelastic scattering will be measured from many biochemical species

and not just those stained with a Xuorescent marker. However, only 1 in 108

interrogating photons typically experience Raman scattering, this means that the
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signal is very weak and thus reliable Wltering methods still need to be developed

(Collthup et al. 1990; Williams et al. 1994; Schrader 1995).

Recently within mass spectrometry there has been an explosion of interest in

the use of soft ionization methods such as matrix-assisted laser desorption ioniz-

ation (MALDI) (Guilhaus 1995; Siuzdak 1996) and electrospray ionization (ESI)

(Cole 1997; Gaskell 1997) for the analysis of biomacromolecules, as well as of small

molecules, and such mass spectrometric methods are now essential tools in

proteomics (Fenselau 1997) and functional genomics (RoepstorV 1997). It has

been demonstrated using MALDI-MS that characteristic proWles of intact micro-

organisms can be obtained by mixing the microbes with a suitable matrix

(Claydon et al. 1996; Holland et al. 1996; Krishnamurthy & Ross 1996; Krish-

namurthy et al. 1996; Easterling et al. 1998; Welham et al. 1998). ESI-MS has also

been shown to be a valuable tool for the reproducible analysis of complex

biological samples, either by the introduction of bacteria via speciWc cell fractions

or lysates (Gibson et al. 1994; Smith et al. 1995; Black & Fox 1996; Snyder 1996;

Black et al. 1997; Wunschel et al. 1997; Fang & Barcelona 1998; Li et al. 1998; Liu et

al. 1998; Krishnamurthy et al. 1999) or by the introduction of intact bacteria

(Goodacre et al. 1999).

As the realization that miniaturization of instrumentation is assuming increas-

ing importance (McClennen et al. 1994), as computers become more powerful, as

our understanding of complex spectroscopies and their (chemometric) interpre-

tation deepens, and as we enter the third millennium, perhaps we are witnessing

the reality of the diagnostician’s dream: a rapid, reagentless, accurate, robust

‘intelligent’ microbial identiWcation tool.
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Rowland, J. J. & Kell, D. B. (1997). DiVuse reXectance absorbance spectroscopy taking in

chemometrics (DRASTIC). A hyperspectral FT-IR-based approach to rapid screening for

metabolite overproduction. Analytica Chimica Acta 348, 273–282.

Wunschel, D. S., Fox, K. F., Fox, A., Nagpal, M. L., Kim, K., Stewart, G. C. & Shahgholi, M.

(1997). Quantitative analysis of neutral and acidic sugars in whole bacterial cell hydrolysates

using high-performance anion-exchange liquid chromatography electrospray ionization tan-

dem mass spectrometry. Journal of Chromatography A 776, 205–219.

Zupan, J. & Gasteiger, J. (1993). Neural Networks for Chemists: An Introduction. VCH Verlags-

gesellschaft, Weinheim.



MMMM



Part II

Prospects





175

8

Recent advances in EEG signal analysis and
classification

Charles W. Anderson and David A. Peterson

Introduction

Electrical signals recorded from the scalp of human subjects, or electroencephalo-

graphic (EEG) signals, were Wrst studied extensively by Berger (1929). Since these

initial experiments, investigators in many branches of science, including physics,

medicine, neuroscience, and psychology, have searched for meaningful patterns in

EEG signals (Pilgreen 1995). For example, the analysis of patterns in EEG has for

some time been extremely useful in the study and treatment of epilepsy (Kellaway

& Petersen 1976).

Many of the traditional approaches to EEG pattern analysis that have been

employed during the last six decades are based on visual inspection of graphs of

voltage amplitude over time, or on the inspection of spectra showing the energy

with which various frequencies appear in the signal. However, recent advances in

signal analysis and classiWcation using artiWcial neural networks have led to

signiWcant, new results in the Wltering and interpretation of EEG signals. This

chapter describes some of these new approaches as they are applied to EEG signals

surrounding a response to a stimulus and to spontaneous EEG signals recorded

while subjects perform mental tasks. Applications of these approaches include the

study of sensory, motor and cognitive processing in the brain, and the develop-

ment of brain–computer interfaces to provide a new avenue for communication

with locked-in patients suVering from advanced anterolateral sclerosis (ALS).

Effect of attention on spectral dynamics of event related potentials

The event-related potential, or ERP, is simply the EEG recorded in response to a

time-locked stimulus. The ERP is typically presented as the average over many

identical trials characterized by the amplitude and poststimulus latency of its

positive and negative peaks, or ‘components’. Amplitudes of ERP components are

modulated by attention; stimuli that receive greater attention produce ERP

components with larger magnitude (WoldorV & Hillyard 1991). Thus ERPs can be
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used as a physiological measure of attention. There is also evidence that the

frequency composition of the EEG is modulated by attention (Gomez et al. 1998).

This suggests that EEG frequencies could also be used as a physiological measure

of attention.

We conducted an exploratory study to combine these measures to see whether

temporal dynamics in ERP frequency composition also had correlations with

attention. In other words, are the temporal dynamics of ERP frequency modulated

by attention? We used data from an alternating dichotic listening task, modiWed

from Hansen & Hillyard (1983) and Fujiwara et al. (1998). The task is a type of

auditory selective attention task. High (1000 Hz) and low (800 Hz) tones of

50-millisecond duration were presented in a sequence that was random both

within and between ears. High tones were presented with 20% probability and low

tones with 80%. Participants were instructed to respond to the high tones in only

one ear. Thus, for each session, there is one attended tone and one attended ear.

EEG data (128-channel) were recorded during each section.

Although signal frequencies are usually analysed with Fourier transforms, we

used wavelet transforms (Strang & Nguyen 1996), because Fourier transforms

discard the temporal information that we want to preserve. Time-windowed

Fourier transforms preserve some temporal information, but only to the resol-

ution of the window.

Like most signal transformation methods, the wavelet transformation is simply

a basis transformation, converting a time-domain signal to a scale and shift

domain (Daubechies 1990). Scales correspond to frequencies, although only

roughly, because wavelet basis functions are not smooth sinusoids. The shift

corresponds to the signal’s time axis. Instead of amplitude as in the ERP, the

wavelet transformation gives a measure of energy in the signal at each time and

frequency. Thus the wavelet transform provides a systematic method for spectral

analysis of non-stationary signals. The speciWc wavelet basis we used was the

popular Daubechies order-4 wavelet.

We call the wavelet transform of an ERP an event-related wavelet, or ERW. The

temporal dynamics of ERP frequency, as depicted with the ERW, are modulated

by attention. ERPs and ERWs in Figure 8.1 depict the diVerence between the

amplitudes (for ERP) and the wavelet coeYcients (for ERW). On the left are

shown diVerences between the attended and unattended tones for the attended

ear, and on the right is shown diVerences between attended and unattended ears,

for the attended tone. The ERW plots illustrate that ERP frequency compositions

are temporally dynamic. Thus, frequency-based ERP analyses that discard tem-

poral information, such as non-windowed Fourier transform-based methods,

might miss important information in the ERP. Furthermore, the dynamics of

low-frequency energy appears to be similar across the two ERW plots. This
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suggests that the diVerential eVect of selective auditory attention may have similar

spectral dynamics in the ERP regardless of whether it is attention to a particular

ear or a particular tone.

Brain–computer interface based on spontaneous EEG

New EEG recording and analysis methods are having a very strong impact on the

body of work that seeks a brain–computer interface (BCI). In fact, in June of 1999,

J. Wolpaw and T. Vaughan of the Wadsworth Center of the New York State

Department hosted an international meeting called Brain–Computer Interface

Technology: Theory and Practice, funded by the National Institutes of Health and

other organizations. At this meeting, a number of approaches to using EEG

patterns in a BCI were discussed. In the rest of this section, we summarize our

work towards a brain–computer interface using spontaneous EEG.

Mental tasks and signal representations

In our current work, subjects do not attempt to exert control over some device.

They are simply asked to perform various mental tasks. Our objective is to Wnd

patterns in their spontaneous EEG that reliably appear while they are performing

one of the tasks. The detection of these patterns could be used to move a cursor or

select a choice on a computer screen, or even control a wheelchair.

Subjects were asked to perform the following Wve mental tasks.

Baseline task: The subjects were not asked to perform a speciWc mental task, but to
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relax as much as possible and think of nothing in particular. This task is

considered the baseline task for alpha-wave production and used as a control

measure of the EEG.

Letter task: The subjects were instructed to mentally compose a letter to a friend or

relative without vocalizing. Since the task was repeated several times the

subjects were told to try to pick up where they left oV in the previous task.

Mathematical task: The subjects were given non-trivial multiplication problems,

such as 49 times 78, and were asked to solve them without vocalizing or making

any other physical movements. The problems were not repeated and were

designed so that an immediate answer was not attainable. Subjects were asked

after each trial whether or not they found the answer, and no subject completed

the problem before the end of the 10-second recording trial.

Visual counting: The subjects were asked to imagine a blackboard and to visualize

numbers being written on the board sequentially, with the previous number

being erased before the next number was written. The subjects were further

instructed not to verbally read the numbers but to visualize them, and to pick

up counting from the previous task rather than starting over each time.

Geometric Wgure rotation: The subjects were given 30 seconds to study a drawing of

a complex three-dimensional block Wgure after which the drawing was removed

and the subjects instructed to visualize the object being rotated about an axis.

Data were recorded for 10 seconds during each task and each task was repeated

Wve times per session. Most subjects attended two such sessions recorded on

separate weeks, resulting in a total of 10 trials for each task.

EEG from six electrodes at C3, C4, P3, P4, O1 and O2 (from the 10–20 standard

of electrode placement (Jasper 1958)), was sampled at 250 Hz and Wltered to 0.1 to

100 Hz. These six time series were divided into half-second segments that overlap

by one quarter-second, producing at most 39 segments per trial after discarding

segments containing eye blinks, identiWed by large voltage changes in an electro-

oculogram (EOG) channel.

Based on the success of others (Keirn & Aunon 1990), we focused on signal

representations based on autoregressive (AR) models and on Fourier transforms.

In choosing an AR model order, we found that Akaike’s information criterion

(AIC) is minimized for orders of 2 and 3 (Stolz 1995). However, based on previous

results by Keirn & Aunon, an order of 6 was used. For one subject performing 10

trials of each of the Wve tasks, a total of 1385 half-second segments was collected,

with 277 segments from each of the Wve tasks.

To compare with the performance of the AR representation, a power spectrum

density (PSD) representation was implemented using the same data segment of

125 samples, or one half-second, with a quarter-second overlap. Data segments
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were windowed with the Hanning window and a 125-point fast-Fourier transform

was applied, resulting in a 63-point power spectrum density spanning 0 to 125 Hz

with a resolution of 2 Hz.

We also generated reduced-dimensionality versions of the AR and PSD repre-

sentations via a Karhunen–Loève (KL) transformation (Jollife 1986), in which the

eigenvectors of the covariance matrix of all AR or PSD vectors are determined and

the AR or PSD vectors are projected onto a subset of the eigenvectors having the

highest eigenvalues. The key parameter of this transformation is the number of

eigenvectors onto which each vector is projected. A common way to choose this

number is to set it equal to the global KL estimate, given by the smallest index i for

which j
i
/j

max
p 0.01, where the j

i
are the eigenvalues in decreasing order for

i = 1, 2, . . ..

For the AR representation of all segments from the Wve tasks, the global KL

estimate is 31, a small reduction from the original 36 dimensions of the represen-

tation. For the PSD representation, the global KL estimate is 21. This is a large

reduction from the 378 dimensions of the PSD representation.

Neural network classifier

The classiWer implemented for this work is a standard, feedforward, neural

network with one hidden layer and one output layer, trained with the error

back-propagation algorithm (Rumelhart et al. 1986; Hassoun 1995). The output

layer contains Wve units, corresponding to the Wve mental tasks. Their target values

were set to 1,0,0,0,0 for the baseline task, 0,1,0,0,0 for the letter task, 0,0,1,0,0 for

the math task, 0,0,0,1,0 for the counting task, and 0,0,0,0,1 for the rotation task.

After trying a large number of diVerent values, we found that a learning rate of 0.1

for the hidden layers and 0.01 for the output layer produced the best performance.

To limit the amount of overWtting during training, the following 10-fold,

cross-validation procedure was performed. Eight of the ten trials were used for the

training set, one of the remaining trials was selected for validation and the last trial

was used for testing. The error of the network on the validation data was calculated

after every pass, or epoch, through the training data. After 3000 epochs, the

network state (its weight values) at the epoch for which the validation error is

smallest was chosen as the network that will most likely perform well on novel

data. This best network was then applied to the test set; the result indicates how

well the network will generalize to novel data. With 10 trials, there are 90 ways of

choosing the validation and test trials, with the remaining eight trials combined

for the training set. Results described in the next section are reported as the

average classiWcation accuracy on the test set averaged over all 90 partitions of the

data. Each of the 90 repetitions started with diVerent, random, initial weights.

The neural networks were trained using a CNAPS Server II (Adaptive Solutions,
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Incorporated), a parallel computer with 128 20-MHz processors, upgradable to

512 processors. Training a neural network with a single hidden layer containing 20

hidden units (a 20–0 network) took an average of 3.2 minutes on the CNAPS,

while, on a Sun SparcStation 20, the same experiment took an average of 20

minutes. An experiment of 90 repetitions required 4.8 hours on the CNAPS and

30 hours on the SparcStation.

Results

Figure 8.2 summarizes the average percentage of test segments classiWed correctly

for various-sized networks using each of the four representations. For one hidden

unit, the PSD representations perform better than the AR representations. With

two hidden units, the PSD–KL representation performs about 10% better than the

other three. With 20 hidden units, the KL representations perform worse than the

non-KL representations, though the diVerence is not statistically signiWcant.

Inspection of how the network’s classiWcation changes from one segment to the

next suggests that better performance might be achieved by averaging the net-
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work’s output over consecutive segments. To investigate this, a 20-unit network

trained with the AR representation is studied. The left column of graphs in Figure

8.3 show the output values of the network’s Wve output units for each segment of

test data from one trial. On each graph the desired value for the corresponding

output is also drawn. The bottom graph shows the true task and the task predicted

by the network. For this trial, 54% of the segments are classiWed correctly when no

averaging across segments is performed. The other two columns of graphs show

the network’s output and predicted classiWcation that result from averaging over

10 and 20 consecutive segments. Confusions made by the classiWer are identiWed

by the relatively high responses of an output unit for test segments that do not

correspond to the task represented by that output unit. For example, in the third

graph in the right column, the output value of the mathematical unit is high

during mathematical segments, as it should be, but it is also relatively high during

count segments. Also, the output of the count unit, shown in the fourth graph, is

high during count segments, but is also relatively high during letter segments.



Table 8.1. Summary of performance on test data as average percentage correct over
90 repetitions

Percentage correct

Averaging over Averaging over

Representation 10 segments 20 segments

AR 68 72

AR-KL 65 70

PSD 65 65

PSD-KL 55 57

AR, adaptive resonance; AR-KL, adaptive resonance–Karhunen–Loève transformation; PSD, power

spectrum density; PSD-KL, power spectrum density–Karhunen–Loève transformation.
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For this trial, averaging over 20 segments results in 96% correct, but perform-

ance is not improved this much on all trials. The best classiWcation performance

for the 20 hidden unit network, averaged over all 90 repetitions, is achieved by

averaging over all segments. Table 8.1 summarizes the signiWcant information,

showing that the AR representation performs the best whether averaged over 10 or

20 segments, but when averaged over 20 segments, the AR and AR–KL representa-

tions perform equally well. The PSD and PSD–KL representations do consistently

worse than the AR representations.

Removal of eye blinks using independent components analysis

EEG data are prone to signiWcant interference from a wide variety of artefacts,

particularly eye blinks. Most methods for classifying cognitive tasks with EEG data

simply discard time-windows containing eye blink artefacts, typically detected by

crude measures such as thresholds in the magnitude of the EEG or EOG signals.

However, future applications of EEG-based cognitive task classiWcation should

not be hindered by eye blinks. The value of an EEG-controlled brain–computer

interface, for instance, would be severely diluted if it did not work in the presence

of eye blinks. Fortunately, recent advances in blind signal separation algorithms

and their applications to EEG data mitigate the artefact contamination issue. In

this section, we show how independent components analysis (ICA) and its

extension for sub-Gaussian sources, extended ICA (eICA), can be applied to

accurately classify cognitive tasks with eye blink-contaminated EEG recordings.

See Peterson & Anderson (1999) for further details.

ICA is a method for blind source separation. It assumes that the observed

signals are produced by a linear mixture of source signals. Thus the original source



183 Recent advances in EEG signal analysis

signals could, in principle, be recovered from the observed signals by running the

observed signals back through the inverted mixing matrix. Computationally

intensive matrix inversions can be avoided, with recent relaxation-based ICA

algorithms (Bell & Sejnowski 1995). These algorithms derive maximally indepen-

dent components by maximizing their joint entropy, which is equivalent to

minimizing the components’ mutual information. The result is a simple rule for

evolving the inverse of the mixing matrix in an iterative, gradient-based algorithm.

It is reasonable to apply ICA to EEG data, because EEG signals measured on the

scalp are the result of linear Wltering of underlying cortical activity (Makeig et al.

1996; Jung et al. 1998). However, ICA assumes that all of the underlying sources

have similar, super-Gaussian, probability density functions. It is unknown how

well EEG ‘sources’ follow this assumption, but it is reasonable to assume that some

may not. A recent extension to ICA, eICA, takes a Wrst step towards addressing this

issue.

Recently, Jung et al. (1998) have shown that various artefacts, including eye

blinks, can be separated from the remaining EEG signals with eICA. Here we

report on the eVect of applying ICA and eICA to EEG data on classiWcation

performance using standard PSD signal representations and feedforward neural

network classiWers.

Extended ICA provides the same type of source separation as ICA, but also

allows some sources to have sub-Gaussian distributions. The learning rule for the

inverse of the mixing matrix is modiWed to be a function of the data’s normalized

fourth order cumulant, or kurtosis. During the course of learning, the kurtosis is

calculated and the learning rule adjusted according to the kurtosis sign. Positive

kurtosis is indicative of super-Gaussian distributions, and negative kurtosis of

sub-Gaussian distributions. By accommodating sub-Gaussian distributions in the

data, eICA should provide a more accurate decomposition of multichannel EEG

data, particularly if diVerent underlying sources follow diVerent distributions.

We considered only three of the Wve tasks described earlier, the baseline task, the

letter-writing task, and the mathematical task. Despite instructions to avoid eye

blinks, many of the trials contain one or more eye blinks. Two schemes were used

for handling the eye blinks, the threshold approach and ICA. With the threshold

approach, eye blinks were detected by at least a 100 lV change in less than 100

milliseconds in the EOG channel. The subsequent 0.5-second window of the trial

was removed from further consideration.

With the ICA approach, eye blinks are ‘subtracted’ rather than explicitly

detected, and no portion of the trials are thrown out. ICA is performed on the

combination of the EOG and six EEG channels. The number of components

speciWed was the same as the number of input channels: seven. As a result, activity

in the EEG channels that is closely correlated with the activity of the EOG channel
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is separated and placed in one component, as illustrated in Figure 8.4 for the Wrst 5

seconds of one trial of the base task. Notice that the eye blinks in the EOG channel

inXuence even the most posterior EEG recordings at channels O1 and O2. The

ICA activations show the eye blink activity in only one component.

Thus eye blink activity reXected in the EEG channels is eVectively subtracted

from the EEG channels. The component containing the EOG activity can be

transparently detected, because it is the one with the highest correlation to the

original EOG data. The remaining components are retained as the eye-blink-

subtracted independent components of the EEG data. Thus, with the ICA ap-

proach, the full trial of EEG data is used for all trials, regardless of the number or

distribution of eye blinks in those trials.

We compared three forms of ICA for eye blink removal: (a) ICA, (b) eICA, in

which the algorithm chooses the number of sub-Gaussian components to use, and

(c) extended ICA with Wxed number of sub-Gaussian components. Thus a total of

four diVerent schemes was used to remove eye blinks and represent the ‘blink-free’

signals: thresh (for eye blink removal using threshold detection, as described

above), ICA, eICA, and eICA–f (for eICA with Wxed sub-Gaussian components).

Our objectives were not only to see how cognitive task classiWcation performance

varies as a function of the eye blink-removal approach, but also to see how

cognitive task classiWcation performance varies as a function of the number of

sub-Gaussians in the ICA representation.

Following eye blink removal with one of the four methods, the power spectral

density of each channel in every window was computed and summed over the Wve

primary EEG frequency bands: d (0–4 Hz), h (4–7 Hz), a (8–12 Hz), b (13–35 Hz),

and c ([35 Hz). The PSD was used because it has been a popular and successful

signal representation for many types of EEG analyses for decades. Finally, because

the PSD values were so heavily weighted in the lower frequencies, the log
10

of this

vector was computed. Thus each window was represented by a feature vector of

length 30 (i.e. six channels] Wve frequency bands).

The cognitive tasks were classiWed in two pairwise task comparisons: base versus

mathematics and letter versus mathematics. By analysing two pairwise classiWca-

tions we hoped to assess how well the classiWcation scheme would generalize to

diVerent task pairs.

Supervised learning and simple feedforward neural networks were used to

classify the feature vectors into one of the two tasks. The networks had one linear

output node. The number of sigmoidal hidden nodes was varied over

[0 1 2 3 5 10]. By including zero hidden nodes as one of the network architectures,

we are eVectively assessing how well a simple linear perceptron can classify the

data. Network inputs were given not only to the hidden layer, but also to the

output node, in a cascade-forward conWguration. Thus network classiWcations
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were based on a combination of the non-linear transformation of the input

features provided by the hidden layer as well as a linear transformation of the

input features given directly to the output node.

The networks were given input feature vectors normalized so that each feature

has a N(0, 1) distribution. The networks were trained with Levenberg–Marquardt

optimized back-propagation (Hagan & Menjah 1994). Training was terminated

with early stopping, with the data set partitioned into 80%, 10% and 10% portions

for training, validation and test sets, respectively. The mean and standard devi-

ation of classiWcation accuracy reported in the results section reXect the statistics

of 20 randomly chosen partitions of the data and initial network weights.

Results comparing methods for eye blink removal

The best classiWcation accuracy for each diVerent eye blink removal scheme over

all network architectures is shown in Figure 8.5. For the eICA–f scheme, the

performance shown is for the best number of sub-Gaussian components. The

performance is statistically similar across the diVerent schemes. In all cases except

ICA on the letter v. mathematics pair, mean classiWcation accuracies are over 90%.
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For both task pairs, eICA and eICA–f perform statistically as well as the thresh

scheme.

Figure 8.6 shows how classiWcation accuracy varies with the size of the neural

network’s hidden layer. For the thresh scheme, the linear neural networks (i.e. zero

non-linear hidden layer nodes) perform about as well as the non-linear networks.

Thus the simple thresh scheme seems to represent the data’s features in a linearly

separable fashion. However, with all three of the ICA-based schemes, performance

tends to improve with the size of the hidden layer, then decrease again as the

number of hidden nodes is increased from 5 to 10. Notice that eICA and eICA–f

perform about as well as thresh when networks of suYcient hidden layer size are

used for the classiWcation. Apparently the eICA representations produce feature

vectors whose class distinctions fall along non-linear feature space boundaries.

Notice that for the base v. mathematics task pair, the mean performance with

eICA–f is greater than that of thresh for all of the non-linear networks.
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So are there speciWc numbers of sub-Gaussian components for which perform-

ance is better than others? We explored this question, analysing task pair classiWca-

tion accuracy while varying the number of Wxed sub-Gaussian components used

in the eICA–f scheme. The results are summarized in Figure 8.7. Notice that for

both task pairs, classiWcation performance is indeed a function of the number of

sub-Gaussian components. Also, the variability in performance is consistent

across diVerent size networks. For both task pairs, performance is about maxi-

mum when the number of sub-Gaussians is four, and decreases steadily with

additional sub-Gaussian components. However, the classiWcation performance

diVers markedly between the task pairs when the number of sub-Gaussian compo-

nents is fewer than four. Perhaps with the base task the underlying sources have

fewer sub-Gaussian components, making the choice of fewer Wxed sub-Gaussian

components in our representation helpful for classiWcation.

We have shown that eICA can be used to subtract eye blinks from EEG data and
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still provide a signal representation conducive to accurate cognitive task classiWca-

tion. We have also provided preliminary evidence that eICA-based schemes can

generalize across diVerent cognitive tasks. In both cases, however, it was necessary

to use non-linear neural networks to achieve the same performance as was

attained with a simple thresholding eye blink removal scheme and linear neural

network classiWers. Further work needs to be done to assess the sensitivity of these

results to diVerent cognitive tasks.

By using a combination of ICA and artefact-correlated recording channels (e.g.

the EOG channel) for artifact removal, eye blinks were removed without a

hard-coded deWnition of eye-blink such as magnitude thresholds. This approach

could generalize to other artefact sources. If, for example, speciWc muscle activity

is interfering with EEG signals in a speciWc cognitive task monitoring setting, then

this approach could be used to subtract the myographic activity from the EEG

signals by including the appropriate electromyographic (EMG) reference channel

in the ICA decomposition.

Next steps

Our current work has three objectives. The only results summarized here that

include information about how EEG changes over time is our work on wavelets.

One of our objectives is better classiWcation accuracy through increased emphasis

on representations that include such temporal information. Therefore, we are

continuing our exploration of various signal representations, including wavelets,

independent component analysis, desynchronization, coherence, and combina-

tions thereof.

A second objective to our work is to develop tools to analyse and visualize what

the neural networks are learning. We have found that by inverting the neural

network, we can determine a set of Wctitious EEG signals that the trained neural

network would most strongly classify as one or another task. This gives us a sense

of the discriminations the trained nets are making.

A third objective of our work is a portable EEG acquisition and analysis system

that will provide the type of classiWcation results described here in real time. This

would lead to an exciting biofeedback protocol in which the subject can modify

how he or she performs a mental task while observing the system’s classiWcation

conWdence. Our hope is that even a small bit of training with such a system will

result in increased classiWcation accuracy, providing a better channel of communi-

cation for locked-in patients of advanced anterolateral sclerosis.

The analysis methods summarized here and other recent developments are very

general and can be applied to any EEG and MEG (magnetoencephalogram) data.
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They show promise in aiding our understanding of and potential interventions in

central nervous system disorders.
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Adaptive resonance theory: a foundation for
‘apprentice’ systems in clinical decision
support?

Robert F. Harrison, Simon S. Cross, R. Lee Kennedy,

Chee Peng Lim and Joseph Downs

Introduction

apprentice n. Learner of a craft. [Old French apprendre]

In the Weld of clinical decision-making, a decision aid that is able to continue to

learn from ‘experience’ is likely to have an advantage over one which is not. For

instance, a system that is developed from data gathered at one location should be

able, safely, to tune in to local conditions, for example demography elsewhere.

Similarly, as practice or technology changes, such changes should be accom-

modated by the device itself, rather than by having to involve statisticians,

knowledge engineers, etc. to rederive algorithms. After all, when doctors change

hospital they are not subjected to complete retraining. Neither should a com-

puterized decision aid have to be. Of course, this assumes the need for such

systems in the Wrst place, which is a wider question not addressed here. We use the

analogy of an apprentice to motivate development of systems that learn in

perpetuity.

Expert systems are characterized by the processes of rule elicitation, rule-base

development and inference. Knowledge, in the form of rules, is built into the

system a priori and, once embedded, remains unchanged throughout the lifetime

of the system, unless a knowledge engineer intervenes. Conclusions are drawn by a

deductive process. As a model of human expert behaviour this has some draw-

backs because it presupposes that once individuals have achieved expert status

they no longer continue to learn from their experience. In reality, experts are

primed with knowledge, via schools, universities, on-the-job training, etc., but

ultimately become known as experts for what they know over and above what they

have been taught, i.e. what experience has taught them or what they are able to

deduce from their earlier knowledge. Indeed, expertise might well be thought of as

that knowledge which does not exist in our primary repositories of knowledge
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(textbooks, lecture courses, etc.). Furthermore, it is well recognized that, even for a

static expert system, the knowledge acquisition process is diYcult and time-

consuming (Hayes-Roth et al. 1983).

In contrast, we propose the idea of an ‘apprentice’ system, which attempts to

model the human knowledge acquisition and inference process more closely,

either by reWning in-built, prior, knowledge or by developing a model of the

problem domain from scratch and from example (i.e. by induction). In either

case, the key feature is an ability to adapt, over time, in the light of experience. The

ability of systems to ‘learn’, incrementally, in this way is not something that expert

systems in general possess. Neural networks, on the other hand, hold much

promise for machine learning.

Looked at from a diVerent perspective, expert systems have the advantage of

being able to provide an explanation of their reasoning processes – an attractive

property for the end-user – while neural networks have proved, in the main,

unwilling to reveal the knowledge embedded within them, making potential

beneWciaries of the technology wary of its adoption and raising a number of

potential legal questions (Brahams & Wyatt 1989). Some inroads have been made

in addressing both of these problems: rule induction systems such as those based

on ‘information gain’ open the way towards automatic knowledge acquisition and

update (Quinlan 1986, 1990, 1993), while rule extraction techniques attempt to

‘open the black box’ of neural networks (Saito & Nakano 1990; Shavlik et al. 1991;

Towell & Shavlik 1993; Andrews & Geva 1995; Ma & Harrison 1995a).

As models of apprentice behaviour, mainstream rule induction and neural

network techniques are hampered by the need, artiWcially, to suppress learning at

some point prior to making the system operational. Thus the system, although

apparently ‘learning’ to solve the problem, in fact does not continue to learn into

the future; that is, any learning that takes place is acausal (oZine). This is of course

the conventional way of developing decision aids such as logistic regression

models. Should, therefore, the problem characteristics change, perhaps owing to a

change in practice (non-stationarity) or owing to diVerences between populations

at diVerent locations (inhomogeneity), or had there been an insuYcient amount

of representative information available at the time the system was established, the

performance of these mainstream techniques may be severely compromised.

Retraining on a new information set comprising both the original data, and any

additional knowledge remains, by and large, the only solution, although tech-

niques for incremental learning for both paradigms are beginning to emerge. The

desirability of a system that can learn to improve its performance in situ and

causally (online), without the intervention of a systems engineer, is evident.

The reason that learning must be suppressed derives from the so-called stabil-

ity-plasticity dilemma (Carpenter & Grossberg 1987a). This makes explicit the
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conXict between the need to retain previously learned knowledge (stability) and

the ability to adapt to new information (plasticity), i.e. how can we prevent

existing knowledge from being overwritten or corrupted by new information or

noise? This problem is known as ‘catastrophic forgetting’ (Sharkey & Sharkey

1995) and besets the majority of machine learning paradigms.

Of those approaches that attempt to address this dilemma, the adaptive reson-

ance theory (ART) family of neural networks oVers a number of signiWcant

advantages over the more common feedforward and competitive networks for the

establishment of apprentice systems. These are:

an ability to discriminate novelty from noise, and familiar (statistical) events from

rare but important (outlier) ones,

rapid learning based on predictive success rather than on predictive failure

(mismatch),

self-organization, with few arbitrary parameters to tune, and automatic structure

determination,

linear rather than exponential scaling with problem size,

straightforward revelation of embedded rule sets, and

inherently parallel implementation.

This is not to say that the establishment of ART-based systems is without its own

problems, or indeed that ART is yet a mature technology. ART is under continual

development and at present provides a way forward in this area. We shall explore

some of ART’s shortcomings at the appropriate points in the text.

Feedforward neural networks

Advances in neurocomputing have opened the way for the establishment of

decision-support systems that are able to learn complex associations by example.

The main thrust of work in this area has been in the use of the feedforward

networks (e.g. the multilayer perceptron (MLP) (Rumelhart et al. 1986) or the

radial basis function networks (RBFN); Moody & Darken 1989) to learn the

association between evidence and outcome. Theoretical work in this area has led

to the discovery of two important properties of feedforward networks:

for one-from-many classiWcation, their learning rules lead to an interpretation of

their outputs as estimates of the posterior (class conditional) probability

distribution, conditioned on a set of evidence, provided that ‘optimality’ is

attained (Wan 1990; Richard & Lippman 1991);

architectures such as the MLP or the RBFN have been shown to be rich enough in

structure to be able to approximate any (suYciently smooth) function with

arbitrary accuracy (Cybenko 1989; Park & Sandberg 1991).
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It can be inferred from these facts that, given suYcient data, computational

resources1 and time,2 it is possible, using a feedforward network, to estimate the

Bayes-optimal classiWer to any desired degree of accuracy, directly and with no

prior assumptions on the probabilistic structure of the data (e.g. independence).

This is an attractive scenario and has been extensively exploited, although in the

absence of a concrete set of design and validation criteria the establishment of such

systems relies heavily on trial and error and cross-validation. Indeed, it can be

argued that the establishment of networks of the feedforward class is nothing other

than non-linear regression, but, in the main, without the advantage of the

extensive body of design, analysis and validation tools that have been developed

within that branch of statistics, although this situation is changing (Bishop 1995;

Ripley 1996). However, contrasted with this must be the fact that the feedforward

paradigm is intuitively appealing, straightforward to implement and has been

taken up by a much wider community than has ever adopted non-linear statistics.

The inherent adaptability of feedforward neural networks may make it easier to

tune in to local conditions but would still require signiWcant intervention and

additional eVort in data capture, retraining and revalidation. Indeed, the process

of establishing such a system is precisely the same as that of establishing any other

statistical classiWer.

Feedforward networks are static devices in operation, and fail to cope with the

stability-plasticity dilemma other than by suppressing learning after an acceptable

performance is attained. The system is then put into operation. Implicit in this is

the assumption that a trained network both represents the problem adequately at

the time of development and continues to do so into the future, or in remote

locations. Should learning remain continuously active in feedforward networks,

new data will be learned indiscriminately,3 with the attendant risk of serious

performance degradation (Sharkey & Sharkey 1995).

Adaptive resonance theory

An entirely diVerent approach, utilizing a network comprising both feedforward

and feedback components has been taken by Carpenter and Grossberg and

colleagues (Carpenter & Grossberg 1987a,b, 1988, 1990; Carpenter et al. 1991a),

which overcomes the stability-plasticity dilemma. This has resulted in the ART

family of architectures, which seek to model biological and psychological proper-

ties of the brain, rather than being derived from a data-processing perspective. In

their earliest manifestations these were unsupervised systems that autonomously

learned to recognize categories of their own devising.

A schematic of a single ART module is shown in Figure 9.1. Here the intention

is simply to describe the ART architectures in an informal way; the references



Figure 9.1. A single ART module comprising three layers, F0, F1 and F2. F1 and F2 are fully interconnected in
both directions via weighted links (wij) which form the long-term memory (LTM). o is the
vigilance parameter that governs the coarseness of categorization. F0 buffers the input
patterns so that they remain present during processing.
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(Carpenter & Grossberg 1987a,b, 1988, 1990; Carpenter et al. 1991a) provide

complete details. ART modules use feedback to compare the existing state of

knowledge or long-term memory (LTM or weights) of the system with the current

set of evidence and either (a) adjust the LTM that codes for a particular category,

to account for the current situation if this is ‘similar’ enough to other patterns in

that category, or (b) initiate a new category that codes for the unrecognized

(current) pattern. Similarity is measured by comparing the stored representation

of the class (prototype) with the current input pattern to ascertain how close they

are, according to some measure of distance. This has a major advantage from a

design viewpoint in that there is no oV-line ‘hand crafting’ of network architecture

to be done, i.e. one autonomous network can address any problem or, indeed,

many problems simultaneously. Also, commonly occurring patterns have the

eVect of reinforcing their category’s ability to recognize like examples, while

categories representing spurious events are rarely, if ever, excited again and so do

not corrupt previously learned information. Conversely, should a rare but valid

event occur, it will reside in LTM until next recalled.

The ART architectures of interest here comprise two layers of nodes, fully

interconnected in both directions, together with a layer that serves to distribute

the input signal to the active components. These are the input/comparison Weld

(F
1
) and the output/recognition Weld (F

2
), the latter implementing a ‘winner-take-
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all’ competition. F
0

acts merely as a buVer to register the current input during

processing and comparison. Together F
1

and F
2

form an attentional subsystem,

which is complemented by an orienting subsystem, which initiates search. ART

takes its name from the interplay between learning and recall whereby signals

reverberate between the two layers. When an input pattern is recognized, a stable

oscillation (resonance) ensues and learning (adaptation) takes place. Categories

are coded by the formation of templates in the competitive (F
2
) layer (represented

by the weight vector for a particular node) and these are reWned as new informa-

tion becomes available. During recall, when a given node is excited, a template is

fed back to the F
1

layer for comparison with the current input. The degree of

match is assessed against the vigilance parameter (o), which is used to control the

coarseness of categorization. If the degree of match is not suYciently good,

parallel search is initiated until either an acceptable match is found (resonance) or

the pattern is assigned to a new category (F
2
) node.

ARTMAP

Single ART modules are restricted to unsupervised learning. This means that the

autonomously selected categories are unlikely to correspond to meaningful cate-

gories in the problem domain. The so-called ARTMAP (Carpenter et al. 1991b,

1992) family of architectures resolves this problem by providing a mapping

network capable of supervised learning whilst retaining the desirable properties of

the earlier ART networks. These networks comprise two ART modules (ART
a
and

ART
b
) coupled via a map Weld. Each ART module individually self-organizes into

categories representing data (evidence) and supervisory signal (target or outcome)

and the association between categories is formed by the map Weld. Figure 9.2

presents the general ARTMAP conWguration.

In addition to the individual vigilance tests carried out for ART
a

and ART
b
, a

further test is performed at the map Weld when both the ART modules are active

(resonant). In this situation, a category prediction is sent from the winning node

of the ART
a

F
2

layer to the F
2

layer of ART
b

and the so-called map Weld vigilance

test is performed, which determines whether or not the predicted class is equal to

the actual class. If so, learning is permitted throughout ARTMAP (i.e. at ART
a
and

ART
b
, and in the map Weld). If not, an activity called match tracking will be

triggered, which initiates a search cycle in ART
a
. The baseline ART

a
vigilance is

raised by this process by just enough to ensure that the ART
a
vigilance test fails and

the currently active node is thus deselected. A new winning node is selected from

ART
a

and a fresh prediction is sent to the map Weld. Match tracking therefore

provides a means of selecting a node that satisWes both the ART
a

and map Weld

vigilance tests. If no such node exists the input is ignored. Full details of the

ARTMAP learning procedure are given in Carpenter et al. (1991b, 1992).



Figure 9.2. General ARTMAP configuration. This comprises two ART modules, labelled a and b, which
self-organize the input and target data streams, respectively. Categories formed for each of
these are associated via the map field. Category size is determined for each module by its
own vigilance parameter, and incorrect associations between ARTa and ARTb categories are
handled via the match-tracking process, governed by the map field vigilance, oab.
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The basic ART and ARTMAP algorithms accept only binary valued inputs.

However, by replacing the operations of bivalent logic (AND, OR) that take place

in these networks, with their counterparts from fuzzy logic, a generalization is

obtained that accepts data on the interval zero to one. These networks are known

as fuzzy ART and fuzzy ARTMAP (FAM), respectively (Carpenter et al. 1991c,
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1992). Further developments that provide a Bayesian interpretation of ARTMAP

operation in the sense that the outputs may be regarded as predictions of posterior

or class conditional probabilities have recently been conducted (Lim & Harrison

1996b,c).

For computational eYciency, a simpliWed ARTMAP architecture results from

noting that in one-from-many classiWcation there is no need to self-organize the

supervisory signal at ART
b

because classes are predeWned (Kasuba 1993).

ARTMAP networks are able to learn to improve their predictive performance

on-line in non-stationary environments, using their entire memory capacities.

Learning is driven by approximate (soft) match and takes place very rapidly, as

does recall or recognition – the basic theory, as opposed to the computational

models, allows for a full parallel implementation. Contrast this with the feedfor-

ward architectures. These learn oZine and assume a stationary environment.

Learning must be suppressed to overcome the stability-plasticity dilemma and: is

very slow, driven by mismatch; is prone to spurious solutions; may scale poorly

(e.g. exponentially) with problem size; often requires lengthy cycles of ‘train and

test’ to arrive at a satisfactory solution. Recall, however, is very fast.

Two principal diYculties arise with the use of existing ART models: a local (as

opposed to distributed) representation of information that arises through the

adoption of a winner-take-all strategy in the competitive layer, and a sensitivity to

the order in which stimulus data are encountered. The Wrst is due to the assump-

tions made in deriving algorithms that are easily computed and owes nothing to

the underlying theory. Indeed, a fully distributed ART model, dART, and its

mapping equivalent has recently been proposed but its utility has yet to be

evaluated (Carpenter 1996). The second is not, in fact, peculiar to ART but is

rather a feature of all causal learning systems and is often present even in oV-line

training of feedforward networks, hence the need to ‘shuZe’ the order of data

presentation.

ARTMAP presents the prospect of an autonomous system capable of learning

stably to categorize data whilst protecting the user from spurious predictions. This

means that the system can safely continue learning in situ, whilst providing useful

support. Thus, in clinical diagnosis, evidence would be presented and should it

excite a recognition category (from previous training) a prediction is returned.

Update of LTM can then be initiated if and when diagnosis is conWrmed. If the

current pattern is not recognized the user is so informed. Again adjustment of

LTM is initiated only upon conWrmation of the diagnosis. Provided diagnosis

remains unconWrmed, no LTM adjustment takes place. This is a crucial issue in

the development of a portable decision aid, which should be able to adapt to local

practice and to changing procedures, in much the same way as humans do.

Any decision-making or diagnostic procedure where evidence is to be
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associated either with an objective outcome or with expert (subjective) opinion, is

a potential application area for this approach and, most importantly, it can put

development (via, say, a fourth-generation language) of decision aids into the

hands of the domain expert, rather than the computing expert. This capability can

be seen as crucial in overcoming resistance to the use of computational decision

aids – the domain expert assumes ‘ownership’.

Practical strategies

Voting strategy

As stated above the formation of category clusters in ARTMAP is aVected by the

order of presentation of input data items (Carpenter et al. 1992). Thus the same

data presented in a diVerent order to diVerent ARTMAP networks can lead to the

formation of quite diVerent clusters within the two networks. This subsequently

leads to diVering categorizations of novel data, and thus diVerent performance

scores. The eVect is particularly marked with small training sets and/or high-

dimensional input vectors.

A voting strategy can be used to compensate for the ordering problem (see

Carpenter et al. 1992). A number of ARTMAP networks are trained on diVerent

orderings of the training data. During testing, each individual network makes its

prediction for a test item in the normal way. The number of predictions made for

each category is then totalled and the one with the highest score (majority votes) is

the Wnal predicted category outcome. The voting strategy can provide improved

performance in comparison with that of the individual networks. In addition it

also provides an indication of the conWdence of a particular prediction, since the

larger the voting majority, the more certain is the prediction. Clearly, strategies

other than a simple majority can be used depending on the desired eVect.

Furthermore, recent work has indicated the eVectiveness of other ways of combin-

ing outputs from multiple classiWers (Lim & Harrison 1997a,c; Lim et al. 1997)

such as via the Bayesian formalism (Xu et al. 1992) or the so-called behaviour–

knowledge space approach (Huang & Suen 1995).

Symbolic rule extraction

Most neural networks suVer from the opaqueness of their learned associations

(Towell & Shavlik 1993). In medical domains, this ‘black-box’ nature may make

clinicians reluctant to use an artiWcial neural network-based application, no

matter how well it performs in a statistical sense. Thus there is a need to

supplement artiWcial neural networks with symbolic rule extraction capabilities in

order to provide explanatory facilities for the network’s reasoning. ARTMAP

provides such a capability (Carpenter & Tan 1993) as a result of its localized
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knowledge representation. Thus what is seen as a shortcoming from one angle

becomes an advantage from another.

Rule extraction from feedforward networks has proved to be a diYcult problem

and, although some progress has been made (Towell & Shavlik 1993; Andrews &

Geva 1995; Ma & Harrison 1995; Ma et al. 1995; Setiono 1996), it seems that the

feedforward paradigm is not a natural one for semantic interpretation. The act of

rule extraction is a straightforward procedure in ARTMAP, compared with that

required for feedforward networks, since there are no hidden units with implicit

meaning. In essence, each category cluster in ART
a

represents a symbolic rule

whose antecedents are the category prototype weights, and whose consequent is

the associated ART
b

category (indicated by the map Weld).

ARTMAP’s symbolic rules also diVer from those of conventional expert systems

as regards the way they are matched to input features. Expert system rules are

‘hard’ – an input must match to each and every feature in a rule’s antecedent

before the consequent will be asserted. In ARTMAP the rules are ‘soft’. Recall that

they are derived from prototypical category clusters that are in competition with

each other to match to the input data. Exact matching between inputs and

categories is not necessary, merely a reasonably close Wt suYces. (The degree of

inexactness that is tolerated being determined by the value of the ART
a

vigilance

parameter.) This provides greater coverage of the state space for the domain using

fewer rules.

A drawback of the approach is that the rules are ‘correlational’ rather than

causal, since ARTMAP possesses no underlying theory of the domain but simply

associates conjunctions of input features with category classes. Of course, this

problem is not speciWc to ARTMAP but occurs with artiWcial neural networks

generally, being based upon an inductive rather than a deductive mechanism.

Nonetheless, useful diagnostic performance can often be achieved from correla-

tional features without recourse to any ‘deep’ knowledge of the domain.

Category pruning

An ARTMAP network often becomes overspeciWed to the training set, generating

many low-utility ART
a

category clusters that represent rare but unimportant

cases, and subsequently provide poor-quality rules. The problem is particularly

acute when a high ART
a

baseline vigilance level is used during training. To

overcome this diYculty, rule extraction involves a preprocessing stage known as

category pruning (Carpenter & Tan 1993). This involves the deletion of these low

utility nodes. Pruning is guided by the calculation of a conWdence factor (CF)

between 0 and 1 for each category cluster, based equally upon a node’s usage

(proportion of training set exemplars it encodes) and accuracy (proportion of

correct predictions it makes on a separate data sample known as the prediction

set). All nodes with a conWdence factor below a user-set threshold are then excised.



Figure 9.3. Cascaded ARTMAP voting strategy showing how high confidence decisions can be made by
allowing cases to percolate through a pair of stringent voting systems tuned for high
sensitivity and specificity, respectively. Those cases for which a unanimous decision cannot
be made are treated by a majority voting system whose degree of confidence can be
estimated from the relative numbers of votes for each diagnosis. (Adapted from Downs et al.
1995b.)
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The pruning process can provide signiWcant reductions in the size of a network.

In addition, it also has the very useful side-eVect that a pruned network’s perform-

ance is usually superior to the original, unpruned net on both the prediction set

and on entirely novel test data.

In the original formulation of the pruning process, a uniform CF threshold is

used to select nodes for deletion, irrespective of their category class (Carpenter &

Tan 1993). We have since generalized the pruning process to allow separate CF

thresholds for nodes belonging to diVerent category classes (Downs et al. 1995b,

1996). This allows us to vary the proportion of the state-space covered by diVerent

categories and is useful for medical domains, since it allows an ARTMAP network

to be pruned so as to trade sensitivity for speciWcity and vice versa.

Generalization of the category pruning process enabled us to devise a novel

‘cascaded’ variant of the voting strategy to be employed, as shown in Figure 9.3

(Downs et al. 1995b, 1996). This comprises three layers, a set of voting networks

pruned so as to maximize sensitivity, another set pruned so as to maximize

speciWcity, and a third set of voters pruned so as to have approximately equal
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sensitivity and speciWcity (ESAS). The Wrst two layers are intended to identify

those cases that have a very high certainty of being classiWed correctly, with the

sensitive networks being used to ‘trap’ the negative cases and the speciWc networks

capturing the positive cases. The intuition behind this is that a set of networks

displaying very high sensitivity will rarely make false negative predictions and so

any negative predictions made by the networks are very likely to be correct.

Conversely, highly speciWc networks will make very few false positive predictions,

and so their positive predictions have a high certainty of being correct.

The cascaded voting strategy therefore operates as follows. An input data vector

is Wrst presented to the sensitive voting networks. If these yield a unanimous

negative verdict, this is taken as the Wnal category prediction. If not, the data item

is next presented to the speciWc voting nets. If these yield a unanimous positive

verdict, this is taken as the ultimate category prediction. Otherwise the Wnal

prediction of the category class of the input is obtained by majority verdict from

the ESAS nets, with a lower certainty of the prediction being correct than with the

previous two layers.

Case studies in clinical decision support

Early diagnosis of myocardial infarction

The early identiWcation of patients with acute ischaemic heart disease remains one

of the great challenges of emergency medicine. The electrocardiograph (ECG)

only shows diagnostic changes in about one-half of acute myocardial infarction

(AMI) patients at presentation (Stark & Vacek 1987; Adams et al. 1993b). None of

the available biochemical tests becomes positive until at least 3 hours after

symptoms begin, making such measurements of limited use for the early triage of

patients with suspected AMI (Adams et al. 1993a). The early diagnosis of AMI,

therefore, relies on an analysis of clinical features along with ECG data. A variety of

statistical and computer-based algorithms has been developed to assist with the

analysis of these factors (for a review, see Kennedy et al. 1993), including the use of

feedforward neural networks (Baxt 1990; Hart & Wyatt 1990; Harrison et al.

1991). Although none of these has yet found widespread usage in clinical practice,

this remains an important area of research, not only owing to its clear potential to

improve triage practices for the commonest of all medical problems but also

because of the light it may shed on techniques for the development of decision aids

for use in other areas of medicine.

Patients and clinical data

The data used in this study were derived from consecutive patients attending the

Accident and Emergency Department of the Royal InWrmary, Edinburgh,
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Scotland, with non-traumatic chest pain as the major symptom. The relevant

clinical and ECG data (see below) were entered onto a purpose-designed

proforma at, or soon after, the patient’s presentation. The study included patients

who were admitted and those who were discharged. Nine hundred and seventy

patients were recruited during the study period (September to December 1993).

The Wnal diagnosis for these patients was assigned independently by a Consultant

Physician, a Research Nurse and a Cardiology Registrar. This diagnosis made use

of follow-up ECGs, cardiac enzyme studies and other investigations, as well as

clinical history obtained from review of the patient’s notes. Patients discharged

from Accident and Emergency were contacted directly regarding further symp-

toms and, where necessary, their General Practitioners were also contacted and the

notes of any further hospital follow-up reviewed. The Wnal diagnosis in the 970

patients was Q-wave AMI in 146 cases, non-Q-wave AMI in 45, unstable angina in

69, stable angina in 271 and other diagnoses in 439 cases. The patients were 583

men and 387 women, with a mean age of 58.2 years (range 14–92). Unstable

angina was deWned as either more than two episodes of pain lasting more than 10

minutes in a 24-hour period or more than three episodes in a 48-hour period, or

as angina associated with the development of new ECG changes of ischaemia

(either at diagnosis or in the subsequent 3 days).

The input data items for the ARTMAP model were all derived from data

available at the time of the patient’s presentation. In all, 35 items were used, coded

as 37 binary inputs. The full list of the inputs is given in Appendix 9.1, together

with their feature names, used for symbolic rule extraction from the networks. For

the purposes of this application, the Wnal diagnoses were collapsed into two

classes: ‘AMI’ (Q-wave AMI and non-Q-wave AMI) and ‘not-AMI’ (all other

diagnoses). AMI cases were taken as positive, and not-AMI cases as negative,

diagnoses. Informed consent was obtained from all patients participating in the

study which was approved by the local Medical Ethics Committee.

Method

The 970 patient records were divided into three data sets: 150 randomly selected

records formed the prediction set, a further 150 randomly chosen records formed

the test set, and the remaining 670 comprised the training data. The prediction set

consisted of 28 cases of AMI and 122 not-AMI; the test set of 30 AMI and 120

not-AMI.

The training data were randomly ordered in ten diVerent ways, and each

ordering applied to a diVerent ARTMAP network using single-epoch training. The

ART
a

baseline vigilance was set to a medium level (0.6) for training, all other

parameters were set to their standard values (Kasuba 1993). The performance of

the 10 trained ARTMAP networks was then measured on both the prediction and
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test sets. During this testing phase the ART
a
baseline vigilance was relaxed slightly

(to 0.5) in order to ensure that all test items were matched to an existing category

cluster (i.e. forced choice prediction).

The performance of the trained networks on the prediction set alone was then

used to calculate accuracy scores for the category nodes in each network, as a

prerequisite of the category pruning process.

The ‘standard’ form of category pruning (Carpenter & Tan 1993) was per-

formed on the original networks, such that all nodes with a CF below 0.5 were

deleted from the networks in order to improve predictive accuracy. Performance

of the resultant pruned networks was then measured on the prediction and test

sets. Vigilance was further relaxed to 0.4 for testing these (and all other) pruned

networks, again to ensure forced choice prediction.

The original networks were then pruned using diVerent CF thresholds for the

AMI and not-AMI nodes in order to produce pruned networks that maximized

sensitivity. CF thresholds of 0.2 for AMI nodes and 0.95 for not-AMI nodes were

employed, the criterion for setting the CF thresholds being to produce a mean

sensitivity greater than 95% on the prediction set for the 10 pruned networks.

Performance of the resultant nets was recorded for both the prediction and test

sets. A similar procedure was then conducted to produce 10 networks that

maximized speciWcity. CF thresholds of 0.7 AMI and 0.5 not-AMI were suYcient

to yield a mean speciWcity greater than 95% on the prediction set.

The Wnal pruning procedure was to produce 10 networks with approximately

equal sensitivity and speciWcity, the criterion for setting the CF thresholds being a

performance on the prediction set where sensitivity and speciWcity were within 5%

of each other. The performance of the pruned networks was again recorded on

both the prediction and test sets.

Performance results using the voting strategy were then obtained for the

unpruned networks and all classes of pruned network. Three voters were used with

all network types, except the ESAS class, where Wve voters were used. Voters for the

unpruned, uniformly pruned, and ESAS network classes were selected on the basis

of the networks with the highest accuracy on the prediction set. Selection criteria

for the set of sensitive networks was maximum speciWcity, while maintaining a

minimum sensitivity of 95% on the prediction set. The converse criteria were used

for the set of speciWc networks.

Last, the cascaded variant of the voting strategy was employed utilizing three

sensitive nets, two speciWc nets and Wve ESAS nets (see Figure 9.3). The number of

networks in each stage was chosen arbitrarily. The cascade operated as follows:

data items were Wrst applied to the sensitive voting nets. If these yielded a

unanimous (3–0) verdict that the category prediction was not-AMI, this was taken

as the Wnal category prediction. If not, the input was presented to the speciWc



Table 9.1. Mean performance of 10 differently pruned networks

Prediction set (%) Test set (%)

Pruning type Acc Sens Spec Acc Sens Spec

None 80.9 51.8 87.5 80.9 59.0 86.3

Uniform 88.2 60.7 94.5 83.6 52.0 91.5

Sensitivity 50.0 96.4 39.3 47.3 94.3 35.5

SpeciWcity 86.9 41.8 97.2 84.7 39.7 96.0

ESAS 76.6 76.1 76.7 75.6 80.0 74.5

Adapted from Downs et al. 1995b.

Acc, accuracy; Sens, sensitivity; Spec, speciWcity; ESAS, equal sensitivity and speciWcity.
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voting nets. If these yielded a unanimous (2–0) verdict of AMI, this was taken as

the Wnal prediction. Otherwise the Wnal prediction of the category class of the test

item was obtained by majority verdict from the ESAS nets.

Results

The mean performance on the prediction and test sets for all classes of ARTMAP

networks is shown in Table 9.1. As a baseline for comparisons, the expert

diagnoses showed an accuracy, sensitivity and speciWcity of 83.0%, 81.3% and

83.5%, respectively, over the entire data set.

Average accuracy for the unpruned networks can be seen to be only slightly

below this baseline. However, this is largely an artefact of the unequal prior

probabilities of the category distributions – speciWcity accounts for the majority of

accuracy – and, although the networks’ sensitivity is much poorer than that of the

humans, this is compensated for by the superior speciWcity.

As expected, the uniformly pruned networks show an across-the-board increase

in accuracy over the unpruned nets, with a 2.7% increase on the test set, and a

7.3% increase on the prediction set. (The greater increase in performance on the

prediction set is explained by the fact that pruning utilized the accuracy scores for

this data, and the networks are consequently optimized for this data.) However,

the increase in accuracy arises largely from an overall improvement in speciWcity

rather than sensitivity, which actually drops on the test set.

Figures for the sensitive nets show that almost all AMI cases can be diagnosed by

the network, while approximately 36% of the not-AMI cases are detected. Con-

versely, with the sensitive nets, almost all not-AMI cases are trapped, while

approximately 40% of the AMI cases are detected.

The performance of the ESAS class networks is most directly comparable with



Table 9.2. Voting strategy performance of differently pruned networks

Prediction set (%) Test set (%)

Pruning type Acc Sens Spec Acc Sens Spec

None 86.0 64.3 91.0 83.3 56.7 90.0

Uniform 92.0 78.6 95.1 88.0 56.7 95.8

Sensitivity 55.3 96.4 45.9 51.3 96.7 40.0

SpeciWcity 88.7 46.4 98.4 84.7 33.3 97.5

ESAS 82.0 82.1 82.0 81.3 83.3 80.8

Adapted from Downs et al. 1995b.

Acc, accuracy; Sens, sensitivity; Spec, speciWcity; ESAS, equal sensitivity and speciWcity.
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that of the expert diagnoses, since they are not unduly biased towards speciWcity or

sensitivity. It can be seen that the mean individual accuracy of such networks is

approximately 7% worse than that of the human diagnoses.

When the voting strategy is employed the accuracy of all network types except

the speciWc nets is improved, as shown in Table 9.2. Furthermore, unlike pruning,

performance improvements owing to the voting strategy almost always result

from increases in both sensitivity and speciWcity.

Accuracy for the ESAS nets is now much closer to that of the expert diagnoses

and sensitivity is slightly better. Accuracy for the unpruned and uniformly pruned

networks is now higher than that of the human diagnoses, particularly with the

latter network class. However, this again results from the networks’ very high

speciWcity, while their sensitivity remains relatively poor.

Use of the voting strategy with the sensitive networks on the test set results in

increased coverage of the not-AMI cases, while trapping more AMI cases than

previously. However, the converse is not true for the speciWc nets, where a gain in

not-AMI coverage is oVset by poorer coverage of the AMI cases in comparison

with the individual network means.

The best overall network performance was achieved by the cascaded voting

strategy, shown in Table 9.3. The cascade’s overall performance can be seen to be

almost identical with that of the expert diagnoses. Moreover, the cascade provides

a partitioning of input items into those with a higher and a lower certainty of a

correct diagnosis. Unanimous not-AMI decisions by the highly speciWc networks

(i.e. the Wrst stage of the cascade) are almost certain to be correct, similarly

unanimous AMI decisions by the highly sensitive networks (the second stage of

the cascade) are also almost certain to be correct. The ESAS class voters then

provide lower certainty predictions for the remaining data items at the bottom of



Table 9.3. Performance of the cascaded voting strategy

Prediction set (%) Test set (%)

Pruning type Acc Sens Spec Acc Sens Spec

High-certainty voters 100.0 100.0 100.0 96.3 88.9 97.8

Lower-certainty voters 71.0 73.7 70.3 72.9 81.0 70.7

Overall 82.0 82.1 82.0 82.7 86.7 81.7

Adapted from Downs et al. 1995b.

Acc, accuracy; Sens, sensitivity; Spec, speciWcity.
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the cascade. High-certainty predictions accounted for 38% of items in the predic-

tion set and 36% of items in the test set.

Perfect performance by the high-certainty voters on the test set was prevented

by the occurrence of one false positive case and one false negative case. The false

positive case displays most of the ‘barn-door’ features of AMI, including ST-

segment elevation, new pathological Q-waves and ST-segment or T-wave changes

suggestive of ischaemia, while the false negative case displays almost no typical

features (although the presence of old Q-waves should mean that a doctor would

not entirely rule out AMI).

Symbolic rule extraction

The ability to extract symbolic rules from neural networks is an important

enhancement to their use as decision-support tools in medical domains. Such

symbolic rules provide two advantages that, taken collectively, should help to

overcome reluctance to use an artiWcial neural network decision support tool.

Firstly, a domain expert can examine the complete rule set in order to validate

that the network has acquired an appropriate mapping of input features to

category classes. Secondly, the symbolic rules provide explanatory facilities for the

network’s predictions during online operation. In the case of ARTMAP this

corresponds to displaying the equivalent rule for the ART
a

cluster node that was

activated to provide a category decision. (In the case of the voting strategy, a

number of such rules, one per voting network, would be displayed.) The diag-

nosing doctors are then able to decide whether or not to concur with the network’s

prediction, based upon how valid they believe that rule to be.

In this domain, each network retained, on average, 49 cluster nodes after

uniform CF pruning. Space limitations therefore preclude the display of a typical

complete rule set here. Instead, we provide a list of all rules for diagnosing AMI

from nodes with a CF greater than 0.8 from the 10 original networks. In order to



Table 9.4. Symbolic rules for AMI diagnosis extracted from ARTMAP networks

IF retro THEN ami IF retro sweat sttwave THEN

ami

IF age = 45–65 retro stelev

THEN ami

IF age [ 65 retro sweat THEN

ami

IF smokes retro sttwave THEN

ami

IF retro newq sttwave THEN

ami

IF age [ 65 retro sttwave

THEN ami

IF age [ 65 retro alltight sweat

THEN ami

IF age [ 65 retro larm

sttwave THEN ami

IF retro larm sweat sttwave

THEN ami

IF smokes retro alltight sttwave

THEN ami

IF age = 45–65 retro newq

sttwave THEN ami

IF age [ 65 retro sweat likemi

THEN ami

IF age = 45–65 smokes retro

sttwave THEN ami

IF age = 45–65 smokes sweat

nausea sttwave THEN ami

IF smokes retro larm nausea

stelev THEN ami

IF age [ 65 retro alltight sweat

nausea sttwave THEN ami

IF smokes retro alltight sweat

nausea sttwave THEN ami

Adapted from Downs et al. 1995b.

See Appendix 9.1 for deWnitions of terms: ami, acute myocardial infarction.
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pass such a high threshold a node must encode a large proportion of the training

exemplars and possess high predictive accuracy. Hence these nodes are best in the

sense of being the most useful to their originating networks for the purpose of

diagnosing AMI. In all, 18 such nodes occurred, their equivalent rules are shown

in Table 9.4. See Appendix 9.1 for deWnitions of the terms in the rules.

Examination of the rules as a whole allows the following picture of a typical

AMI case to be constructed. The patient is likely to be a smoker, aged over 45 (and

most likely over 65), exhibiting central chest pain which possibly radiates to the

left arm. The pain itself is likely to be described as ‘tight’ or ‘heavy’. Other physical

symptoms may include sweating and nausea. ECG readings are very likely to show

ST-segment or T-wave changes suggestive of ischaemia, and perhaps also new

ST-segment elevation and/or new pathological Q-waves.

This picture closely corresponds to a ‘textbook’ example of AMI, although it has

been discovered by ARTMAP through self-organization of the input data without

any prespeciWed knowledge of the domain. Thus the ARTMAP decision support

tool encodes rules that provide valid classiWcations for the domain, while bypass-

ing the diYcult and time-consuming knowledge-acquisition process found with

rule-based expert systems (Hayes-Roth et al. 1983).

Causal (online) learning

We now demonstrate the applicability of the ARTMAP variant, fuzzy ARTMAP

(FAM) to the problem of the early diagnosis of AMI (Harrison et al. 1994). FAM
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achieves a synthesis of fuzzy logic and ART that enables it to learn and to recognize

arbitrary sequences of analogue or binary input pairs, which may represent fuzzy

or crisp sets of features. Here only 26 features were abstracted from each patient

record and these were coded into a binary-valued vector excepting real-valued

data such as age, duration of pain, etc., which was normalized in the range 0 to 1

(Lim 1993; Harrison et al. 1994). The need for FAM rather than its purely binary

predecessor, ARTMAP, is evident, because interval data are now present and must

be handled by the network.

In the assessment of online performance, a subset of 474 data was used both to

train and to test the system; statistics being gathered prior to the veriWcation of

diagnosis at each stage. Thus the neural network starts out in a completely naive

state. The statistics of interest here are again the accuracy, sensitivity and speciWc-

ity of diagnosis.

It should be noted that, whereas it is usual to select optimal decision thresholds

by analysis of the receiver operating characteristic (ROC) curve (Meistrell 1990),

this technique is not appropriate here owing to the ‘all-or-nothing’ predictions

made by FAM. It will be seen that this inability to select optimal thresholds, and

hence counteract the eVects of bias in the data, can result in an imbalance in the

values of accuracy, sensitivity and speciWcity. Subsequent work has introduced a

modiWcation to FAM that has the capacity to achieve, online, very close to

Bayes-optimal classiWcation rates for strongly biased data, and to deliver accurate

estimates of the Bayesian (posterior or class conditional) probabilities (Lim &

Harrison 1997b,c).

Figure 9.4 indicates the online performance of FAM for two separate cases. The

Wrstuses the techniqueof ‘sample replacement’.Here, samples aredrawnat random

and are returned after use. Thus any individual sample may be chosen repeatedly.

The secondcase is analogous to in situ or real-time learning,whensamples are taken

in the order in which they occur and are not returned to the pool. Average values

over 10 runs are plotted with an indication of their standard deviations. There are

three important points to note pertaining to online processing.

1. Sometimes FAM fails to make a prediction (recognize a pattern). This is

especially true in the early stages of learning when insuYcient prototypes have

been created. We have chosen to count such non-predictions as errors so that

the performance indicators are biased downwards slightly.

2. Because statistics are gathered sequentially for each run, frequent poor (or

non-) predictions in the early stages are included in the long-run results. Again

this has the eVect of biasing the results downwards.

3. Although any given problem may itself be stationary, the learning procedure is

inherently non-stationary, owing to the build-up of knowledge. Thus, to obtain



Figure 9.4. Online fuzzy ARTMAP performance. (Adapted from Harrison et al. 1994.)
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truly statistically valid results, averages should be taken over the ensemble of all

possible realizations. For real problems this is often not feasible, as is the case

here. To overcome this we have artiWcially created a small ensemble (of 10) by

training 10 networks using diVerent orderings of the data and averaging both

across those, and also with time (see (2) above).

In both cases the qualitative behaviour of FAM is as expected: broadly speaking,

a monotone improvement in performance as the number of samples increases.

Peaks and troughs in the early stages result from initial formation of poor

templates and more frequent non-predictions. Sample replacement yields a better

result owing to the relatively small sample size (relatively large probability of

repetition).

This set of data comprises approximately equal proportions of infarction,

angina and non-ischaemic heart disease suVerers and has a bias towards excluding

a diagnosis of myocardial infarction of 2.2: 1. This bias manifests itself as favour-

ing speciWcity over sensitivity. Clearly, the ability to predict a probability of class

membership (as presented by Lim & Harrison (1997b)) rather than the simpler

binary decision would enable a user to control the types of misclassiWcation to suit

the domain, for example high sensitivity for initial screening, high speciWcity when

deciding whether or not to thrombolyse.
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Diagnosis of breast cancer from fine needle aspirate samples

Breast cancer is a common disease aVecting approximately 22 000 women yearly

in England and Wales and is the commonest cause of death in the 35–55-year age

group of the same population (Underwood 1992). The primary method of

diagnosis is through microscopic examination by a pathologist of cytology slides

derived from Wne needle aspiration of breast lesions (FNAB) (Elston & Ellis 1990).

The acquisition of the necessary diagnostic expertise for this task is a relatively

slow process. (A trainee pathologist in the UK requires at least 5 years’ study and

experience before being allowed to sit the Wnal professional pathology examin-

ations for membership of the Royal College of Pathologists.)

Large studies of the cytopathological diagnosis of FNAB have shown a range of

speciWcity of diagnosis of 90–100% with a range of sensitivities from 84% to 97%

(Wolberg & Mangasarian 1993). These studies have been produced in centres

specializing in the diagnosis of breast disease by pathologists with a special interest

in breast cytopathology. In less specialized centres, such as district general hospi-

tals, when a diagnostic FNAB service is being set up, the performance is in the

lower range of those values with a speciWcity of 95% and a sensitivity of 87% (Start

et al. 1992). There is thus scope for an artiWcial intelligence decision-making tool

for this domain to assist in training junior pathologists and to improve the

performance of experienced pathologists.

Data and method

The data set consisted of 413 patient records, each comprising 10 binary-valued

features recorded from human observation of breast tissue samples, together with

the actual outcome for each case (i.e. whether a lesion proved to be malignant or

benign) (Downs et al. 1995a). The distribution of categories within the data was

fairly even – 53% of cases were malignant, 47% benign. The features themselves

are all claimed to have predictive value for the diagnosis task (Trott 1991; Koss

1992). The following abbreviations: DYS, ICL, 3D, NAKED, FOAMY, NUC-

LEOLI, PLEOMORPH, SIZE, NECROTIC and APOCRINE are used here: full

deWnitions of the features are provided in Appendix 9.2.

As with almost all information gathered from a medical domain, the data set

possesses a degree of ‘noise’. SpeciWcally, some feature-states do not always have

the same outcome in every case. Analysis of the data set revealed the existence of 12

such states, which collectively account for 188 cases. Assuming that the most

frequent outcome should always be chosen when an ambiguous feature-state

occurs will result in 17 of these cases being misclassiWed. This represents approxi-

mately 4% of the data set, and thus optimal performance in the domain is a

diagnostic accuracy of 96%.

On this particular data set, assigning malignant cases as ‘positive’ and benign



Table 9.5. Performance of 10 ARTMAP networks on a 100 item test set

No. ART No. false +ve No. false −ve Accuracy Sensitivity SpeciWcity

nodes DX DX (%) (%) (%)

60 5 2 93 96.2 89.6

61 4 4 92 92.3 91.7

59 3 1 96 98.1 93.8

58 3 2 95 96.2 93.8

58 5 2 93 96.2 89.6

60 5 1 94 98.1 89.6

61 5 2 93 96.2 89.6

60 3 2 95 96.2 93.8

68 2 4 94 92.3 95.8

65 5 1 94 98.1 89.6

Adapted from Downs et al. 1995a.

+ve, positive; −ve, negative; DX, diagnosis.
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cases as ‘negative’, an expert human pathologist (of consultant status with 10

years’ experience in the Weld) performed with accuracy 91%, sensitivity 83%, and

speciWcity 100%, while a Senior House-OYcer with 18 months’ experience

achieved an accuracy of 71%, a sensitivity of 57% and a speciWcity of 98%.

Notice that these Wgures are biased towards speciWcity. The pathologist’s prime

concern is to avoid false positive predictions (i.e. diagnosing benign tumours as

malignant), since these may result in unnecessary mastectomies. The resultant

increase in false negatives (diagnosing malignant tumours as benign) is tolerated

because, if the clinical suspicion of malignancy remains, the surgeon will then take

further samples to be sent to the pathologist for additional testing.

One hundred records were randomly selected from the data to serve as test

items in the evaluation of ARTMAP for the task. The remaining 313 records served

as the teaching data. Ten ARTMAP networks were trained, each on a diVerent

random ordering of the teaching data. During training, the ART
a

baseline vigi-

lance parameter was set to 0.9 to ensure narrow category clustering; during testing

this was relaxed to 0.6 to ensure that a category prediction (diagnosis) was made

for all data items. (High vigilance during testing can lead to items failing to match

suYciently to any existing category clusters.)

Results

The subsequent performance of the 10 networks on the test set is shown in Table

9.5. The mean performance of the 10 networks gives an accuracy of 94%, a
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sensitivity of 96% and a speciWcity of 92%. The Wve most accurate individual

networks were then tested collectively, using the voting strategy described above

(Carpenter et al. 1992).

In this particular domain the voting strategy yields performance Wgures of

accuracy 95%, sensitivity 96% and speciWcity 94%. Although this may seem to be

only a slight improvement on the individual ARTMAP results, it should be noted

that diagnostic accuracy with the voting strategy is almost at the maximum

possible for the domain.

Furthermore, when unanimous voting decisions only were considered, per-

formance becomes near-perfect on a large subset of the test cases. Five-nil category

decisions accounted for 91% of the test set and showed an accuracy of 99%, a

sensitivity of 100% and a speciWcity of 98% on this subset of the data. Thus the

voting strategy can provide a useful partitioning between data items with high and

low certainty of outcome.

Symbolic rule extraction

Symbolic rule extraction (Carpenter & Tan 1993) was then performed upon all 10

of the previously trained ARTMAP networks.

Severe pruning was performed upon the 10 trained ARTMAP networks, using a

threshold conWdence level of 0.7. The number of category cluster nodes remaining

for each individual network after pruning ranged from three to nine. Thus the

networks were reduced to a small number of ART
a

category nodes of strong

predictive power from which rules could be extracted. Before doing so, however,

the test data were reapplied to each of the pruned networks to check that prun-

ing had not adversely aVected performance. Since pruning necessarily reduces

ARTMAP’s coverage of the feature-space, the baseline ART
a

vigilance was this

time relaxed further to 0.5. Despite this, some pruned networks were still unable to

generate category predictions for all test set items. The mean performance of the

10 networks after pruning gave an accuracy of 94%, a sensitivity of 90% and a

speciWcity of 99%.

It can be seen that pruning has virtually no eVect upon overall diagnostic

accuracy but has led to increased speciWcity and reduced sensitivity. The Wve most

accurate pruned networks (excluding those which did not generate predictions on

all test set items) were then tested using the voting strategy. This resulted in an

accuracy of 95%, a sensitivity of 92% and a speciWcity of 98%, again conWrming

that the voting strategy allows the optimum accuracy for the domain to be closely

approached.

Rule extraction from the 10 pruned nets yielded 14 distinct rules, 12 for

malignant outcomes and 2 for benign. The full list of rules is shown in Table 9.6,

ranked by how many of the 10 pruned networks a rule occurred in.



Table 9.6. Symbolic rules for FNAB diagnosis

Rule 1 (10 occurrences)

if no symptoms then benign

Rule 2 (8 occurrences)

if 3D NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 3 (8 occurrences)

if 3D FOAMY NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 4 (7 occurrences)

if FOAMY then benign

Rule 5 (4 occurrences)

if ICL 3D NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 6 (4 occurrences)

if DYS NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 7 (3 occurrences)

if FOAMY NUCLEOLI

PLEOMORPH size then

malignant

Rule 8 (3 occurrences)

if NUCLEOLI PLEOMORPH

SIZE then malignant

Rule 9 (2 occurrences)

if 3D FOAMY NUCLEOLI

PLEOMORPH SIZE

NECROTIC then malignant

Rule 10 (2 occurrences)

if 3D FOAMY PLEOMORPH

SIZE NECROTIC then

malignant

Rule 11 (2 occurrences)

if DYS ICL NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 12 (1 occurrence)

if ICL NUCLEOLI

PLEOMORPH SIZE then

malignant

Rule 13 (1 occurrence)

if FOAMY NUCLEOLI

PLEOMORPH SIZE

NECROTIC then malignant

Rule 14 (1 occurrence)

if ICL 3D PLEOMORPH SIZE

then malignant

Adapted from Downs et al. 1995a.

For deWnitions of terms, see Appendix 9.2.
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It can be seen that an absence of features, or the FOAMY feature present in

isolation, leads to a benign diagnosis. PLEOMORPH and SIZE are found in all

rules for malignant diagnoses, and NUCLEOLI is additionally present in all but

two of these same rules (both of which have low frequency of occurrence). Thus

these three features in combination seem to be the strongest indicators of malig-

nancy. Other features are weaker indicators of malignancy, and indeed two input

features, NAKED and APOCRINE, are conspicuous by their absence from any of

the rules. We would conclude therefore that these two features are the least useful

in forming a diagnosis, at least for this particular data set.

An expert human pathologist conWrmed the relative importance of the features

listed above in making his own diagnoses, with the exception that he places no

value on the presence or absence of the FOAMY feature. It should be noted that

this feature has a somewhat ambiguous status within the ARTMAP rules. In

isolation, it is indicative of a benign diagnosis. However, when it occurs in

combination with other features, a malignant diagnosis results.

There is some disagreement between diVerent domain experts as to the relative



Table 9.7. Relative performance of human pathologists and ARTMAP

Accuracy Sensitivity SpeciWcity

(%) (%) (%)

Human expert 91 83 100

Human novice 71 57 98

Unpruned ARTMAP (mean) 94 96 92

Unpruned ARTMAP (voting) 95 96 94

Pruned ARTMAP (mean) 94 90 99

Pruned ARTMAP (voting) 95 92 98

Adapted from Downs et al. 1995a.
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importance of the features in making diagnoses. Thus another pathologist states ‘I

think the presence of bipolar naked nuclei and foamy macrophages can be taken as

indicative of benignancy. This is not to say, however, that when these features are

combined with cells showing obvious features of malignancy, malignancy should

not be diagnosed’. This accords with the self-discovered ARTMAP rules for the

FOAMY feature.

Table 9.7 summarizes the performance Wgures for ARTMAP in comparison

with human pathologists in this domain. It can be seen that in terms of diagnostic

accuracy ARTMAP always performs at least as well as the human expert and much

better than the novice. However, the weak spot in the unpruned ARTMAP

networks’ performance is the lower speciWcity in comparison with the human

pathologists. As pointed out earlier, it is vital that false positive cases (which

reduce speciWcity) are avoided in this domain.

The pruning procedure achieves this goal, by increasing speciWcity at the

expense of sensitivity without changing overall diagnostic accuracy. The reason for

this is that the category clusters formed at ART
a

predominantly indicate positive

(malignant) cases. (On average, 70% of ART
a

category nodes in the unpruned

networks denote malignant outcomes.) Pruning therefore mostly deletes nodes

with malignant outcomes, and so coverage of these cases in the state space is

reduced disproportionately more than for benign cases. This eVect of biasing the

trade-oV between sensitivity and speciWcity was achieved naturally in this domain

as a side-eVect of the rule extraction process, although such an eVect can be

achieved purposely in other domains by use of the generalized pruning procedure

discussed earlier.
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Conclusions

ART-based systems are clearly one candidate for providing the knowledge acquisi-

tion and inference engine in apprentice systems. Our studies have shown that in

two diVerent medical problem domains the ARTMAP neural network architec-

ture provides solutions with performance that at least equals that of human

experts and provides explicit rules agreeing with those given by human experts.

Continued online learning is possible and the networks can be implemented to

run on standard personal computers. All these factors provide a suitable environ-

ment for the development of apprentice systems that can be used for clinical

decision support. The use of such technology is in its very early stages and much

research and development is needed to establish a truly autonomously learning

decision aid that can operate safely in a medical environment.

NOTES

1. The MLP, in particular, does not scale well with problem size.

2. Non-linear optimization which is non-linear in the parameters may be time consuming to

perform numerically, and much trial and error may be required in deriving an adequate

network architecture.

3. More recent developments that enable feedforward networks to ‘grow’ their own architec-

tures and to learn causally are emerging although these do not in general overcome the

problem of catastrophic forgetting and thus are not well suited to pattern recognition.
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Appendix 9.1. Coding for AMI data

Input Code Meaning Input Code Meaning

age \ 45 Age less than 45 years alltight Pain described as ‘tight’

age = 45–65 Age 45–65 years allsharp Pain described as ‘sharp’

age [ 65 Age greater than 65 years sweat Sweating

smokes Smokes s–o–breath Short of breath

ex–smoker Ex-smoker nausea Nausea

fam–ihd Family history of IHD vomit Vomiting

diabetes Diabetes mellitus syncope Syncope

hypertense Hypertension epis Episodic pain

hyperlipid Hyperlipidaemia likemi Worse than usual

angina/similar to previous

AMI

retro Central chest pain lvf Fine crackles suggestive of

pulmonary oedema

lchest Pain in left side of chest added–hs Added heart sounds

rchest Pain in right side of chest hypoperf Signs of hypoperfusion

back Pain radiates to back stelev New ST-segment elevation

larm Pain radiates to left arm newq New pathological Q-waves

jaw Pain radiates to neck or jaw sttwave ST-segment or T-wave

changes suggestive of

ischaemia

rarm Pain radiates to right arm bbb Bundle branch block

breathing Pain is worse on inspiration old–q Old ECG features of

myocardial infarction

posture Pain related to posture old–st ECG signs of ischaemia

known to be old

tender–cw Chest wall tenderness

IHD, ischaemic heart disease; AMI, acute myocardial infarction; ECG, electrocardiograph.

Appendix 9.2. FNAB feature definitions

DYS: True if majority of epithelial cells are dyhesive; false if majority of epithelial cells are in

cohesive groups.

ICL: True if intracytoplasmic lumina are present; false if absent.
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3D: True if some clusters of epithelial cells are not Xat (more than two nuclei thick) and this is

not due to artefactual folding; false if all clusters of epithelial cells are Xat.

NAKED: True if bipolar ‘naked’ nuclei in background; false if absent.

FOAMY: True if ‘foamy‘ macrophages present in background; false if absent.

NUCLEOLI: True if more than three easily visible nucleoli in some epithelial cells; false if three

or fewer easily visible nucleoli in epithelial cells.

PLEOMORPH: True if some epithelial cell nuclei with diameters twice that of other epithelial

cell nuclei; false if no epithelial cell nuclei twice the diameter of other epithelial cell nuclei.

SIZE: True if some epithelial cells with nuclear diameters at least twice that of lymphocyte

nuclei; false if all epithelial cell nuclei with nuclear diameters less than twice that of

lymphocyte nuclei.

NECROTIC: True if necrotic epithelial cells present; false if absent.

APOCRINE: True if apocrine change present in all epithelial cells; false if not present in all

epithelial cells.
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Evolving artificial neural networks

V. William Porto and David B. Fogel

Introduction

ArtiWcial neural networks (or simply neural networks) are computer algorithms

loosely based on modelling the neuronal structure of natural organisms. They are

stimulus–response transfer functions that accept some input and yield some

output, and are typically used to learn an input–output mapping over a set of

examples. For example, the input can be radiographic features from mammo-

grams, with the output being a decision concerning the likelihood of malignancy.

Neural networks are parallel processing structures consisting of non-linear

processing elements interconnected by Wxed or variable weights. They are quite

versatile, for they can be constructed to generate arbitrarily complex decision

regions for stimulus–response pairs. That is, in general, if given suYcient com-

plexity, there exists a neural network that will map every input pattern to its

appropriate output pattern, so long as the input–output mapping is not one-to-

many (i.e. the same input having varying output). Neural networks are therefore

well suited for use as detectors and classiWers. The classic pattern recognition

algorithms require assumptions concerning the underlying statistics of the envi-

ronment. Neural networks, in contrast, are non-parametric and can eVectively

address a broader class of problems (Lippmann 1987).

Multilayer perceptrons, also sometimes described as feedforward networks, are

probably the most common architecture used in supervised learning applications

(where exemplar patterns are available for training). Each computational node

sums N weighted inputs, subtracts a threshold value and passes the result through

a logistic (e.g. sigmoid) function. Single-layer perceptrons form decision regions

separated by a hyperplane. If the input from the given diVerent data classes are

linearly separable, a hyperplane can be positioned between the classes by adjusting

the weights and bias terms. If the inputs are not linearly separable, containing

overlapping distributions, a least mean square (LMS) solution is typically gener-

ated to minimize the mean squared error between the calculated output of the

network and the actual desired output. While perceptrons can generate
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hyperplane boundaries, perceptrons with a hidden layer of processing nodes have

been proved to be capable of approximating any measurable function (Hornik et

al. 1989), indicating their broad utility for addressing general pattern recognition

problems.

Another versatile neural network architecture is the radial basis function net-

work. Rather than partitioning the available data using hyperplanes, the radial

basis function network clusters available data, often with the use of approximate

Gaussian density functions. The network comprises an input layer of nodes

corresponding to the input feature dimension, a single hidden layer of nodes with

computational properties described as Gaussian density functions, and output

nodes that perform linear combinations on the hidden nodes. Each connection

between an input node and hidden node carries two variable parameters corre-

sponding to a mean and standard deviation. Poggio & Girosi (1990) proved that

linear combinations of these near-Gaussian density functions can be constructed

to approximate any measurable function. Therefore, like the multilayer percep-

tron, radial basis functions are universal function approximators.

Given a network architecture (i.e. type of network, the number of nodes in each

layer, the connections between the nodes, and so forth), and a training set of input

patterns, the collection of variable weights determines the output of the network

to each presented pattern. The error between the actual output of the network and

the desired target output deWnes a response surface over an n-dimensional

hyperspace, where there are n parameters (e.g. weights) to be adapted. Multilayer

feed forward perceptrons are the most commonly selected architecture. Training

these networks is typically accomplished through a back-propagation algorithm,

which implements a gradient search over the error response surface for the set of

weights that minimizes the sum of the squared error between the actual and target

values.

Although the use of back-propagation is common in neural network applica-

tions, it is quite limiting. This procedure is mathematically tractable and provides

guaranteed convergence, but only to a locally optimal solution that may be neither

globally optimal nor suYcient. Even if the network’s topology provides suYcient

complexity to completely solve the given pattern recognition task, the back-

propagation method may be incapable of discovering an appropriate set of

weights to accomplish the task. When this occurs, the operator has several options:

(a) accept suboptimal performance; (b) restart the procedure and try again; (c)

use ad hoc tricks, such as adding noise to the exemplars; (d) collect new data and

retrain; or (e) add degrees of freedom to the network by increasing the number of

nodes and/or connections.

Adding more degrees of freedom to the network will eventually allow back-

propagation to demonstrate adequate performance on the training set, provided
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suYcient nodes and layers are available. Yet this also presents problems to the

designer of the network, for any function can map any measurable domain to its

corresponding range if given suYcient degrees of freedom. Unfortunately, such

overWt functions generally provide very poor performance during validation on

independently acquired data. Such anomalies are commonly encountered in

regression analysis, statistical model-building, and system identiWcation. Assessing

the proper trade-oV between the goodness-of-Wt to the data and the required

degrees of freedom requires information criteria (e.g. Akaike’s information cri-

terion, minimum description length principle, predicted squared error, or others).

By relying on the back-propagation method, the designer almost inevitably ac-

cepts that the resulting network will not satisfy the maxim of parsimony, simply

because of the defective nature of the training procedure itself. The problems of

local convergence with the back-propagation algorithm indicate the desirability of

training with stochastic optimization methods such as simulated evolution, which

can provide convergence to globally optimal solutions.

Evolutionary computation and neural networks

Natural evolution is a population-based optimization process. Simulating this

process on a computer results in stochastic optimization algorithms that can often

outperform classical methods of optimization when applied to diYcult real-world

problems. There are currently three main avenues of research in simulated

evolution: evolution strategies, evolutionary programming, and genetic algo-

rithms (Fogel 1995; Bäck 1996; Michalewicz 1996). The methods are broadly

similar in that each maintains a population of trial solutions, imposes random

changes to those solutions and incorporates the use of selection to determine

which solutions to maintain into future generations and which to remove from

the pool of trials. The methods diVer in the types of random change that are used

(e.g. mutation and/or recombination) and the methods for selecting successful

trials (e.g. proportional, tournament, or other selection mechanisms). Fogel

(1995) provides a review of the similarities and diVerences between these pro-

cedures. The methods have been shown to possess asymptotic global convergence

properties (Rudolph 1994), and in some cases the techniques can be shown to

have geometric rates of error convergence (Bäck et al. 1993).

The procedures generally proceed as follows. A problem to be solved is cast in

the form of an objective function that describes the worth of alternative solutions.

Without loss of generality, suppose that the task is to Wnd the solution that

minimizes the objective function. A collection (population) of trial solutions is

selected at random from some feasible range across the available parameters. Each

solution is scored with respect to the objective function. The solutions (parents)
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are then mutated and/or recombined with other solutions in order to create new

trials (oVspring). These oVspring are also scored with respect to the objective

function and a subset of the parents and oVspring are selected to become parents

of the next iteration (generation) based on their relative performance. Those with

superior performance are given a greater chance of being selected than are those of

inferior quality. Bäck et al. (1997) detailed examples of evolutionary algorithms

applied to a wide range of problems, including designing neural networks.

Optimizing neural networks through simulated evolution not only oVers a

superior search for appropriate network parameters, but also the evolution can be

used to adjust the network’s topology simultaneously. By mutating both the

structure of the network and its associated parameters (weights), a very eYcient

search can be made for a truly robust design. This frees the operator from having

to preselect a topology and then searching for the best weights under that

constraint. This procedure was described by Fogel (1995) to evolve neural net-

works in mathematical games, and by Fogel & Simpson (1993), and Ghozeil &

Fogel (1996) to evolve clusters based on fuzzy membership functions. Information

criteria can be applied to design evolutionary networks in a manner similar to the

construction of models in system identiWcation (Fogel 1991). The self-design

process is almost automatic; unlike traditional neural network paradigms that

require the active participation of the user as part of the learning algorithm, an

evolutionary neural network can adapt to unexpected feature inputs on its own, or

with little operator intervention. The resulting system is more robust than tradi-

tional approaches in symbolic artiWcial intelligence, and is capable of machine

learning.

The earliest attempts to use simulated evolution to train artiWcial neural

networks go back at least to Mucciardi & Gose (1966), Klopf & Gose (1969), and

others. More recently, however, the traditional methods in evolutionary computa-

tion were applied to training feedforward networks in the late 1980s and early

1990s (e.g. Montana & Davis 1989; Fogel et al. 1990). When simulated evolution

has been used to train neural networks the results have often been superior to

those from other methods. Porto et al. (1995) compared back propagation,

simulated annealing, and evolutionary programming for training a Wxed network

topology to classify active sonar returns. The results indicated that stochastic

search techniques such as annealing and evolution consistently outperform back

propagation, yet can be executed more rapidly on an appropriately conWgured

parallel processing computer. After suYcient computational eVort, the most

successful network can be put into practice. But the evolutionary process can be

continued during application, so as to provide iterative improvements on the basis

of newly acquired exemplars. The procedure is eYcient because it can use the

entire current population of networks as initial solutions to accommodate each
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Figure 10.1. The flowchart of a basic evolutionary algorithm. An initial population of solutions to the
problem at hand is constructed. For the sake of the current discussion, these take the form of
neural networks. Often, individual solutions are selected uniformly at random from the space
of all possible solutions; however, hints may be used to bias this initialization if they are
available. The initial parents are used to generate offspring through random variation. This
typically involves mutation and/or recombination of existing individual solutions. All sol-
utions (parents and offspring) are evaluated in the light of a performance index. A selection
operation then determines which solutions to keep as parents for the next generation, and
the process iterates. The loop is usually halted when a solution of sufficient worth has been
discovered or a preset number of generations have transpired.
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newly acquired datum. There is no need to restart the search procedure in the face

of new data, in contrast with many classic search algorithms, such as dynamic

programming.

When addressing a typical problem of pattern recognition, as might be found in

medical diagnosis, designing neural networks through simulated evolution fol-

lows an iterative procedure (see Figure 10.1):

1. A speciWc type of neural network is selected. The number of input nodes

corresponds to the amount of input data to be analysed. The number of classes

of concern (i.e. the number of output classiWcation types of interest) deter-

mines the number of output nodes.
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2. Exemplar data are selected for training.

3. A population of P complete networks is selected at random. A network

incorporates the number of hidden layers, the number of nodes in each of these

layers, the weighted connections between all nodes in a feedforward or other

design, and all of the bias terms associated with each node. Reasonable initial

bounds must be selected for the size of the networks, based on the available

computer architecture and memory.

4. Each of these ‘parent’ networks is evaluated on the exemplar data. A pay-oV

function is used to assess the worth of each network. A typical objective

function is the mean squared error between the target output and the actual

output summed over all output nodes; this technique is often chosen because it

simpliWes calculations in the back-propagation training algorithm. As evolu-

tionary computation does not rely on similar calculations, any arbitrary pay-oV

function can be incorporated into the process and can be made to reXect the

operational worth of various correct and incorrect classiWcations. Information

criteria such as Akaike’s information criterion (Fogel 1991) or the minimum

description length principle (Fogel & Simpson 1993) provide mathematical

justiWcation for assessing the worth of each solution, based on its classiWcation

error and the required degrees of freedom.

5. ‘OVspring’ are created from these parent networks through random mutation

and/or recombination. Simultaneous variation may be applied to the number

of layers and nodes, and to the values for the associated parameters (e.g.

weights and biases of a multilayer perceptron, weights, biases, means and

standard deviations of a radial basis function network). A probability distribu-

tion function is used to determine the likelihood of selecting combinations of

these variations. The probability distribution can be preselected a priori by the

operator or can be made to evolve along with the network (i.e. self-adaptation),

providing for nearly completely autonomous evolution.

6. The oVspring networks are scored in a manner similar to that of their parents.

7. A selection operation is applied to determine which networks survive into the

next generation, and which are removed. One possible method for accomplish-

ing this is to conduct a probabilistic round-robin competition to determine the

relative worth of each proposed network. Pairs of networks are selected at

random. The network with superior performance is assigned a ‘win’. Competi-

tions are run to a preselected limit. Those networks with the most wins are

selected to become parents for the next generation. In this manner, solutions

that are far superior to their competitors have a corresponding high probability

of being selected. The converse is also true. This function helps to prevent

stagnation at local optima by providing a parallel biased random walk.

8. The process iterates by returning to step (5).



Figure 10.2. A sample ECG waveform (after Brotherton & Simpson 1995). The waveform describes the
electrical activity of the heart over a beat. The significant segments of the waveform are
labelled as P, Q, R, S, and T. Classic ECG waveform analysis relies on scalar parameters
associated with these labelled segments.
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Examples of evolving neural networks in medical applications

For the sake of space, only two examples of the application of evolutionary neural

networks to medical diagnosis are described below, although the literature on such

applications is growing rapidly.

Dynamic feature set training for classification

Brotherton & Simpson (1995) considered the problem of classifying the severity of

coronary artery disease (CAD) from multiple-input electrocardiograph (ECG)

waveform representations collected during exercise tests. Such attempts have a

history of over 20 years, and have traditionally focused on the QRS-ST-T-

segments of the ECG waveform (Figure 10.2). Brotherton & Simpson (1995)

focused on a hierarchical approach to processing original and transformed wave-

forms in a series of neural networks (Figure 10.3). The goal was to develop neural

networks that would minimize a function of the classiWcation error:

E =
m

n
+ aN + bF

where m is the number of misclassiWcations out of n total classiWcations, N is the

number of nodes in a neural network, F is the number of features that are used,

and a and b are scalar terms to weight the individual contribution of each concern.

The neural architecture used was a ‘fuzzy min–max’ network (Figure 10.4).

Attention was given to 90 male patients randomly selected from a pool of 441



Figure 10.3. Hierarchical neural network flow diagram (after Brotherton & Simpson 1995). The hierarchi-
cal neural net processes the original ECG waveform and two transformations selected to
highlight ECG features in the three first-layer nets. Outputs from the first layer, along with two
scalar ECG measures (heart rate and exercise test phase), are fused together in the second or
‘fusion’ layer for the final classification.
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patients who had undergone treadmill exercise ECG testing and coronary angio-

graphy. These 90 cases were then pruned down to 50, where 30 were angiographic

normals (0-vessel disease) and 20 had severe 3-vessel disease (abnormal). Training

was performed on 25 patients (50% from each category), and testing was per-

formed on the remaining cases. Evolutionary programming was used to modify

the weighted connections of the network as well as identify the suitable input

features. The Wnal result was a fusion network that had a sensitivity of 0.94 and

speciWcity of 0.96 in training, and was completely correct when veriWed against the

test set. Brotherton & Simpson (1995) noted that the task of classifying 0-vessel vs.

3-vessel disease is straightforward for a trained electrocardiologist; however, the

eVort demonstrated that the task could be automated and points towards future

eVorts for assisting in the discrimination of 1-vessel and 2-vessel disease.



Figure 10.4. Topology of the fuzzy min–max classification neural network (after Brotherton & Simpson
1995). Inputs to the net are on the left. Those inputs are passed to the hyperboxes in the
middle layer. The hyperboxes partition the input features into class-dependent clusters (this
is similar to radial basis functions except that hyperboxes are selected instead of Gaussian
density functions). Those hyperbox outputs are fuzzy class membership values for the
features. The value for each of the classes is considered when making an overall classifica-
tion. The variables a, b, c indicate the inputs, hidden nodes and outputs, respectively.
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Computer-assisted diagnosis of breast cancer

There have been several recent eVorts to use neural networks to assist radiologists

in the diagnosis of breast cancer. Some of these have focused on automating the

assessment of histological features of cells removed by Wne needle aspiration

(Wolberg et al. 1994, 1995) while others have developed systems to classify

radiographic features of Wlm screen mammograms (e.g. Wu et al. 1993; Floyd et al.

1994; Wilding et al. 1994).

Fogel et al. (1995) used evolutionary algorithms to design neural networks to

classify histological data, archived in the machine learning database at the Univer-

sity of California at Irvine. There were 699 instances of parameterized histopathol-

ogy from breast biopsies (65.5% benign), each having nine parameters: (1) clump

thickness, (2) uniformity of cell size, (3) uniformity of cell shape, (4) marginal

adhesion, (5) single epithelial cell size, (6) bare nuclei, (7) bland chromatin,

(8) normal nucleoli, and (9) mitosis. Each of these parameters was rated on a

10-scale. Sixteen of the 699 data had missing values and were removed, leaving 683
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data. The Wrst 400 of these in the archive were used for training while the other 283

were held out for testing.

A population of 500 networks, each having nine inputs, two hidden nodes, and

one output node, was evolved over 400 generations. Networks were evaluated

based on the sum of the squared error between the target value (1 for malignancy,

0 for benign) and their output for each pattern. In each generation, oVspring

networks were created from surviving parents by mutating all of their weights

according to a zero-mean Gaussian random variable, with a standard deviation

that was set proportional to the parent’s error (the greater the error, the larger the

average mutation). In a series of 16 trials, the best evolved neural networks had a

mean accuracy on the held-out test set of 98.05%, which was statistically signiW-

cantly better than previous performance documented in the literature.

Discussion

Neural networks are becoming more routine in medical applications. One reason-

able objection to their use has traditionally been that neural networks are ‘black

boxes’ and therefore unexplainable. It appears diYcult to trust the results from

such a device. It would be useful to keep the networks used in operation as

parsimonious as possible. Training methods that rely on gradient search suVer in

this regard because they can stall in locally optimal conWgurations and it may

therefore be necessary to increase the complexity of the networks in order to

discover suitable weights. Evolutionary algorithms oVer the potential to alleviate

much of this problem because the stochastic search for optimal weight sets can

overcome multiple minima on the error response surface and discover suitable

solutions for simpler networks. These simpler models should be easier to explain,

and therefore may be expected to have a greater practical impact on the Weld of

computer-assisted medicine.
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Neural networks as statistical methods in
survival analysis

Brian D. Ripley and Ruth M. Ripley

Introduction

ArtiWcial neural networks are increasingly being seen as an addition to the

statistics toolkit that should be considered alongside both classical and modern

statistical methods. Reviews in this light have been given by one of us (Ripley 1993,

1994a–c, 1996) and Cheng & Titterington (1994) and it is a point of view that is

being widely accepted by the mainstream neural networks community. There are

now many texts (Hertz et al. 1991; Haykin 1994; Bishop 1995; Ripley 1996)

covering the wide range of artiWcial neural networks; we concentrate here on

methods that we see as most appropriate generally in medicine, and in particular

on methods for survival data that have not to our knowledge been reviewed in

depth (although Schwarzer et al. (1997) reviewed a large number of applications in

oncology). In particular, we point out the many diVerent ways classiWcation

networks have been used for survival data, as well as their many Xaws.

Most applications of artiWcial neural networks to medicine are classiWcation

problems; that is, the task is on the basis of the measured features to assign the

patient (or biopsy or electroencephalograph or . . .) to one of a small set of

classes. Baxt (1995) gave a table of applications of neural networks in clinical

medicine that are almost all of this form, including those in laboratories

(Dybowski & Gant 1995). ClassiWcation problems include diagnosis, some prog-

nosis problems (‘will she relapse within the next 3 years?’), establishing depths of

anaesthesia (Watt et al., 1995) and classifying sleep state (Pardey et al. 1996).

Other prognosis problems are sometimes converted to a classiWcation problem

with an ordered series of categories, for example time to relapse as 0–1, 1–2, 2–4 or

4 or more years (Ripley et al. 1998) and prognosis after head injury (Titterington

et al. 1981; Lowe & Webb 1990; Mathieson 1997). We discuss neural networks for

classiWcation and their main competitors in the next section.

Regression problems are less common in medicine, especially those requiring

sophisticated non-linear methods such as neural networks. We can envisage them

being used for some calibration tasks in the laboratory, but a simpler example is to
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predict time to death of a patient with advanced breast cancer. As methods for

regression can often be applied in a clever or modiWed way to solve classiWcation

or survival problems, we consider them in the second section. The general idea is

to replace a linear function by a neural network, which can be done within many

areas of statistics.

Most prognosis problems have the characteristic that for some patients in the

study set the outcome has not yet happened (or they have been lost to follow-up or

died from an unrelated cause). This is known as censoring and has generated much

statistical interest (Cox 1972; KalbXeisch & Prentice 1980; Andersen et al. 1993;

Collett 1994) over the last three decades. Researchers have begun to consider how

neural networks could be used within this framework, and we review this work

and add some suggestions in the third section.

One important observation is that neural networks provide ‘black-box’

methods; they may be very good at predicting outcomes but are not able to

provide explanations of, say, the diagnosis or prognosis. Some of the other

modern methods are able to provide explanations, and one promising idea is to Wt

these to the predictions of the neural network and come up with an explanation.

Neural networks also lack another of the characteristics of expert systems, the

ability to incorporate (easily; there is some work on ‘hints’ (Abu-Mostafa 1995))

qualitative information provided by domain experts.

Neural networks are powerful, and like powerful cars are diYcult to drive well.

For many users the power will be an embarrassment, and they may do better to use

the simpler tools from modern statistics. Because of the ‘hype’ surrounding

artiWcial neural networks many expensive computer programs have been pro-

duced that have had much more eVort (and understanding) devoted to the user

interface than to the algorithms used. In the fourth section we point out a few of

the pitfalls, but would-be users are advised to read a recommended book on the

subject (or to consult an expert statistician). The statistical view has pointed out

many ways to use neural networks better, but unfortunately these are still only

very rarely implemented. We used the S-PLUS (MathSoft Data Analysis Products

Division 1987–97) statistical environment on both a PC and a Unix workstation to

compute the examples, but the code used to Wt neural networks was written by

ourselves. (The basic code is freely available as part of the on-line material for

Venables & Ripley (1997).)

Examples

We use two cancer data sets to illustrate some of our points; note that their use

here is purely illustrative and is not intended as an analysis of those sets of data.

The Wrst is on survival in months (up to 18 years, but with a median of 23 months)

from advanced breast cancer, supplied by Dr J.-P. Nakache. There are 981 patients



Figure 11.1. Plots of the Kaplan–Meier estimates of survival curves for the full (a) breast cancer and (b)
melanoma data sets.
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and 12 explanatory features all of which are categorical. We randomly divided this

into a test set of size 500 and a training set of size 481, and assessed the methods on

predictions of survival for 24 months; only 3% of the patients did not have

complete follow-up to that time.

The second data set is of 205 patients with malignant melanoma following a

radical operation, and has Wve explanatory features. This is taken from Andersen

et al. (1993); it is the same data set that was analysed (with additional explanatory

variables) in Liestøl et al. (1994). Figure 11.1 shows that there appears to be

long-term survival (from melanoma) for 65% of patients, so the survival distribu-

tion does not follow any of the standard distributions. Only 57 of the patients died

from the melanoma during the study. We assessed methods on their ability to

predict survival to 2500 days, by which point 86 of the patients had incomplete

follow-up; our analysis shows that we expect 82 of these to have survived for 2500

days.

Classification

Suppose for the moment that we wish to put a patient into one of two classes (e.g.

survival for 5 years or not); for many purposes it will be more helpful to know the

predicted probability of survival. A simple but much neglected method is logistic

regression or discrimination (Ripley 1996), which is speciWed by

P(class 2 D x) =
eg

1 + eg
, g =b

0
+b

1
x

1
+ · · · +b

p
x

p

P(class 1 D x) = 1 − P(class 2 D x) =
1

1 + eg
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P(class 2 D x)

P(class 1 D x)
= eg,

so the explanatory variables linearly control the log-odds g in favour of class 2

(survival). The parameters b are chosen by maximum likelihood, that is by

maximizing the log-likelihood

L = ;
i

log P(class
i
D x

i
), (11.1)

the sum being over patients. Then given the features x on a future patient we will

be able to predict P(class 2 D x), her probability of survival.

There have been many non-linear extensions of logistic regression. There are

several variants of generalized additive models (Hastie & Tibshirani 1990; Wahba

1990; Wahba et al. 1995) in which

g =; g
i
(x

i
)

where smooth functions g
i
of one (or perhaps two) of the features are chosen as

part of the estimation procedure, and classiWcation trees (Breiman et al. 1984;

Ripley 1996) in which the patients are divided into groups with a common g for

each group.

The extension of logistic regression to neural network is straightforward; we

take g to be the (linear) output of a neural network with inputs x and write

g = g(x; h) where the parameters h are known as ‘weights’ in the neural network

literature. (Note that we can also regard this as a neural network with a single

logistic output unit giving P(class 2 D x), but that is rather coincidental.) Fitting the

neural network by maximum likelihood is known as ‘entropy’ Wtting in that

literature and is deWnitely not common (and supported by amazingly few pack-

ages). It is more common to use the regression methods we discuss in the next

section, which may be adequate for predicting the class (survival or death) but will

be less good for predicting probabilities.

The extension to k [ 2 classes is even less well known, although it has a long

history. The idea is to take the log-odds of each class relative to one class, so the

model becomes

P(class j D x)

P(class 1 D x)
= egj, j = 2, . . ., k,

and so

P(class j D x) =
egj

k

;
c=1

eg
c

, g
1
{ 0. (11.2)
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With g
j
= bT

j
x this is known as multiple logistic regression (Ripley 1996). The

parameters (b
j
) are Wtted by maximizing the log-likelihood L given in Eq. (11.1).

There have been surprisingly few non-linear extensions in the statistics literature;

there is some recent work on additive multiple logistic regression called POLY-

CLASS models (Kooperberg et al. 1997). The extension to neural networks is easy;

use Eq. (11.2) with (g
1
, . . ., g

k
) the k (linear) outputs of a neural network. (Only

k − 1 outputs are needed, but for symmetry we do not insist that g
1
= 0.) Bridle

(1990a,b) gave this the pretentious title of softmax. Once again, softmax networks

are not implemented in most neural network packages; rather they provide

networks with k logistic outputs, which amounts to using

P(class j D x) =
egj

1 + egj

, j = 1, . . ., k.

This is an appropriate model for diagnosis where a patient might have none, one

or more out of k diseases, but not for general classiWcation problems.

Classification for prognosis problems

It is surprising how often classiWcation networks have been applied to prognosis

problems, especially as it would seem that the methods we consider in the third

section would often be more appropriate. (This is probably due to the ready

availability of software for classiWcation networks.) There are many variants. We

usually have to take censoring into account; that is, that follow-up on some

patients may end before the event (which we describe as ‘death’).

1. The simplest idea (Bugliosi et al. 1994; Burke et al. 1995; Tarassenko et al. 1996)

considers survival for some Wxed number of months or years, and ignores

patients censored before that time, thereby giving a standard two-class classiW-

cation problem. Omitting censored patients, however, may bias the result.

Imagine a study of survival for 5 years after an operation where most deaths

occur in the postoperative phase; all patients have been followed up for 3 years

but few for the full 5 years. Then the censored patients are very likely to have

survived for 5 years, and the estimates of the survival probabilities will be biased

downwards. This bias may not be important in explaining the variations in

survival from the explanatory features, but these studies are concerned with

predicting not explaining.

Ravdin & Clark (1992) gave an example of this eVect: in their study 268

patients had known follow-up for 60 months, of whom 213 had died, although

the Kaplan–Meier estimate of the survival probability was 50%. We can also see

this in our melanoma example. Of those patients with complete follow-up to
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10 years, 23 out of 80 survived, yet the Kaplan–Meier estimate of survival for

this time is 64.5%.

2. A reWnement is to divide the survival time into one of a set of non-overlapping

intervals, giving an ordered series of k classes. (For deWniteness let us take the

classes ‘death in year 1’, ‘death in year 2’, ‘death in year 3’ and ‘survive 3 or

more years’.) This can be done in a number of ways. Perhaps the most natural is

to use a proportional odds model (Mathieson 1996) for the ordered outcomes.

It is much more common to ignore the ordering of the classes, and to use a

k-class classiWcation network (Lapuerta et al. 1995; Ohno-Machado 1997;

Ripley et al. 1998). The perceived diYculty is how to handle censoring:

sometimes all censored patients are ignored (but this causes a bias in the

predictions). The remedy is in fact theoretically easy: for example, the contri-

bution to the log-likelihood L for a patient who was lost to follow up after 2

years is

logMP(death in year 3 D x) + P(survive 3 or more years D x)N.

This does, however, need modiWcations to the software, so standard methods

for Wtting classiWcation networks cannot be used. If this is done there is only a

small bias, due to the fact that censored patients will have survived some of the

interval in which they were lost to follow-up.

These methods produce a crude estimate of the survivor curve S(t) = P(alive

at time t) by taking 1 minus the cumulative probabilities across classes. If a

prediction of prognosis is required we clearly should not take the class with the

largest predicted probability (especially if the intervals are of unequal length); a

good choice would be the interval over which the cumulative probability of

death moves from below 50% to above 50%.

3. Other authors use k separate networks. This can be done in one of two ways: in

our example we could use networks for either (a) the original four classes

(Bottaci et al. 1997) or (b) the three classes (Kappen & Neijt 1993; Theeuwen et

al. 1995; Ohno-Machado & Musen 1997) ‘death in year 1’, ‘death in year 1 or 2’

and ‘death in years 1, 2 or 3’. In either case we can train each network on those

patients with follow-up past the end of the interval, so that later networks are

trained on fewer data, and once again there are problems of bias.

It is easy for networks trained with option (b) to give inconsistent answers,

for example to give a higher predicted probability for ‘death in year 1 or 2’ than

for ‘death in years 1, 2 or 3’. This was reported by Ohno-Machado & Musen

(1997), who tried to circumvent it by employing the output of one network

(say ‘death in year 1 or 2’) as an input to the others. However, such diYculties

are indicative of a wrong formulation of the problem. (Surprisingly, that paper

does not mention the more satisfactory approach (Ohno-Machado 1997) of

using a k-output network used on the same data set by one of its authors!)
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Lapuerta et al. (1995) used for their Wnal predictions a network with four

outputs corresponding to death in one of three 40-month periods or survival

for 10 years. However, during training they coped with censored data by

imputing a death period for those patients lost to follow-up. This was done by

training separate networks for death in periods 2 and 3. The features on a

patient lost to follow-up during period 1 were input to the period 2 network; if

that predicted death, death in period 2 was assigned, but if not the period 3

network was used to impute either death in period 3 or survival for 10 years.

Ravdin et al. (1992) have a variation on theme (b), in which they combine

the k separate networks into one network with an additional input, the number

of years for which survival is to be predicted. The training set repeats each

patient for all the numbers of years for which survival or death is known.

Ravdin & Clark (1992) extended this approach by attempting to ameliorate the

problems of bias by randomly selecting a proportion of the deaths to match the

proportion given by a classical Kaplan–Meier estimate of the survival curve.

(This is not an exact procedure; if it is to be used it would be better to weight

cases than to randomly choose them.)

4. Another alternative (Cox 1972) is to model the conditional probabilities

P(die in i-th interval D survive Wrst i − 1 intervals, x) = g(g
i
),

where g is usually the logistic function ex/(1 + ex). Then a patient dying in the

i-th interval contributes logMg(g
i
)[1 − g(g

i−1
)] · · · [1 − g(g

1
)]N to the log-likeli-

hood, and a patient lost to follow up in that interval logM[1 −

g(g
i−1

)] · · · [1 − g(g
1
)]N, and from this the log-likelihood L can be computed.

The ‘scores’ g
1
, . . ., g

k
are given by the output of a neural network with k linear

outputs. (This model can be regarded as a ‘life-table’ or discrete-time survival

model (KalbXeisch & Prentice 1980) and is sketched in those terms by Liestøl et

al. (1994). It is sometimes known as a ‘chain-binomial’ model.)

It is possible (Efron 1988; Biganzoli et al. 1998) to Wt this model using

standard neural network software (although the predictions do have to be

postprocessed.) We can expand the contribution to the log likelihood as a sum

of log g(g
i
) or log[1 − g(g

i
)] over the intervals for which that patient is at risk.

This is computed by having an additional input to the neural network specify-

ing the time interval i for which g(g
i
) is required, and entering each patient into

the training set for each time interval until death or the end of follow-up. Thus

the training set (both inputs and outputs) is similar to that used by Ravdin et

al., but patients are not entered after death and the Wtted network is used in a

diVerent way. Note that although this technique is possible, special-purpose

software will be substantially more eYcient.

This method also has only a small bias due to censoring; it is equivalent to

approach 2 but uses a diVerent parametrization of the survival probabilities.
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It may be helpful to restate the censoring problem in mathematical terms.

Suppose we have k + 1 time intervals, [0 = t
0
, t

1
), [t

1
, t

2
), . . ., [t

k−1
, t

k
), [t

k
, O), and

let s
i
= S(t

i
) be the probability that a patient survives to time t

i
, and suppose we are

particularly interested in s
k
. Approaches 1 and 3 estimate s

k
directly. Approach 2

estimates p
i
= P(t

i−1
p T \ t

i
) and then s

k
= p

k+1
= 1 − p

1
− · · · − p

k
. Approach 4

estimates g
i
= P(t

i−1
p T \ t

i
D T [ t

i−1
), and then s

k
= (1 − g

1
) · · · (1 − g

k
).

Approaches 2 and 4 are able to (approximately) adjust for censoring, since a

patient lost to follow-up in the interval [t
i−1

, t
i
) is counted as a survivor in

estimating p
1
, . . ., p

i−1
or g

1
, . . ., g

i−1
rather than being ignored.

Unfortunately, the only methods that deal correctly with censoring use a

diVerent log-likelihood from that used in standard packages, and hence need

software modiWcations or use the software ineYciently. The approaches of

Lapuerta et al. (1995) and Biganzoli et al. (1998) are the most satisfactory of those

using standard software.

Regression problems

Many neural network packages can tackle only regression problems; that is they

are conWned to Wtting functions g
j
(x; h) by least squares, minimizing

;
i

k

;
j=1

[y
ij
− g

j
(x

i
; h)]2,

the Wrst sum being over patients. This corresponds to k q 1 non-linear regressions

on the explanatory variables x. The most common usage is a neural network with a

single linear output (e.g. for calibration in pyrolysis mass spectrometry) or with a

logistic output for a two-class classiWcation problem. It would seem obvious to

take y = 1 for survival and y = 0 for death, but as we saw in the Wrst section, the use

of least squares is not really appropriate and ‘fudges’ have grown up such as coding

survival as y = 0.9 and death as y = 0.1. The extension to a k-class classiWcation

problem is to take y
ij
= 1 for the class which occurred and y

ij
= 0 for the others; then

when the network is used for the prediction the class with the largest output is

chosen. (Other ways to use regression methods for classiWcation problems are

discussed in Ripley (1996, Chap. 4).)

There has been a parallel development of non-linear regression methods in

statistics. Additive models are of the form

g
j
(x; h) = a

j
+

p

;
s=1

b
js
g

s
(x

s
; h),



245 Neural networks in survival analysis

which allows a non-linear transformation of each of the features. The functions g
s

can be chosen non-parametrically (Hastie & Tibshirani 1990) or by smoothing

splines (Wahba 1990); some implementations such as multivariate adaptive re-

gression splines (MARS) (Friedman 1991) also allow functions of more than one

feature. Perhaps the most wide-ranging generalization of additive models is

projection pursuit regression (Friedman & Stuetzle 1981) which is an additive

model in linear combinations of the features. This subsumes neural networks with

a single hidden layer, but the algorithms developed in the statistical literature for

Wtting projection pursuit regressions are less powerful than those now known for

Wtting neural networks.

ClassiWcation trees have a counterpart, regression trees (Breiman et al. 1984), in

which once again the patients are grouped and a constant value assigned to each

group; the groups are found by a tree-structured set of rules.

Great ingenuity has been shown in Wnding ways to apply existing regression

methods and software to other problems. For example, Therneau et al. (1990)

suggested applying regression trees to the residuals from a linear survival analysis

to provide a non-linear survival method using existing software, and this idea

could be applied equally to neural networks.

Survival analysis

The conventional set-up in survival analysis is that there is a time-to-outcome, T,

which is measured continuously, plus a censoring indicator d which indicates

whether the outcome was ‘death’ (d = 1) or the patient was lost to follow-up

(d = 0). The standard statistical procedures (KalbXeisch & Prentice 1980; Collett

1994; Venables & Ripley 1997) relate the distribution of T to explanatory variables

x via a linear predictor g = bTx. For example, proportional hazards models have the

hazard at time t (the rate of death at time t of those who are still alive)

h(t) = h
0
(t)eg, (11.3)

where h
0
() is known as the baseline hazard, and an accelerated life model Wts a

standard distribution to Te−g, so the linear predictor speeds up or slows down time

for that patient. We discuss below how these models can be generalized to use

neural networks.

Parametric models for survival analysis can be very useful but are often

neglected. Common choices for a parametric proportional hazards model are the

Weibull distribution and its special case the exponential, and for accelerated life

models the Weibull (again) and the log-logistic. However, following Cox (1972),

the semiparametric proportional hazard model has become extremely popular.
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This assumes model (11.3), with no assumption on the baseline hazard and g is

estimated by partial or marginal likelihood methods (KalbXeisch & Prentice

1980).

Non-linear models in survival analysis are surprisingly rare in the statistical

literature. There are a few references (O’Sullivan 1988; Gentleman & Crowley

1991; Gray 1992; Kooperberg et al. 1995) suggesting additive extensions of Cox

models as well as a fully local approach (Gray 1996) and a modest literature

(Ciampi et al. 1987; Segal 1988; Davis & Anderson 1989; LeBlanc & Crowley 1992,

1993) on tree-structured survival analysis.

The only previous attempt of which we are aware that applied neural networks

directly to survival analysis is by Faraggi & Simon (1995), applied by Mariani et al.

(1997). Both sets of authors considered partial-likelihood estimation of model

(11.3) with g = f (x; h) the output of a neural network. We have implemented this

and the parametric models mentioned earlier. We should point out that there is a

much easier way to Wt Cox models with g given by a neural network, which is to

use an iterative idea (Gentleman & Crowley 1991; LeBlanc & Crowley 1992). This

alternates estimating the baseline cumulative hazard H
0
(t) by the Breslow es-

timator and choosing h to maximize

;
i

Md
i
g

i
− H

0
(t

i
)exp g

i
N g

i
= f (x

i
; h)

(the sum being over patients) starting with g
i
{ 0 or with a linear Wt. Normally

only a couple of iterations are required. The solution is a (local) maximum of the

partial likelihood.

Fitting neural networks

Perhaps the major cause of diYculty in Wtting neural networks is the ease with

which it is possible to overWt, that is to tune the neural network to the peculiarities

of the examples to hand rather than to extract the salient dependencies of the

whole population. In a phrase borrowed from psychology, we want to Wt a

network to achieve good generalization. Why is this an especial problem for

artiWcial neural networks? In using classical statistical methods we build up from

simple models, perhaps Wrst Wtting a linear model and then allowing quadratic or

interaction terms and at each stage testing for a signiWcant improvement in Wt.

There is no analogue for neural networks, and there are results (Ripley 1996) that

show that with enough hidden units we can make (essentially) arbitrarily compli-

cated models.

For good generalization we do not want to use maximum likelihood Wtting (or
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least squares Wtting). We borrow the ideas of regularization from the numerical

methods Weld, and penalize ‘rough’ functions f (x; h). This is most conveniently

done using weight decay in which we maximize

L − j ;
weights

w2
ij

How do we choose j? There are some very eVective guidelines (Ripley 1996) based

on statistical ideas, but as with the number of hidden units it is best chosen by a

validation experiment.

Not only does weight decay help to achieve good generalization, it also makes

the optimization task easier and thus faster. So it is very surprising that (yet again)

it is omitted from most packages, yet most experts in the Weld believe that it should

always be used. Instead, most packages use the older idea of early stopping with an

ineYcient method of optimization; this will usually work but can be one or two

orders of magnitude slower and is responsible for the reputation that neural

networks have of being very computationally demanding. (None of the application

studies we reviewed used weight decay nor explained how training was stopping

nor how the number of hidden units were chosen. Mariani et al. (1997) are a

commendable exception which appeared whilst this paper was in preparation.)

Although a neural network can handle complicated relationships, it is likely to

generalize better if the problem is simpliWed, so as much care in preparing the data

and transforming the inputs should be used for neural networks as for conven-

tional statistical methods.

In the vast majority of neural network Wtting problems there will be multiple

local optima, so if the optimization is run from a diVerent set of initial weights,

diVerent predictions will be made. Sometimes the diVerences between predictions

at diVerent local optima will be small, but by no means always. (Ripley (1996) has

some simple examples for a medical diagnosis problem.) It is not a good idea to

choose the best-Wtting solution (that is probably the one that overWts the most); it

is better to combine the predictions from the multiple solutions. The idea of

averaging the probability predictions across, say, 25 Wts is rather eVective, and

many other averaging ideas (Wolpert 1992; Perrone & Cooper 1993; Freund &

Schapire 1995; Breiman 1996) have been suggested.

Several studies claimed that their neural network model outperformed a Cox

regression and/or clinicians, but such Wndings need to be examined critically.

None of the studies considered using non-linear terms nor interaction terms in the

Cox regression, and this would be standard practice for a statistical expert using

such models. However, the basis of the comparison is Xawed. Cox models are not

designed to estimate the probability of survival at a Wxed time (usually the end of
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the study); they are intended to show the dependence of the survivor curve on the

explanatory features. Even when used for prediction, they are able to predict the

whole survivor curves, and it is not surprising that they are less able to predict one

point on that curve than methods designed to predict just that point (e.g. logistic

discrimination). Further, censoring biases in the test set will almost always favour

the neural network models, which estimate the probability of survival to a Wxed

time conditional on the patient still being under follow-up, not the unconditional

probability estimated by a survival analysis model or being assessed by the

clinicians. The only way to ensure a fair comparison on a test set is to impute an

outcome to each patient whose follow-up is for less than the Wxed time. We

suggest that this is best done by grouping test set patients on the basis of survival

experience (perhaps using a tree-structured analysis to do the grouping), Wtting a

Kaplan–Meier survival curve to each group and using this to estimate the prob-

ability of survival of those patients in the group whose follow-up period is too

short.

A frequent mistake is to take too small a test set; several authors have used a test

set of fewer than 20 observations (Schwarzer et al. 1997). However, the size of the

test set is not the whole story, as there needs to be suYcient cases that survive and

suYcient that die. The study of Bottaci et al. (1997) (see also Dobson 1997) has

gained considerable publicity, yet is based on the apparent success in predicting

the death of just 7 out of 92 patients, and a higher accuracy (the headline measure

used) would have been obtained by predicting survival for all the patients!

Examples

We tried most of the methods described here on one or both of the examples.

Selecting the number of units in the neural networks and the amount of weight

decay to be used was done by cross-validation (Ripley 1996), for a set of about a

dozen values chosen from past experience. The measure of Wt used was the

deviance, summing minus twice the logarithms of the predicted probability of the

event over all patients in the training set. (This provides a more sensitive measure

of Wt than the success rate, especially in the survival analysis models where the

exact time of death is used.)

Breast cancer

We used a training set of size 500, and a test set of size 476 (ignoring those Wve

patients in the full test set whose follow-up to 24 months was incomplete). All the

linear methods used selection of the input variables by Akaike information

criterion (AIC) (Ripley 1996); for all the methods using neural networks the

number of hidden units and the amount of weight decay was chosen by 10-fold



Table 11.1. Results (%) for predictions on the test set of the breast cancer example

Linear Neural net

Method SpeciWcity Sensitivity Accuracy SpeciWcity Sensitivity Accuracy

Binary classiWcation 73 62 67 72 64 68

1-year periods 75 63 68 72 65 68

Proportional odds 72 61 66

Regression 66 68 67 63 71 67

Proportional hazards 70 62 66 71 62 66

Weibull survival 72 58 64 72 61 66

Log-logistic survival 70 66 67 68 66 67
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cross-validation within the training set. Our results are summarized in Table 11.1.

There sensitivity is the probability of correctly predicting death, speciWcity is the

probability of correctly predicting survival, and the accuracy is the percentage of

correct predictions.

There is almost nothing to choose between the methods, except that the Weibull

survival models are slightly (but not signiWcantly) poorer. This might have been

expected, as Figure 11.1 shows that the overall survival distribution is not very

close to Weibull. The regression methods were done with response the logarithm

of survival time (using time directly gave very much worse results). This is

formally equivalent to the log-normal survival analysis model, and further investi-

gations showed that the bias towards death of the regression models is due to the

exclusion of six cases with incomplete follow-up to 24 months (which were also

excluded for the binary classiWcations).

Melanoma

This is a small data set (205 patients) with heavy censoring. We used Wve-fold

cross-validation to assess the models: that is, we randomly divided the data set into

Wve parts and for each Wtted to the remaining four parts and predicted survival on

the single part. Because there was heavy censoring, assessment on just those

patients with complete follow-up to 2500 days would be seriously biased. We used

a tree-based analysis to divide the data set into six groups (Figure 11.2) with

homogeneous survival experience, Wtted Kaplan–Meier survival curves to each

group, and used these to estimate the probability that the patient would have

survived from the end of observed follow-up to 2500 days. (This probability was

often 1, and never less than 0.45.) These patients were then entered into the test set

with both possible outcomes, weighted by the estimated probabilities.

The multiple output classiWcation problem had classes as 0–1500, 1500–2000,



Figure 11.2. (a) Tree used to split the melanoma data into six groups. At each node the label indicates the
condition to go down the left branch, and the numbers are the hazards for the groups relative
to the whole dataset. (b) Kaplan–Meier plots of survival in the six groups.

Table 11.2. Results (%) from five-fold cross-validation of the melanoma example. The
second row of binary classification is using the estimated probabilities as targets for
the patients with incomplete follow-up to 2500 days; these patients are completely
ignored during training of the models for the first line

Linear Neural net

Method SpeciWcity Sensitivity Accuracy SpeciWcity Sensitivity Accuracy

Binary classiWcation 56.8 63.2 58.8 60.4 60.2 60.4

Full training set 87.7 27.9 69.5 88.3 26.2 69.4

4-class 89.3 23.7 69.4 92.9 15.8 69.4

Proportional odds 90.9 24.0 70.5 92.3 19.2 70.0

Proportional hazards 84.8 32.7 69.0 88.2 34.0 71.7

Weibull survival 87.7 26.4 69.0 87.6 24.7 68.5

Log-logistic survival 87.0 36.1 71.5 85.0 34.6 69.6
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2000–2500 and 2500– days, chosen by looking at the pattern of censoring times.

The results are shown in Table 11.2. Despite the use of nested cross-validation

(so that evaluating each neural network method involved 5 ] 5 ] 12 Wts) the

total computation time was less than an hour. Again there are generally small

diVerences between the methods (except for the binary classiWcations ignoring

censoring), even though the Weibull and log-logistic distributions cannot model

long-term survival as shown in Figure 11.1. The large diVerences between sensitiv-

ity and speciWcity are not really surprising given that only about 28.2% of patients

die within 2500 days. Thus we would achieve a higher accuracy than all of the

methods by declaring all patients to survive. The underlying diYculty is that it is

hard to Wnd prognostic patterns and the dominance of survival leads to predicted



Table 11.3. Results for the melanoma data with differential costs of errors. The
sensitivities and specificities are percentages, whereas the losses are totals over 205
patients

Linear Neural net

Method SpeciWcity Sensitivity Loss SpeciWcity Sensitivity Loss

Binary classiWcation 32.5 73.2 129.1 41.6 73.3 116.7

Full training set 69.7 57.4 96.3 69.7 62.2 90.3

4-class 64.2 57.6 103.9 77.4 47.6 97.6

Proportional odds 77.4 52.4 91.6 77.4 50.8 93.6

Proportional hazards 73.2 59.0 89.3 72.8 63.8 84.3

Weibull survival 74.6 54.2 93.4 73.2 63.8 83.3

Log-logistic survival 73.2 54.0 95.6 70.3 66.8 83.7
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probabilities of death of individual patients that are above 28% but do not reach

50%. If we consider the cost of failing to spot a death as twice that of incorrectly

predicting death, a diVerent pattern emerges, shown in Table 11.3. (With this cost

pattern we predict death if the probability of survival is less than 2/3.)

Under this cost pattern the methods from survival analysis show a clear

superiority, and within the class the non-linear methods show a substantial

advantage over the linear ones. However, as this data set is so small, only the larger

diVerences (those between the Wrst ‘binary classiWcation’ line and the rest) are

statistically signiWcant when assessed by paired t-tests.

All the methods had been set up to predict probabilities of observed events, so it

was easy to recompute the results for a diVerent pattern of costs. There are

technical arguments (Ripley 1996) that suggest we might have obtained (slightly)

improved results by taking the cost pattern into account during training by

weighting examples in the training set.
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A review of techniques for extracting rules
from trained artificial neural networks

Robert Andrews, Alan B. Tickle and Joachim Diederich

Introduction

Even a quick glance through the literature reveals that artiWcial neural networks

(ANNs) have been applied across a broad spectrum of biomedical problem

domains. ANNs have been used to aid in the diagnosis of cervical cancer (Mehdi

et al. 1994; Mango et al. 1994) and breast cancer (Downes 1994; Feltham & Xing

1994). ANNs have also been applied to prediction tasks including the likelihood of

onset of myocardial infarction (Browner 1992) and the survival rates of cancer

suVerers (Burke 1994). Other application areas include interpretation of medical

images (Lo et al. 1994; Silverman & Noetzel 1990), the interpretation of electrocar-

diograph data (Kennedy et al. 1991) and biochemical analysis. ANN architectures

used in these studies include feedforward multilayer networks trained by back-

propagation, recurrent networks (Blumenfeld 1990), self-organizing maps (DorV-

ner et al. 1993), neurofuzzy systems (Tan & Carpenter 1993) and hybrid systems

(Pattichis et al. 1994).

The ANN approach has been demonstrated to have several beneWts including

the following:

ANNs can be trained by examples drawn from the problem domain rather than

rules laboriously drawn from human experts.

ANNs are tolerant of ‘noise’ in the input data.

ANNs can, with a high degree of accuracy, ‘generalize’ over a set of unseen

examples.

The use of a trained ANN eliminates issues associated with human fatigue and

habituation (Eisner 1990; Boon & Kok 1993).

The use of an automated approach allows analysis of conditions and diagnosis in

real time.

Somewhat surprisingly there appears to have been little eVort made to under-

stand the hows and whys of the behaviour of the trained ANN. The reporting of

experimental results for cases where ANNs perform as well as, or even outperform,
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statistical, symbolic artiWcial intelligence (AI) techniques and even human experts

has been suYcient encouragement for continued research into the use of ANNs

for biomedical applications. However, experience has shown that an explanation

capability is considered to be one of the most important functions provided by

symbolic AI systems. In particular, the salutary lesson from the introduction and

operation of knowledge based systems is that the ability to generate even limited

explanations (in terms of being meaningful and coherent) is absolutely crucial for

the user-acceptance of such systems (Davis et al. 1977). In contrast to symbolic AI

systems, ANNs have no explicit declarative knowledge representation. Therefore

they have considerable diYculty in generating the required explanation structures.

Rule extraction provides, among other things, a means of deriving an explanation

structure from a trained ANN that can give a human user insight into the

decision-making processes of the trained ANN, thus allowing the user to verify

that the ANN is utilizing a clinically sound basis for it decisions.

This chapter includes a discussion on the beneWts that may accrue to users from

including rule extraction as part of the overall use of trained ANNs, a discussion of

a schema proposed by Andrews et al. (1995) for categorizing rule extraction

algorithms, and a review of a set of rule extraction techniques representative of the

major classes of the schema. For each technique an indication is given of whether

the technique has been applied to medical domain databases. The chapter con-

cludes with a look at current issues and directions in the Weld of rule extraction

from trained ANNs.

The merits of including rule extraction as an adjunct to the use of a trained ANN

Andrews et al. (1995) discussed several advantages for the ANN paradigm by

including rule extraction:

provision of a user explanation facility

extension of ANN systems to safety critical areas

software veriWcation and debugging of ANN components in software systems

improving the generalization of ANN solutions

data exploration and the induction of scientiWc theories

knowledge acquisition for symbolic systems.

Provision of a user explanation capability

Within the Weld of symbolic AI the term explanation refers to an explicit structure

that can be used internally for reasoning and learning, and externally for the

explanation of results to a user. Users of symbolic AI systems beneWt from an

explicit declarative representation of knowledge about the problem domain,



258 R. Andrews et al.

typically in the form of object hierarchies, semantic networks, frames etc. The

explanation capability of symbolic AI also includes the intermediate steps of the

reasoning process, for example a trace of rule Wrings or a proof structure, which

can be used to answer ‘How’ questions. Further, Gallant (1988) observed that the

attendant beneWts of an explanation capability are that it also provides a check on

the internal logic of the system as well as enabling a novice user to gain insights

into the problem at hand.

While provision of an explanation capability is a signiWcant innovation in the

ongoing development of ANNs, of equal importance is the quality of the explana-

tions delivered. It is here that the evolution of explanation capabilities in symbolic

AI oVers some valuable lessons into how this task of extracting rules from trained

ANNs might be directed. For example practitioners in the Weld of symbolic AI

have experimented with various forms of user explanation vehicles, including, in

particular, rule traces. However, for some time it has been clear that explanations

based on rule traces are too rigid and inXexible (Gilbert 1989; Moore 1989; Moore

& Swartout 1989). Indeed one of the major criticisms of utilizing rule traces is that

they always reXect the current structure of the knowledge base. Further, rule traces

may have references to internal procedures (e.g. calculations), might include

repetitions (e.g. if an inference was made more than once) and the granularity of

the explanation is often inappropriate (Gilbert 1989). Perhaps one clear lesson

from using rule traces is that the transparency of an explanation is by no means

guaranteed. For example, experience has shown that an explanation based on rule

traces from a poorly organized rule base with perhaps hundreds of premises per

rule could not be regarded as being transparent.

A further example of the limitations of explanation capabilities in symbolic AI

systems that should, if possible, be obviated in the extraction of rules from trained

ANNs, comes from Moore & Swartout (1989). They note that the early use of

canned text or templates as part of user explanations has been shown to be too

rigid, that systems always interpret questions in the same way, and that the

response strategies are inadequate. Further, although eVorts have been made to

take advantage of natural-language dialogues with artiWces such as mixed initiat-

ives, user-models and explicitly planned explanation strategies (Moore & Swar-

tout 1989), there is little doubt that current systems are still too inXexible,

unresponsive, incoherent, insensitive and too rigid (W. R. Swartout, unpublished

data, 1989).

In summary, while the integration of an explanation capability (via rule extrac-

tion) within a trained ANN is crucial for user acceptance, such capabilities must if

possible obviate the problems already encountered in symbolic AI.

Extension of ANN systems to ‘safety-critical’ problem domains

While the provision of a user explanation capability is one of the key beneWts in
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extracting rules from trained ANNs, it is certainly not the only one. For example

within a trained ANN the capability should also exist for the user to determine

whether the ANN has an optimal structure or size. (For instance if an input

dimension does not appear as the antecedent in any extracted rule the network can

be pruned to remove nodes associated with this input.) A concomitant require-

ment is for ANN solutions not only to be transparent as discussed above but also

for the internal states of the system to be both accessible and able to be interpreted

unambiguously. Satisfaction of such requirements would make a signiWcant con-

tribution to the task of identifying and if possible excluding those ANN-based

solutions that have the potential to give erroneous results without any accom-

panying indication as to when and why a result is suboptimal.

Such a capability is mandatory if neural network-based solutions are to be

accepted into a broader range of application areas and, in particular, safety-critical

problem domains such as air traYc control, the operation of power plants,

medical diagnosis and patient monitoring. Rule extraction oVers the potential for

providing such a capability.

Software verification and debugging of ANN components in software systems

A requirement of increasing signiWcance in software-based systems is that of

veriWcation of the software itself. While the task of software veriWcation is import-

ant it is also acknowledged as being diYcult, particularly for large systems. Hence

if ANNs are to be integrated within larger software systems that need to be veriWed,

then clearly this requirement must be met by the ANN as well. At their current

level of development, rule extraction algorithms do not allow for the veriWcation

of trained ANNs, i.e. they do not prove that a network behaves according to some

speciWcation. However, rule extraction algorithms provide a mechanism for either

partially or completely decompiling a trained ANN. This is seen as a promising

vehicle for achieving the required goal at least indirectly by enabling a comparison

to be made between the extracted rules and the software speciWcation.

Examination of the extracted rules may allow the user to determine regions of

input space where the network produces correct output, false negative or false

positive outputs. This is important for ANNs trained in medical problem domains

where it is important for the user to be able to attach a degree of certainty to the

conclusion reached by the ANN.

Improving the generalization of ANN solutions

Where a limited or unrepresentative data set from the problem domain has been

used in the ANN training process, it is diYcult to determine when generalization

can fail, even with evaluation methods such as cross-validation. By being able to

express the knowledge embedded within the trained ANN as a set of symbolic

rules, the rule extraction process may provide an experienced system user with the
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capability to anticipate or predict a set of circumstances under which generaliz-

ation failure can occur. Alternatively the system user may be able to use the

extracted rules to identify regions in input space that are not represented suY-

ciently in the existing ANN training set data and to supplement the data set

accordingly.

Data exploration and the induction of scientific theories

Over time neural networks have proved to be extremely powerful tools for data

exploration, with the capability to discover previously unknown dependencies

and relationships in data sets. As Craven & Shavlik (1994) observed, ‘a [learning]

system may discover salient features in the input data whose importance was not

previously recognized.’ This is of particular interest to practitioners in the medical

domain, where complex interrelationships of the various factors relevant to

diagnosis and prognosis may exist in the clinical data but may not be recognized

by the practitioner. However, even if a trained ANN has learned interesting and

possibly non-linear relationships, these relationships are encoded incomprehensi-

bly as weight vectors within the trained ANN and hence cannot easily serve the

generation of scientiWc theories. Rule extraction algorithms signiWcantly enhance

the capabilities of ANNs to explore data to the beneWt of the user.

Knowledge acquisition for symbolic AI systems

One of the principal reasons for introducing machine learning algorithms over the

last decade was to overcome the so-called knowledge acquisition problem for

symbolic AI systems (Saito & Nakano 1988; Sestito & Dillon 1991). Further, as

Sestito & Dillon (1994, p. 156) observed, the most diYcult, time-consuming, and

expensive task in building an expert system is constructing and debugging its

knowledge base.

The notion of using trained ANNs to assist in the knowledge acquisition task

has existed for some time (Gallant 1988). An extension of these ideas is to use

trained ANNs as vehicles for synthesizing the knowledge that is crucial for the

success of knowledge-based systems. Alternatively, domain knowledge that is

acquired by a knowledge engineering process may be used to constrain the size of

the space searched during the learning phase and hence contribute to improved

learning performance.

The necessary impetus for exploring these ideas could now come from two

recent developments. The Wrst is a set of recent benchmark results such as those of

Thrun et al. (1991), where trained ANNs have been shown to outperform sym-

bolic machine learning methods. The second is from developments in techniques

for extracting from trained ANNs symbolic rules that could be directly added to

the knowledge base.
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Classification scheme for categorizing rule extraction techniques

Andrews et al. 1995; Tickle et al. 1999 presented a classiWcation scheme for

categorizing and describing rule extraction techniques. The scheme is based on:

the expressive power of the extracted rules

the translucency of the view taken by the rule extraction algorithm of the under-

lying ANN

the use of a specialized training regime or network architecture

the quality of the extracted rules

the algorithmic complexity of the rule extraction technique.

Expressive power of the extracted rules

Expressive power is taken to describe the form of the extracted rules. Most

commonly rule extraction techniques use either conventional two-valued Boolean

logic if . . . then . . . else rules or fuzzy rules that use the concept of membership

functions to represent partial truths and can include probabilistic certainty factors

in the rule conclusion. While methods that extract propositional rules form the

bulk of the rule extraction techniques described to date, there are a variety of

methods that extract rules in other formats. A small set of techniques extract

so-called M-of-N rules Wrst described by Towell & Shavlik (1993). M-of-N rules

are of the form if M of the following N antecedent conditions are true then the rule

consequent is true. The use of M-of-N rules was extended by Craven (1996) to a

technique that extracts decision trees from any learned model where M-of-N rules

are used in the nodes of the decision tree. Saito & Nakano (1996) described a

technique that extracts scientiWc laws in which the power values are not restricted

to integers. Nayak et al. (1997) described a technique where propositional rules are

extracted from a feedforward network and used to generate a knowledge base of

generic predicates, rules and facts for a connectionist knowledge representation

system that is capable of dynamically binding variables to values.

The translucency of the view taken by the rule extraction algorithm of the underlying ANN

Andrews et al. 1995; Tickle et al. 1999 used translucency to describe the degree to

which a rule extraction algorithm makes use of knowledge of the network weights

and architecture in extracting rules. At one end of the translucency continuum are

the decompositional algorithms that extract rules at the level of individual hidden

and output units. The rules extracted from each unit are then aggregated to form

the composite rule base extracted from the network as a whole. A basic require-

ment of decompositional algorithms is that the computed output of the ANN

node under consideration must be mapped into a binary (yes/no) output that

corresponds to the notion of a rule consequent. Hence each hidden or output unit
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can be interpreted as a step function or a Boolean rule that reduces the rule

extraction problem to one of determining the situations in which the rule is true,

i.e. when a subset of the incoming links has a summed value that exceeds the unit’s

bias regardless of the values of the other incoming links. Pedagogical rule extrac-

tion techniques, on the other hand, assume no knowledge of network architecture

and treat the network as a ‘black box’. In general, pedagogical techniques use the

trained network to attach a class label to a set of examples/cases that are either

drawn from the training data or generated/sampled from the entire input space.

These labelled examples then are noise free and contain no conXicts. A symbolic

learning method is then employed to generate rules that map inputs directly to

outputs. Between decompositional and pedagogical techniques are the so-called

eclectic techniques that utilize knowledge of the network weights and architecture

to complement a symbolic learning algorithm.

The use of a specialized training regime

This aspect of the rule extraction algorithm is important because it provides a

measure of the portability of the technique. Rule extraction techniques that are

tightly coupled to the architecture of a particular ANN are not portable and

cannot be applied immediately to any in situ trained network. Instead, for the

particular rule extraction technique to be applicable, the associated network must

Wrst be trained on the problem domain with the possibility that this network may

not give optimum performance.

The quality of the extracted rules

Towell & Shavlik (1993) proposed criteria by which the quality of the extracted

sets could be assessed. These criteria were revised by Andrews et al. (1995) and

include (a) the accuracy, (b) the Wdelity, (c) the consistency, and (d) the compre-

hensibility of the extracted rule sets.

In this context a rule set is considered to be accurate if it can correctly classify

previously unseen examples. (Accuracy is calculated as the percentage of correctly

classiWed patterns in the test set data.) Similarly a rule set is considered to display a

high level of Wdelity if it can mimic the behaviour of the ANN from which it was

extracted by capturing all of the information embodied in the ANN. (Fidelity here

is calculated as the percentage agreement between the generalization performance

of the ANN on the test set and the generalization performance of the extracted rule

set on the test set data.) A rule extraction algorithm is deemed to be consistent if,

under diVerent runs of the algorithm on the same trained ANN and test set the

algorithm generates the same rule set. Finally the comprehensibility of a rule set is

determined by measuring the size of the rule set (in terms of the number of rules)

and the number of antecedents per rule.
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The algorithmic complexity of the rule extraction technique

The inclusion of this dimension of the classiWcation scheme reXects the necessity

for any rule extraction technique to be as eYcient as possible. Many of the

algorithms that are discussed in this chapter require the use of either a search and

test strategy through weight space (decompositional algorithms) or a generate and

test strategy through input space (pedagogical techniques). Clearly the eYciency

of the algorithm is dependent on the size of the weight space to be searched or the

number of cases that must be generated to adequately ‘cover’ the input space.

Algorithms that rely on an exhaustive search of weight/input space to generate all

possible rules are ineYcient because the size of the space to be searched grows

exponentially with the number of input dimensions. Algorithms that employ

heuristics to limit the search space reduce algorithmic complexity but increase the

likelihood of overlooking potentially important rules that are represented by only

a small number of examples in the search space. The goal then is to Wnd heuristics

that make the algorithm tractable without adversely aVecting rule quality.

It should be observed at this point that it may not be possible, or even desirable,

to simultaneously optimize all of the above-mentioned evaluation criteria. For

example, in safety-critical applications such as patient monitoring systems or

automated diagnostic systems a high premium should be placed on accuracy and

Wdelity at the possible expense of rule comprehensibility.

Decompositional rule extraction techniques

The earliest decompositional algorithm is the KT approach described by Fu (1991,

1994). The KT algorithm extracts Boolean rules at the level of individual hidden

and output units within a multilayer, feedforward network that has been trained

by back-propagation. The algorithm searches for sets of weights containing a

single positively weighted link, link
n
, suYcient to exceed the bias of the unit under

consideration regardless of the weights of the other incoming links. If such a link is

found, a rule of the form if input
n
, then the concept represented by the unit is true is

written where input
n

is the input node connected to the unit under consideration

by link
n
. KT maps the output from each unit into a Boolean function via the

simple artiWce of if 0 p outputp threshold–1 F no, and if threshold–1 p out-

putp threshold–2 F yes, where threshold–1 p threshold–2. The search then pro-

ceeds to look for subsets of two incoming links etc. At the completion of the

process, the rules extracted from the individual units are aggregated to form the

composite rule base for the ANN as a whole.

A more recent example of this style of approach is the Subset algorithm of

Towell & Shavlik (1993). For Subset the network is constructed in such a way that

the output of each unit is either near a value of 1 (i.e. maximally active), or near a



Table 12.1. The Subset algorithm

For each hidden and output unit:

extract up to S
P

subsets of the positively weighted incoming links for which the summed weight is

greater than the bias on the unit;

For each element p of the S
P̂

subsets:

– search for a set S
N

of a set of negative attributes so that the summed weights of p plus the

summed weights of N − n (where N is the set of all negative attributes and n is an element of

S
N
) exceed the threshold on the unit;

– with each element n of the set S
N

form a rule: ‘if p and NOT n then the concept designated by

the unit’
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value of 0 (inactive). Hence each link carries a signal equal to its weight or no

signal at all. The Subset algorithm is given in Table 12.1.

While Fu (1991, 1994) reported initial success with KT in the problem domain

of detecting wind shears by infrared sensors and Towell & Shavlik (1993) showed

that their algorithm is capable of delivering a set of rules that are at least

potentially tractable and ‘smaller than many handcrafted expert systems’ (Towell

& Shavlik 1993), both analyses suVer the same problem, i.e. the solution time for

Wnding all possible subsets of suitable incoming links is a function of the size of the

power set of links to each unit – the algorithm is exponential.

To make the algorithm more tractable Fu (1991, 1994) restricted the search

space by placing a limit on the maximum number of antecedents per rule. Saito &

Nakano (1988) restricted the search space by placing a limit on the depth of the

search. Both these heuristics have the potential for adverse rule quality outcomes

as the method could overlook some important rules.

Maire (1997), Krishnan (1996) and Nayak et al. (1997) all suggested methods

based on weight ordering to limit the search space without overlooking important

rules. The method suggested by Maire (1997) is similar to the COMBO algorithm

(Krishnan 1996). COMBO is applicable to feedforward networks with Boolean

inputs. COMBO Wrst sorts the incoming weights of a particular node in descend-

ing magnitude then forms a ‘combination tree’ of the sorted weights. The combi-

nation tree for a unit with four incoming weights (already sorted) is shown in

Figure 12.1. The premise is that judicious pruning of the combination tree can

reduce the search space while at the same time preserving all important rules.

Pruning can occur:

1. At the same level in the tree. If any combination at any level fails then all other

combinations at this level can be pruned away. This is because all the combina-

tions at the same level have the same length, and, because of the ordering of the



Figure 12.1. A combination tree.
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weights, if a combination at a level fails, then all other combinations at the same

level will also fail as their weighted sum will be less than the weighted sum of the

combination that failed. Hence they need not be considered in the search for

rules.

2. At deeper levels of the tree. If a combination at a level succeeds in forming a rule

then all combinations in the subtree of which it is a root can be pruned away.

Although these combinations will also succeed in forming a rule, these rules

will be less general than the rule formed from the root of the subtree.

The LAP technique described by Nayak et al. (1997) is suitable for application to

feedforward networks with Boolean inputs and extracts all possible rules from

each hidden and output node of the network. LAP assumes an N-dimensional

input such that any input vector x
i
has N corresponding attributes A

1
, A

2
, . . .A

N

and any attribute A
j
has E A

j
E[ 1 associated possible values that correspond to

network inputs, which is sparse coded to a k-dimensional input space in M0, 1Nk

where k = &N
j=1

E A
j
E . Sets of weights corresponding to each attribute are formed

and then ordered. A sum is formed from the largest weight from each set and this

sum is tested against the bias to see whether the unit will have a high output. A

procedure that recursively drops weights and tests the sum of the maximum

weights of those remaining in the sets against the network bias is employed to Wnd

a set of inputs in each dimension such that dropping any of them will cause the

unit not to Wre. The resulting set can be expressed as a rule of the form:

IF x
i
value for attribute 1 M Msubset of attribute 1 valuesN

AND x
i
value for attribute 2 M Msubset of attribute 2 valuesN

. . .

AND x
i
value for attribute N M Msubset of attribute N valuesN

THEN perceptron will Wre

where x
i
is some input vector. If any subset of values for an attribute contains all
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possible values then the rule antecedent corresponding to the test for membership

for the attribute can be dropped as the attribute is not used to discriminate

between input vectors. Although these methods do signiWcantly reduce the search

space they are still exponential in the worst case.

Towell & Shavlik’s (1993) M-of-N algorithm addresses the crucial question of

reducing the complexity of rule searches by clustering the ANN weights into

equivalence classes and then explicitly searching for rules of the form:

If (M of the following N antecedents are true) then . . .

For example, with reference to the unit shown below:

the four extracted rules could be written as the single rule

If 3 of (B,C,D, not E) then A.

Towell & Shavlik (1993) cited as one of the main attractions of the M-of-N

approach a natural aYnity between M-of-N rules and the inductive bias of ANNs.

Towell & Shavlik used two dimensions, namely (a) ‘the rules must accurately

categorize examples that were not seen during training’, and (b) ‘the extracted

rules must capture the information contained’ in the knowledge-based ANN

(KNN), for assessing the quality of rules extracted both from their own algorithm

and from the set of algorithms they use for the purposes of comparison. In their

view the M-of-N idea inherently yields a more compact rule representation than

conventional conjunctive rules produced by algorithms such as Subset. In addi-

tion the M-of-N algorithm outperformed a subset of published symbolic learning

algorithms in terms of the accuracy and Wdelity of the rule set extracted from a

cross-section of problem domains including two from the Weld of molecular

biology, namely the gene promoter recognition problem and the splice-junction

determination problem. The phases of M-of-N algorithm are shown in Table 12.2.

Techniques that can directly decompile network weights to rules obviate the



Table 12.2. The M-of-N technique

1. Generate an artiWcial neural network using the KBANN system and train using

back-propagation. With each hidden and output unit, form groups of similarly weighted links.

2. Set link weights of all group members to the average of the group.

3. Eliminate any groups that do not signiWcantly aVect whether the unit will be active or inactive.

4. Holding all link weights constant, optimize biases of all hidden and output units using the

back-propagation algorithm.

5. Form a single rule for each hidden and output unit; the rule consists of a threshold given by the

bias and weighted antecedents speciWed by the remaining links.

6. Where possible, simplify rules to eliminate superXuous weights and thresholds.

KBANN, knowledge-based artiWcial neural network.
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need to involve exhaustive search-and-test strategies in the rule extraction algo-

rithm and thus make the algorithm computationally eYcient. In order that direct

decompilation be possible, a meaning relevant to the problem domain must be

able to be ascribed to each:

1. hidden and output unit of the ANN; and

2. each weight of each hidden and output unit.

Local function networks such as radial basis function (RBF) networks with a single

hidden layer of basis function units perform function approximation and classiW-

cation by mapping a local region of input space (hypercube or hyperellipsoid)

directly to an output. Conditions (1) and (2) above can be met by either

constraining the network such that at most one hidden unit exhibits appreciable

activation in response to an input pattern, or by including in the extracted rule a

‘belief value’ or ‘certainty factor’ that indicates the degree to which the individual

unit contributed to the output.

Under these circumstances individual hidden units can be decompiled to form

a rule of the form:

IF the input lies in the hypercube represented by the hidden unit

THEN consequent represented by the hidden unit output is TRUE.

Examples of rule extraction by direct decompilation of weights to rules include the

method described by Tresp et al. (1993), the RULEX algorithm of Andrews & Geva

(1995, 1996a,b, 1997) and the technique described by Berthold & Huber

(1995a,b). (A more complete description of RULEX and the method described by

Tresp et al. can be found under Rule reWnement, p. 277, below.)

Berthold & Huber (1995a,b) structure their rectangular basis function (RecBF)

networks in such a way that there is a one-to-one correspondence between hidden
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Figure 12.2. A RecBF unit. For explanation of symbols, see the text.
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units and rules. RecBF networks consist of an input layer, a hidden layer of RecBF

units, and an output layer with each unit in the output layer representing a class.

The hidden units of RecBF networks are constructed as hyper-rectangles with their

training algorithm derived from that used to train RBF networks.

The hyper-rectangles are parameterized by a reference vector, r, which gives the

centre of the rectangle, and two sets of radii, j+,−
i

, which deWnes the core-rectangle,

and "+,−
i

, which describes the support rectangle (see Figure 12.2).

The core rectangle includes data points that deWnitely belong to the class and

the boundary of the support rectangle excludes data points that deWnitely do not

belong to the class, i.e. the support rectangle is simply an area where there are no

data points.

R(·), the activation function for a RecBF unit is:

R(x) = min
1pipn

A(x
i
, r

i
, j−

i
, j+

i
), (12.1)

where x represents the input vector, r represents the reference vector of the unit, r

(see below) is a vector representing individual radii in each dimension and A(·) is

the Signum activation function:

A(x
i
, r

i
, r

i
) =G

1: r − j−
i
p x

i
p r

i
+ j+

i

0: else
. (12.2)

Training the RecBF network is by the dynamic decay algorithm (DDA) (Berthold

& Huber 1995a). This algorithm is based on three steps:
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Covered: a new training point lies inside the support rectangle of an existing

RecBF. Extend the core rectangle of the RecBF to cover the new point.

Commit: a new pattern is not covered by a RecBF of the correct class. Add a new

RecBF with centre the same as the training instance and widths as large as

possible to avoid overlapping any existing RecBF.

Shrink: a new pattern is incorrectly classiWed by an existing RecBF. The RecBF’s

widths are shrunk so that the conXict is resolved.

Because RecBF hyper-rectangles have Wnite radii in each input dimension a

straightforward conversion from RecBF weights to rules can be performed result-

ing in rules of the form:

IF " 1 p i p n : x
i
M [r

i
− j−

i
, r

i
− j+

i
] \ (r

i
− "−

i
, r

i
−"+

i
)

THEN Class c.

Here [r
i
− j−

i
, r

i
− j+

i
] represents the core rectangle region of the RecBF unit and

(r
i
− "−

i
, r

i
−"+

i
) represents the support rectangle region of the RecBF unit.

Rules of this form have a condition clause for each of the n dimensions of the

problem domain. This reduces the comprehensibility of the extracted rule set by

including rules that contain antecedents for don’t care dimensions i.e. dimensions

that the network does not use to discriminate between input patterns. Don’t care

dimensions are those where r
i
− j−

i
p x

imin
and r

i
− j+

i
q x

imax
where x

imin
is the

smallest possible allowable value of the i-th input dimension and x
imax

is the

largest possible allowable value of the i-th input dimension. Using the above

scheme condition clauses for don’t care dimensions are removed from the rules

extracted from RecBF networks.

Saito & Nakano’s (1996) RF5 (rule extraction from facts version 5) algorithm

extracts scientiWc laws of the form:

y
t
= c

0
+

h

;
i=1

c
i
xwi1

t1
. . . xwin

tn
,

where each parameter c
i
or w

ij
is an unknown real number and h is an unknown

integer. The technique is based on an ANN that uses product units (Durbin &

Rumelhart 1989) in the hidden layer. Product units calculate a weighted product

of input values, where each input value is raised to a power determined by a

variable weight. Saito & Nakano (1996) developed their own second-order learn-

ing algorithm called BPQ. After training, each product unit represents a term in

the above expression. Because it is not possible to determine a priori the optimum

number of hidden layer product units, several networks with diVerent numbers of

hidden layer units are trained and then a technique called minimum description

length (MDL) criterion (Rissanen 1989) is utilized to select the best-law candidate



Table 12.3. The VIA algorithm

1. Assign arbitrary intervals to all (or a subset of all) units in the ANN. These intervals constitute

constraints on the values for the inputs and the activations of the output.

2. ReWne the intervals by iteratively detecting and excluding activation values that are provably

inconsistent with the weights and biases of the network.

3. The result of step (2) is a set of intervals that are either consistent or inconsistent with the

weights and biases of the network. (In this context an interval is deWned as being inconsistent if

there is no activation pattern whatsoever that can satisfy the constraints imposed by the initial

validity intervals.)
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from among the trained networks. The technique has been applied to artiWcial

data with both integer and real-valued exponents and to real-world data including

discover-ing Hagen–Ruben’s law, Kepler’s third law and Boyle’s law. Experiments

showed that RF5 successfully discovered the underlying laws even if the data

contained a small amount of noise.

Pedagogical rule extraction techniques

One of the earliest published pedagogical approaches to rule extraction is that of

Saito & Nakano (1988). In this implementation the underlying ANN is treated as a

‘black box’, with rules from a medical diagnostic problem domain being extracted

from changes in the levels of the input and output units. Saito & Nakano also deal

with the problem of constraining the size of the solution space to be searched by

avoiding meaningless combinations of inputs (i.e. medical symptoms in this

problem domain) and restricting the maximum number of coincident symptoms

to be considered. Even with these heuristics in place, the number of rules extracted

on a relatively simple problem domain was exceedingly large. This result high-

lights one of the major concerns with rule extraction techniques, namely that the

end-product is explanation and not obfuscation.

The validity interval analysis (VIA) technique developed by Thrun (1994) is the

epitome of a pedagogical approach in that it extracts rules that map inputs directly

into outputs. The algorithm uses a generate-and-test procedure to extract sym-

bolic rules from standard back-propagation ANNs which have not been speciW-

cally constructed to facilitate rule extraction. The basic steps in the procedure are

shown in Table 12.3.

Thrun (1994) likens the approach to sensitivity analysis in that it characterizes

the output of the trained ANN by systematic variations in the input patterns and

examining the changes in the network classiWcation. The technique is fundamen-

tally diVerent from other techniques that analyse the activations of individual



Table 12.4. The rule-extraction-as-learning technique

/* initialize rules for each class */

for each class c

R
c
:= 0

repeat

e := Examples()

c := Classify(e)

if e not covered by R
c
then

/* learn a new rule */

r := conjunctive rule formed from e

for each antecedent r
i
of r

ṙ := r but with r
i
dropped

if Subset(c, ṙ) = true then r := ṙ

R
c
:= R

c
X r

until stopping criterion met
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units within a trained ANN in that focus is on what are termed validity intervals. A

validity interval of a unit speciWes a maximum range for its activation value. The

resultant technique provides a generic tool for checking the consistency of rules

within a trained ANN. The VIA algorithm is designed as a general purpose rule

extraction procedure. Thrun uses a number of examples to illustrate the eYcacy of

his VIA technique including (1) the XOR problem, (2) the ‘Three Monks’

problem(s), and (3) a robot arm kinematics (i.e. continuously valued domain)

problem. While the VIA technique does not appear to be limited to any speciWc

class of problem domains Thrun (1994) reported that VIA failed to generate a

complete set of rules in a relatively complex problem domain involving the task of

training a network to read aloud (NETtalk).

The Rule-extraction-as-learning approach of Craven & Shavlik (1994) is another

signiWcant development in rule extraction techniques utilizing the pedagogical

approach. The core idea is to ‘view rule extraction as a learning task where the

target concept is the function computed by the network and the input features are

simply the network’s input features’. A schematic outline of the overall algorithm

is shown in Table 12.4.

The role of the Examples function is to provide training examples for the

rule-learning algorithm. The options used are (1) select members of the set used

for training the ANN, (2) random sampling, or (3) random creation of examples

of a speciWed class (see Table 12.5).

Craven & Shavlik use a function which they call Subset which is diVerent from

the Subset algorithm proposed by Towell & Shavlik (1993) to determine whether



Table 12.5. Option 3 of Examples algorithm in rule-extraction-as-learning

/* create a random example */

for each feature e
i
with possible values v

i1
, . . ., v

in

e
i
:= randomly-select(v

i1
, . . ., v

in
)

calculate the total input s to output unit (which has a threshold value h)

if s q h then return e

impose random order on all feature values

/* consider the values in order */

for each value v
ij

if changing feature e
i
’s value to v

ij
increases s

e
i
:= v

ij

if s q h then return e
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the modiWed rule still agrees with the network, i.e. whether all instances that are

covered by the rule are members of the given class.

A salient characteristic of this technique is that, depending on the particular

implementation used, the rule-extraction-as-learning approach can be classiWed

either as pedagogical or decompositional. The key is in the procedure used to

establish if a given rule agrees with the network. This procedure accepts a class

label c and a rule r, and returns true if all instances covered by r are classiWed as

members of class c by the network. If, for example, Thrun’s (1994) VIA algorithm

(as discussed previously) is used for this procedure then the approach is pedagogi-

cal, whereas if an implementation such as that of Fu (1991) is used the classiWca-

tion of the technique is decompositional.

The algorithm is designed as a general purpose rule extraction procedure and its

applicability does not appear to be limited to any speciWc class of problem

domains. Craven and Shavlik illustrate the eYcacy of their technique on the

prokaryotic promoter recognition problem from the Weld of molecular biology.

One of the stated aims of the authors is to reduce the amount of computation to

achieve the same degree of rule Wdelity as the decompositional (or search-based)

algorithms. One of the crucial diVerences between this algorithm and search-

based extraction methods is that it explores the space of rules from the bottom up

as distinct from the conventional top down approach.

As with the VIA technique discussed earlier, the rule-extraction-as-learning

technique does not require a special training regime for the network. The authors

suggest two stopping criteria for controlling the rule extraction algorithm: (1)

estimating whether the extracted rule set is a suYciently accurate model of the

ANN from which the rules have been extracted; or (2) terminating after a certain

number of iterations have resulted in no new rules (i.e. a patience criterion).

Craven’s (1996) TREPAN (see Table 12.6) is a general purpose algorithm for



Table 12.6. The TREPAN algorithm

TREPAN (training—examples, features)

Queue := 0; /* sorted queue of nodes to expand */

for each example E M training—examples /*use trained ANN to label examples*/

class label for E := ORACLE(E)

initialize the root of the tree, T, as a leaf node

put ST, training—examples, MNT into Queue

while Queue is not empty and size(T)\ tree—limit—size /*expand a node*/

remove node N from head of Queue

examples
N

:= examples of set stored with N

constraints
N

:= constraint set stored with N

use features to build a set of candidate splits

use examples
N

and calls to ORACLE(constraints
N
) to evaluate splits

S := best binary split

search for best M-of-N split, S@, using S as a seed

make N an internal node with spit S@

for each outcome s, of S@ /*make children nodes*/

make C, a new child node of N

constraints
C
:= constraints

N
XMS@ = sN

use calls to ORACLE(constraints
C
) to determine whether C should remain a leaf, otherwise

examples
C
:= members of examples

N
with outcome s on split S@ put SC, examples

C
,

constraints
C
T into Queue
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extracting a decision tree from any learned model (ANN or symbolic). TREPAN

uses queries to induce a decision tree that approximates the concept acquired by a

given inductive learning method.

TREPAN has been evaluated on the Cleveland Heart Disease database from the

University of California at Irvine machine learning repository, a variation of the

gene promoter recognition problem used by Towell & Shavlik (1993), and a

problem in which the task was to recognize protein-coding regions in DNA

(Craven & Shavlik 1993). Analysis of results showed that TREPAN exhibits high

Wdelity with the model from which its trees are derived, high predictive accuracy

and is comparable in complexity with other decision trees trained on the same

problem, for example C4.5 (Quinlan 1993) and ID2-of-3 (Murphy & Pazzani

1991). Craven & Shavlik (1993) pointed out that another signiWcant advantage of

this model over other rule extraction techniques is that it scales well to problems of

higher dimensionality.



Figure 12.3. Schematic outline of the three basic phases of the DEDEC approach. FD, functional
dependency.
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Eclectic rule extraction technique

In addition to the two main categories of rule extraction techniques (decomposi-

tional and pedagogical), Andrews et al. (1995) also proposed a third category,

which they labelled eclectic. This category was designed to accommodate those rule

extraction techniques which incorporate elements of both the decompositional

and pedagogical approaches. In reality the eclectic category is a somewhat diVuse

group. This can be illustrated by the fact that one prominent example of an eclectic

technique is the variant of the rule-extraction-as-learning technique of Craven &

Shavlik (1994), which utilizes the (decompositional) KT algorithm of Fu (1991,

1994) in the role of determining whether a given rule is consistent with the

underlying ANN network.

Another example of the eclectic approach to ANN knowledge elicitation is the

DEDEC (Decision Detection) approach of Tickle et al. (1994, 1996). Essentially,

DEDEC extends into the domain of knowledge elicitation from trained ANNs the

work on identifying ANN causal factors (Garson 1991), reducts (Pawlak 1991)

and functional dependencies (Geva & Orlowski 1996) as a precursor to rule

extraction.

Figure 12.3 shows an overall schematic outline of the three basic phases of the

DEDEC approach. DEDEC is designed to be applicable across a broad class of

multilayer feedforward ANNs trained using the back-propagation technique and

the starting point is Phase 1, in which an ANN solution to a given problem domain

is synthesized. The intermediate phase (Phase 2) is where the task of identifying a

set of causal factors and functional dependencies is performed. Hence it is this

phase that distinguishes DEDEC from other pedagogically based rule extraction

techniques and which provides the basis for assigning DEDEC to the eclectic rule

extraction category.
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To date, two diVerent weight vector analysis techniques have been developed

and applied in DEDEC Phase 2. The Wrst of these utilizes an existing algorithm

(Garson 1991) for determining causal factors in a trained ANN based on calculat-

ing the relative weight shares of the ANN inputs. Within DEDEC Phase 2 this basic

algorithm has been adapted and extended for use in a broad range of ANN

architectures including cascade correlation (Fahlman & Lebiere 1991) and an

implementation of a local response ANN network (Geva & Sitte 1993). In addition

to the weight sharing technique, DEDEC also incorporates a coeYcient reduction

approach to identifying causal factors and functional dependencies in a trained

ANN using an adaptation of an algorithm originally designed to be used in

conjunction with linear programming problems.

For the DEDEC approach, the Wnal phase (Phase 3) is essentially the learning or

pedagogical phase. It comprises a set of basic algorithms and techniques for

eliciting the requisite sets of symbolic rules by learning from a selected set of cases

generated by the trained ANN using the causal factor/functional dependency

information extracted at Phase 2.

Techniques for the extraction of fuzzy rules

Parallel to the development of techniques for extracting Boolean rules from

trained ANNs has been the synthesis of corresponding techniques for extracting

fuzzy rules – the so-called neurofuzzy systems. Analogous to the techniques

discussed previously for conventional Boolean logic systems, typically, neurofuzzy

systems comprise three distinct elements. The Wrst is a set of mechanisms/
procedures to insert existing expert knowledge in the form of fuzzy rules into an

ANN structure (i.e. a knowledge initialization phase). The essential diVerence here

is that this step involves the generation of representations of the corresponding

membership functions. The second element is the process of training the ANN,

which, in this case, focuses on tuning the membership functions according to the

patterns in the training data. The third element in the process is the analysis and

extraction of the reWned knowledge embedded in the form of a set of modiWed

membership functions. Horikawa et al. (1992) observed that the identiWcation of

the initial set of fuzzy inference rules to be modelled has proved to be a diYcult

task as have attempts at simultaneously undertaking the tasks of rule identiWcation

and membership tuning.

One of the earliest works in this area was that of Masuoka et al. (1990), who

used a decompositional approach to reWne an initial set of fuzzy rules extracted

from experts in the problem domain. The technique incorporates a specialized

three-phase ANN architecture. In the input phase a three-layer ANN comprising

an input unit, one or two hidden units, and an output unit was used to represent
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the membership function of each rule antecedent (i.e. the input variables). The

fuzzy operations on the input variables (e.g. AND, OR, etc.) are represented by a

second distinct phase labelled as the rule net (RN) phase and the membership

functions that constitute the rule consequents are represented in a third (output)

phase using the same motif as for the input phase. In this technique the problem of

eliciting a compact set of rules as the output is tackled by pruning at the RN phase

those connections in the network which are less than a threshold value.

In a similar vein, Berenji (1991) demonstrated the use of a specialized ANN to

reWne an approximately correct knowledge base of fuzzy rules used as part of a

controller. (The problem domain selected in this case was a cart-pole balancing

application.) The salient characteristic of this technique is that the set of rules

governing the operation of the controller are known and the ANN is used to

modify the membership functions both for the rule preconditions and the rule

conclusions.

Horikawa et al. (1992) developed three types of fuzzy neural networks that can

automatically identify the underlying fuzzy rules and tune the corresponding

membership functions by modifying the connection weights of the ANNs using

the back-propagation algorithm. In this approach, the initial rule base is created

either by using expert knowledge or by selectively iterating through possible

combinations of the input variables and the number of membership functions.

The fuzzy neural network model FuNe I developed by Halgamuge & Glesner

(1994) generalizes this work by using a (rule based) process to initially identify

‘rule relevant nodes for conjunctive and disjunctive rules for each output’.

Halgamuge & Glesner reported on the successful application of the FuNe I

technique to a benchmark problem involving the classiWcation of iris species as

well as three real-world problems involving the classiWcation of solder joint

images, underwater sonar image recognition, and handwritten digit recognition.

Both the FNES (fuzzy neural expert system) of Hayashi (1990) and the fuzzy-

MLP model of Mitra (1994) speciWcally address the problem of providing the

end-user with an explanation (justiWcation) as to how a particular conclusion has

been reached. In both techniques the set of rule antecedents is determined by

analysing and ranking the weight vectors in the trained ANN to determine their

relative inXuence (impact) on a given output (class). However, whereas FNES

relies on the involvement of an expert at the input phase to convert the input data

into the required format, in the fuzzy-MLP procedure, this process has been

automated. Both the FNES and fuzzy-MLP models have been applied to the

medical problem domain of diagnosing hepatobiliary disorders, the latter showing

an improved set of results (in terms of rule accuracy) over the former. In part this

improvement is attributable to the more complex ANN architecture used in

fuzzy-MLP, namely three hidden layers vs. one hidden layer in FNES. (The FNES

architecture also includes direct connections between the input and output layers.)
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Okada et al. (1993) incorporated elements of knowledge initialization, rule

reWnement (via the tuning of membership functions), and rule extraction in a

fuzzy inference system incorporating a seven-layer structured ANN. In this imple-

mentation, two layers of the model are used to provide representations of the

membership functions for the input variables (presented in a separate input layer)

and another layer is used to represent membership functions for the rule conse-

quents. Separate layers are also used to construct the rule antecedents (incorporat-

ing mechanisms for supporting fuzzy logical operations) and rule consequents.

The authors report a signiWcant improvement in prediction accuracy of the model

in comparison with a conventional three-layer neural network in the application

problem domain of Wnancial bond rating.

Fuzzy ARTMAP developed by Tan & Carpenter 1993; Carpenter & Tan, 1995 is

another example of a situation in which a highly eVective rule extraction algo-

rithm has been designed to work in conjunction with a speciWc supervised learning

ANN, i.e. the fuzzy ARTMAP system. The algorithm is decompositional because a

characteristic feature of the Fuzzy ARTMAP system is that each (category) node

roughly corresponds to a rule. Furthermore, the weight vector associated with

each node can be directly translated into a verbal or algorithmic description of the

rule antecedents. This is in contrast to a ‘conventional’ back-propagation network

where the role of hidden and output units in the total classiWcation process is not

usually as explicit. Fuzzy ARTMAP has been applied to the problem of diagnosing

diabetes in Pima Indians according to World Health Organization criteria, with a

resulting 76% prediction accuracy from six extracted fuzzy rules. Extracted rules

are of the form:

IF number of times pregnant is medium to very high,

AND plasma glucose concentration is medium to high,

AND diastolic blood pressure is medium to very high,

AND triceps skin fold thickness is very low to medium,

AND 2-hour serum insulin is below medium,

AND body mass index is not very high,

AND diabetes pedigree function is below medium,

AND age is not extreme,

THEN diabetes is very likely.

Rule refinement

A problem ancillary to that of rule extraction from trained ANNs is that of using

the ANN for the reWnement of existing rules within symbolic knowledge bases.

Whereas the rule extraction process normally commences with an empty symbolic
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rule base, the starting point for the rule reWnement process is some initial

knowledge about the problem domain expressible in the form of symbolic rules. A

crucial point, however, is that the initial set of rules may not necessarily be

complete or even correct (Giles & Omlin 1993a,b). Irrespective of the quality of

the initial rule base, the goal in rule reWnement is to use a combination of ANN

learning and rule extraction techniques to produce a better (i.e. a reWned) set of

symbolic rules that can then be applied back in the original problem domain. In

the rule reWnement process, the initial rule base (i.e. what may be termed prior

knowledge) is inserted into an ANN by programming some of the weights. (In this

context, prior knowledge refers to all of the production rules known prior to

commencement of the ANN training phase.) The rule reWnement process then

proceeds in the same way as normal rule extraction, namely (a) train the network

on the available data set(s) and (b) extract (in this case the reWned) rules – with the

proviso that the rule reWnement process may involve a number of iterations of the

training phase rather than a single pass.

The Wrst successful method for prestructuring an ANN such that the classiWca-

tion behaviour of the network was consistent with a given set of propositional

rules was Towell & Shavlik’s (1993) KBANN algorithm. KBANN is in essence a

domain theory reWnement system. An initial approximately correct domain the-

ory is provided as a propositional rule base, the KBANN network is created from

the rules and then trained with examples drawn from the problem domain. Finally

a reWned set of M-of-N rules are extracted from the trained network. Figure 12.4

shows the process of converting a rule-based knowledge base (a) to the corre-



279 Extracting rules from trained ANNs

sponding hierarchical representation of the knowledge base (b) to a knowledge-

based neural network (KNN) (c) that represents the rule base.

In Figure 12.4b the solid and dotted lines represent necessary and prohibitory

dependencies, respectively. The KNN shown in Figure 12.4c results from the

translation of the knowledge base. Units X and Y in Figure 12.4c are introduced to

handle the disjunction in the rule set. Otherwise each unit in the KNN corre-

sponds to a consequent or an antecedent in the knowledge base. The thick lines in

part c represent heavily weighted links in the KNN that correspond to depend-

encies in the knowledge base. The thin lines in part c represent links added to the

network to allow reWnement of the knowledge base.

The core requirements of the KBANN/M-of-N approach are: (a) the require-

ment for either a rule set to initialize the ANN or a special training algorithm that

uses a soft-weight sharing algorithm to cluster weights; (b) the requirement for a

special network training regime; (c) the requirement for hidden units to be

approximated as threshold units (this is achieved by setting the parameter s in the

activation function 1/[1 + e−sx] to be greater than a value of 5.0); and (d) the

requirement that the extracted rules use an intermediate term to represent each

hidden unit. This gives rise to the concern that the approach may not enable a

suYciently accurate description of the network to be extracted (Towell & Shavlik

1993). It is also worth noting that one of the basic tenets of the KBANN approach

is that the meaning of a hidden unit in the ANN, generated as part of the

initialization process, does not change during the training process. Given that

KBANN is essentially a rule reWnement system this may be true in general and, in

fact, Towell & Shavlik (1993) reported empirical conWrmation from trained ANNs

in their study. However, in the case where the meaning of a unit does change

during training, the comprehensibility of the extracted rules may be signiWcantly

degraded. Opitz & Shavlik (1995) described the TopGen algorithm that signiW-

cantly enhances the utility of KBANN by allowing the addition of semantically

meaningful nodes to the network during training. The facility to add such nodes

reduces the dependency on having the initial domain theory nearly complete and

correct.

Local function networks (such as RBF networks) are inherently suitable for rule

reWnement because there is a one-to-one correspondence between rules and basis

function units. (The conversion from basis function unit to rule and vice versa is

achieved by describing the area of response of the unit in terms of a reference

vector that represents the centre of the unit and a set of radii that determine the

eVective range of the unit in each input dimension. The rule associated with the

unit has antecedents formed by the conjunct of these eVective ranges in each

dimension and consequent given by the concept represented by the unit.) This

means that
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initial rules can be readily converted to hidden layer basis function units during

the network initialization phase;

new units that have a meaning directly related to the problem domain can be

added during training to supplement an initial weak domain theory;

the initialized ‘meaning’ of a hidden layer unit can alter during the training and

the rule extracted from the unit after training has been completed will still have

a valid meaning within the problem domain;

each hidden layer basis function can be easily and directly decompiled to a rule

after training has been completed.

Tresp et al. (1993) described a technique for reWning rules using RBF networks. An

ANN y = NN(x), which makes a prediction about the state of y given the state of its

input x, can be instantiated as a set of basis functions, b
i
(x), where each basis

function describes the premise of the rule that results in prediction y. The degree

of certainty of the rule premise is given by the value of b
i
(x), which varies

continuously between 0 and 1. The rule conclusion is given by w
i
(x) and the

network architecture is given as:

y = NN(x) =
&

i
w

i
(x)b

i
(x)

&
j
b

j
(x)

. (12.3)

If the w
i

values are constants and the basis functions chosen are multivariate

Gaussians (i.e. individual variances in each dimension), Eq. (12.3) reduces to the

network described by Moody & Darken (1989).

They show how the basis functions can be parameterized by encoding simple

logical if–then expressions as multivariate Gaussians, thus facilitating both rule

initialization and extraction. For instance the rule

IF [(x
1
[ a) AND (x

4
[ b)] OR (x

2
[ c) THEN y = dx2

is encoded as

conclusion:
premise: b

i
(x) = expA−

1

2

(x
1
− a)2 + (x

4
− b)2

p2 B+ expA−
1

2

(x
2
− c)2

p2 B
conclusion

i
: w

i
(x) = dx2.

The initial knowledge base can be reWned by allowing network training to proceed

in any of four modes including:

1. Forget, where training data is used to adapt NNinit by gradient descent (i.e. the

sooner training stops, the more initial knowledge is preserved);

2. Freeze, where the initial conWguration is frozen (i.e. if a discrepancy between

prediction and data occurs, a new basis function is added);
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3. Correct where a parameter is penalized if it deviates from its initial value; and

4. Internal Teacher where the penalty is formulated in terms of the mapping

rather than in terms of the parameters.

ClassiWcation is performed by applying Bayesian probability and rule extraction is

performed by directly decompiling the Gaussian (centre: k
ij
, width: d

ij
) pairs to

form the rule premise and attaching a certainty factor, w
i
to the rule.

After training is complete, a pruning strategy is employed to arrive at a solution

that has the minimum number of basis functions (rules), and the minimum

number of conjuncts for each rule.

The RULEIN/RULEX rule reWnement algorithm of Andrews & Geva (1995,

1996a,b, 1997) is based on the RBF network (Geva & Sitte 1994), which consists of

an input layer, a hidden layer of local basis function units, and an output layer and

performs function approximation and classiWcation in a manner similar to RBF

networks. The hidden layer basis function units are constructed using pairs of

sigmoids; one pair forms each input dimension. An incremental, constructive

training algorithm is used, with training that involves adjusting, by gradient

descent, the centre c
i
, breadth b

i
and edge steepness k

i
parameters of the sigmoids

that deWne the local basis function units. During training for classiWcation prob-

lems, the output weight, w, is held constant at a value such that the hidden units

are prevented from ‘overlapping’, i.e. no more than one unit contributes appreci-

ably to the network output. This measure facilitates rule extraction by allowing

individual hidden units to be interpreted as rules in isolation of all other units.

RULEX extracts a rule set from the network solution by interpreting each

hidden unit as a single if–then rule. The antecedents for the rule associated with a

hidden unit are formed from the conditions that cause the hidden unit to produce

appreciable output, i.e. an input pattern lies wholly within the hypercube repre-

sented by the responsive area of the hidden unit (each component x
i
of the input

vector x lies within the active range of the basis function in the i-th input

dimension). The rule describing the behaviour of the hidden unit will then be of

the form:

IF " 1 p i p n : x
i
M [x

i lower
, x

iupper
]

THEN pattern belongs to the target class,

where x
i lower

represents the lower limit of activation of the unit in the i-th input

dimension and x
iupper

represents the upper limit of activation of the unit in the i-th

input dimension and n is the dimensionality of the input.

The range of input values, [x
i lower

, x
iupper

], in the i-th input dimension that will

produce appreciable output from the hidden units corresponding to the i-th ridge

can be calculated directly from the network equations without the need for
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employing a search-and-test strategy, thus making RULEX computationally eY-

cient.

RULEIN converts a propositional if–then rule into the parameters that deWne a

local basis function unit by determining from the rule the active range in each

dimension for the unit to be conWgured. RULEIN sets the upper and lower bounds

of the active range, [x
i lower

, x
i upper

], and then calculates the centre, breadth, and

steepness parameters (c
i
, b

i
, k

i
) for each of the sigmoid pairs used to construct the

local basis function that will represent the rule.

Setting x
i lower

and x
i upper

, appropriately involves choosing values such that they

‘cut oV ’ the range of antecedent clause values. For discriminating ranges, i.e. those

ranges that represent input pattern attributes that are used by the unit in classify-

ing input patterns, these required values will be those that are mentioned in the

antecedent of the rule to be encoded. For non-discriminating ranges, the active

range can be set to include all possible input values in the corresponding input

dimension. (Non-discriminating ranges will be those that correspond to input

pattern attributes that do not appear as antecedent clauses of the rule to be

encoded.) After the network has been initialized hidden units that represent rules

that are known to be accurate or deemed to be important can be ‘frozen’ so that

they will not be altered during network training. RULEIN/RULEX has been

evaluated on the Cleveland Heart Disease database and the Hypothyroid database

from the University of California at Irvine machine learning repository. Results

indicate that RULEIN/RULEX can extract accurate, comprehensible rules that

show high Wdelity with the underlying trained RBF network.

Work in the area of rule reWnement and recurrent networks has centred on the

ability of recurrent networks to learn the rules underlying a regular language

(where a regular language is the smallest class of formal languages in the Chomsky

hierarchy; Hopcroft & Ullman 1979). Giles & Omlin (1993a,b, 1996) stated that a

regular language is deWned by a grammar G = SS, N, T, PT where S is the start

symbol, N is the non-terminal symbol, T is the terminal symbol; and

P = is a production of the form A ] a or A ] aB where AB M N, and a M T.

The regular language generated by G is denoted L(G).

Giles & Omlin (1993a,b, 1996) also discussed the equivalence between the

regular language L and the deterministic Wnite-state automata (DFA) M, which

acts as an acceptor for the language L(G), i.e. DFA M accepts only strings that are

members of L(G). They formally deWne a DFA as a quintuple M = S&, Q, R, F, dT
where:

& = Ma
1
, . . ., a

m
N is the alphabet of the language L;

Q = Mq
1
, . . ., q

n
N is a set of states;

R M Q is a start state;



Table 12.7. Giles & Omlin’s (1993a,b) method for extracting DFA from recurrent
networks

1. Divide the output of each of the N state neurons into q intervals (quantization levels). This

results in qN partitions of the hidden state unit space.

2. Starting in a deWned initial network state generate a search tree with the initial state as its root

and the number of successors of each node equal to the number of symbols in the input

alphabet. (Links between nodes correspond to transitions between DFA states.)

3. Perform (breadth Wrst) search of the tree by presenting all strings up to a certain length in

alphabetical order starting with length 1. Make a path from one partition to another. When:

(a) A previously visited partition is reached; then only the new transition is deWned between the

previous and the current partition, i.e. no new DFA state is created and the search tree is

pruned at that node.

(b) An input causes a transition immediately to the same partition; then a loop is created and the

search tree is pruned at that node.

4. Terminate the search when no new DFA states are created from the string set initially chosen and

all possible transitions from all DFA states have been extracted.

5. For each resulting path, if the output of the response neuron is greater than 0.5 the DFA state is

accepting; otherwise the DFA state is rejecting.

DFA, deterministic Wnite-state automata.
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FU Q is a set of accepting states; and

d : Q ]&] Q deWnes state transitions in M.

Acceptance of a string x by the DFA M is deWned as the DFA M reaching an

accepting state after being read by M. Acceptance of the string x by the DFA M

implies that x is a member of the regular language L(M), (and hence also by the

regular language L(G)).

Cleeremans et. al. (1989), Williams & Zipser (1989) and Elman (1990) showed

that recurrent networks were capable of being trained such that the behaviour of

the trained network emulated a given DFA. Cleeremans et al. (1989) concluded

that the hidden unit activations represented past histories and that clusters of

these activations represented the states of the generating automaton. Giles et al.

(1992) extended the work of Cleeremans and described a technique for extracting

complete from second-order, dynamically driven recurrent networks and is de-

scribed in Table 12.7.

The networks used by Giles & Omlin (1993a,b) have N recurrent hidden units

labelled S
j
, K special non-recurrent input units labelled I

k
, and N2 ] K real-valued

weights labelled W
ijk

. The values of the hidden neurons are referred to collectively

as state vectors S in the Wnite N-dimensional space [0, 1]N. (Second order is taken

to mean that the weights W
ijk

modify a product of the hidden (S
j
) and input (I

k
)
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neurons, which allows a direct mapping of Mstate, inputN F Mnext stateN and

means the network has the representational potential of at least Wnite-state

automata; Giles & Omlin 1993a,b.)

The extracted DFA depends on:

1. the quantization level, q, chosen. DiVerent DFAs will be extracted for diVerent

values of q;

2. the order in which strings are presented (which leads to diVerent successors of a

node visited by the search tree).

Giles & Omlin (1993a,b) stated that these distinctions are usually not signiWcant

as they employ a minimization strategy (Hopcroft & Ullman 1979), which guaran-

tees a unique, minimal representation for any extracted DFA. Thus DFAs extrac-

ted under diVerent initial conditions may collapse into equivalence classes (Giles

et al. 1992).

Rule insertion for known DFA transitions is achieved by programming some of

the initial weights of a second-order recurrent network with N state neurons. The

rule insertion algorithm assumes N [ N
s
, where N represents the number of

neurons in the network and N
s

is the number of states in the DFA to be

represented.

In the recurrent networks used by Giles & Omlin (1993a,b), the network

changes state S at time t + 1 according to the equations:

S(t+1)
i

= g($
i
), (12.4)

$
i
=;

j,k

W
ijk

S(t)
j

I(t)
k

, (12.5)

where g is a sigmoid discriminant function.

To encode a known transition d(s
j
, a

k
) = s

i
Giles & Omlin (1993a,b) arbitrarily

identiWed DFA states s
j

and s
i

with state neurons S
j

and S
i
, respectively. This

transition can be represented by having S
i
have a high output ( [ 1), and S

i
have a

low output ( [ 0), after the input symbol a
k

has entered the network via input

neuron I
k
.

Setting W
ijk

to a large positive value will ensure that s(t+1)
i

will be high, and

setting W
ijk

to a large negative value will ensure that s(t+1)
j

will be low. All other

weights are set at small random values.

To program the response neuron to indicate whether the resulting DFA state is

an accepting or rejecting state the weight W
0ie

is set large and positive if s
i
is an

accepting state, and large and negative if s
i
is a rejecting state. (Where e is a special

symbol that marks the end of an input string.)

Network training proceeds after all known transitions are inserted into the
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network by encoding the weights according to the above method. After training,

the reWned rule/DFA is extracted using the method described above. Giles &

Omlin (1993a,b) concluded that network initialization reduces training time and

improves generalization with the example problems studied.

Current issues in rule extraction/refinement

The Weld of rule extraction from trained ANNs has achieved a degree of maturity.

Researchers have moved beyond merely describing new techniques and reporting

empirical results to formulating benchmark standards and developing a consistent

theoretical base. The following is a discussion of some of the issues raised by recent

theoretical work.

Limitations imposed by inherent algorithmic complexity

The survey paper of Andrews et al. (1995) used algorithmic complexity of the rule

extraction algorithm as one of their criteria for categorizing rule extraction

processes. This criterion was introduced due to the observations of several authors

notably Fu (1991, 1994), Towell & Shavlik (1993), Thrun (1994) and more

recently Viktor et al. (1995) that for certain real-world problem domains there

exist potential problems due to the algorithmic complexity of various implemen-

tations of the rule extraction process. Typically these problems relate to the

algorithm either requiring a long time to Wnd the maximally general solution or

producing a large number of rules (with a consequent loss of comprehensibility).

Further such authors have usually shown how a variety of heuristics may be

employed to achieve a balance between solution time/eVort, Wdelity (degree to

which the rule set mimics the underlying ANN) and accuracy (measure of the

ability of the rule set to classify previously unseen examples from the problem

domain) of the rule set, and comprehensibility of the rule set.

Golea (1996) identiWed issues relating to the intrinsic complexity of the rule

extraction problem. The three key results were that, in the worst case, extracting:

1. the minimum disjunctive normal form (DNF) expression from a trained

(feedforward) ANN; and

2. the best monomial rule from a single perceptron within a trained ANN; and

3. the best M-of-N rule from a single perceptron within a trained ANN

are all NP-hard problems.

Limitations on achieving simultaneously high accuracy, high fidelity and high

comprehensibility

Recently, rule extraction techniques have been applied in an increasingly diverse

range of problem domains. This increased exposure has also brought to light a



Figure 12.5. Training set, target function ( f ) and ANN solution (h). Bold area, input space.
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potential conXict in attempting to maximize simultaneously the Wdelity, accuracy

and comprehensibility criteria for evaluating the quality of the rules extracted

from a trained ANN. The general nature of this problem was described by Golea

(1996) and is illustrated as in Figure 12.5. (Recall that rule accuracy is a measure of

the capability of the extracted rules to classify correctly a set of previously unseen

examples from the problem domain. Rule Wdelity is a measure of the extent to

which the extracted rules mimic the behaviour of the ANN from which they were

drawn whereas rule comprehensibility is assessed in terms of the size of the

extracted rule set and the number of antecedents per rule.)

Let I be the complete input space for a given problem domain and let D be a

distribution deWned on I where D(x) represents the probability of seeing a given x

in I. Let f (x) be the function that actually maps or classiWes a set of training cases

drawn from the problem domain (i.e. the function that is the ‘target’ for the ANN

training). In addition let h(x) be the functional representation of the ANN

solution and let R be the set of rules extracted from the ANN.

On the basis of the deWnitions presented above, the set of extracted rules R
exhibits a high level of Wdelity with respect to the ANN solution h if R can act as a

surrogate for h (i.e. R and h can be used interchangeably). Hence a set of extracted

rules R with a high level of Wdelity will be as accurate as the ANN itself in

classifying previously unseen examples from the problem domain. (In passing it

should also be noted that a number of authors, e.g. Towell & Shavlik (1993) and

Andrews & Geva (1997), have reported situations in which the extracted rule set

exhibits a better generalization performance than the trained ANN from which the

rule set was extracted.)
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A standard measure of the accuracy of the ANN solution (h) (which results

from the ANN training process involving the given training set) is given by the

generalization error (e) in using h (i.e. the ANN solution) as a surrogate for the

target function f, namely

e = probabilityMxM D D h(x) D f (x)N. (12.6)

Hence, if the generalization error e is small, a set of extracted rules R, with a high

level of Wdelity, will simultaneously exhibit a high level of rule accuracy (as deWned

above). Moreover, R can therefore act as a surrogate for the original target

function f.

However, if the distribution D is localized in some region of the input space I

then it is possible to synthesize an ANN solution h for which the generalization

error e, is small but for which h is neither equal to nor perhaps even close to f.

Importantly, if the function h is signiWcantly more complex than f, then the

extracted rule set R will exhibit high levels of accuracy and Wdelity but a corre-

spondingly lower level of comprehensibility than the set of rules extracted, for

example by applying a symbolic induction algorithm directly to the data in the

original training set.

The survey paper of Andrews et al. (1995) listed one of the important beneWts in

extracting rules from a trained ANN as being the ability to identify situations in

which certain regions of an input space were not represented suYciently by data in

an ANN training set. The view expressed in the survey was that this would enable

the data set to be supplemented accordingly. The preceding discussion has

highlighted the importance of this observation.

Rule extraction and the quality of ANN solution

In most ANN architectures the initial values for the weight vectors that ultimately

characterize an ANN solution are randomly assigned within the ANN training

algorithm. Consequently the result of each separate instance of the ANN training

is normally a unique ANN solution. After training the ANN solution is assessed in

terms of:

1. the size of the residual error on the training set;

2. the size of the generalization error on the test or validation set; and

3. the number of hidden units required in the trained ANN.

Some trade-oV between these three measures is often required, particularly in

situations involving noise in the training set. However, in most cases the implicit

or in some cases explicit goal of the training phase is to arrive at an ANN solution

with the minimum number of hidden units consistent with satisfying certain

threshold criteria for the residual/generalization errors.
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An issue that was not expanded upon in the survey paper of Andrews et al.

(1995) is the extent of the dependence of the eYcacy of rule extraction techniques

on the quality of the ANN solution (and by extension, the algorithm used in the

ANN training phase). For example, because of their algorithmic complexity, the

tractability of most decompositional approaches to rule extraction (and speciW-

cally those that involve some form of search process to Wnd possible rule sets) is

heavily dependent on the ANN having as close as practical to the minimum

number of hidden units in the Wnal conWguration. More importantly, such

decompositional techniques are critically dependent on each (hidden and output)

unit possessing a separate and distinct meaning or representing a single concept or

feature within the context of the problem domain.

A recent result by Bartlett (1996) raises certain problems in this regard. In

particular Bartlett (1996) has shown that the generalization error e of a trained

ANN can be expressed in the form:

eP A2/n, (12.7)

where n is the number of cases in the training set; and & D w D p A i.e. the sum of

the absolute values of the weights w for each (hidden and output) unit in the

trained ANN is bounded by some positive constant A.

This result shows that an ANN solution may be found that exhibits good

generalization behaviour (i.e. has acceptable low generalization error e) whilst

being suboptimal in terms of having the minimum number of hidden units.

Moreover an important corollary is that an ANN solution could be found with

good generalization capability in problems involving binary classiWcations but in

which some or all of the hidden units do not possess a separate and distinct

meaning or represent a single concept or feature within the context of the problem

domain. As such the result has important implications for all rule extraction

techniques and in particular for those decompositional rule extraction techniques

for which this is a prerequisite.

Functional dependencies, causal factors and rule extraction

To date almost the entire focus of the discussion regarding knowledge elicitation

from trained ANNs has centred on the task of extracting as eYciently as possible a

set of (symbolic) rules that explain the behaviour of the trained ANN. However, as

was pointed out at the beginning of this chapter another reason for performing

rule extraction is to discover previously unknown dependencies and relationships

in data sets. In particular, a useful interim result from an end-user’s point of view

might simply be one that identiWes which attributes, or combination of attributes,

from the problem domain that are the most signiWcant (or alternatively the least

signiWcant) determinants of the decision/classiWcation. Moreover Holte (1993)



Table 12.8. Case attributes and functional dependencies
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2
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showed that for a broad range of data sets involving in some situations a large

number of attributes, it is frequently possible to classify cases from the problem

domain to an acceptable level of accuracy based on two or fewer dominant

attributes.

A numerous and diverse range of techniques has been developed that is

designed to enable the dominant attributes in a problem domain to be isolated.

This range includes statistical techniques such as multiple regression analysis,

discriminant analysis, and principal component analysis. Within the context of

knowledge elicitation from trained ANNs, Garson (1991) focused on the task of

determining the relative importance of input factors used by the ANN to arrive at

its conclusions. Garson (1991) termed these causal factors between ANN inputs

and outputs. In a similar vein Tickle et al. (1996) identiWed certain parallels

between the processes for identifying keys, superkeys, and in particular functional

dependencies (Korth & Silberschatz 1991), within the realm of relational database

design. SpeciWcally, for a given problem domain and a set of cases drawn from the

problem domain (where each case comprises a set of attribute/value pairs), then in

essence a functional dependency (FD) X ] Y (read X determines Y) exists if the

value of the attribute Y can be uniquely determined from the values of the

attributes belonging to set X. More precisely the functional dependency X ] Y is

satisWed if for each pair of cases t
1

and t
2

in a given problem domain such that

t
1
[X] = t

2
[X] (i.e. the set of attributes X for cases t

1
and t

2
are equivalent) it follows

that t
1

[Y] = t
2

[Y].

By way of illustration of the concept of functional dependencies consider the set

of cases T = Mt
1
. . . t

5
N involving attributes A, B, C and D shown in Table 12.8.

(Korth & Silberschatz 1991). In this example the functional dependency A ] C is

satisWed because each case that has the same value of attribute A has the same value

for attribute C. However, the functional dependency C ] A is not satisWed because

the cases t
4

and t
5

both have the value c
2

for attribute C (i.e. t
4
[C] = t

5
[C] but

t
4
[A] D t

5
[A]). In a similar way it can be shown that the functional dependency

AB] D is satisWed.
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Both the notion of a causal factor as introduced by Garson (1991) and the

concept of a functional dependency as has been previously discussed can be

viewed as one in which a conceptual relationship is established between the

domain attributes and the decision attribute(s). However, a functional depend-

ency relies on having discrete values for the attributes whereas a causal factor as

described by Garson (1991) can embrace both discrete and continuous valued

attributes. Moreover the notion of a rule can be viewed as an extension of the

functional dependency concept to the point of expressing a relationship between

speciWc values of the domain attributes and the decision attribute(s) (Geva &

Orlowski 1996).

In any given problem domain there could exist numerous functional depend-

encies. Hence in a relational database context attention is focused primarily on

determining only what are termed left-reduced functional dependencies, i.e. those

that possess the property that while the functional dependency X ] Y is satisWed,

any proper subset X \ Y is not suYcient to determine Y. Applying these concepts

in the realm of ANNs it is expected that a trained ANN would not necessarily

reXect all of the possible functional dependencies in a given data set. This is

because the intrinsic nature of the training process is to give prominence to those

attribute/values or combination of attribute/values that lead to global error

minimization.

In both the relational database context and also in the context of applying the

functional dependency concept to knowledge elicitation from trained ANNs, the

identiWcation of the set of left-reduced functional dependencies is important

because the goal is to identify and eliminate superXuous/insigniWcant attributes.

In addition, eliminating such attributes augurs well for ultimately determining a

set of rules with the minimum number of antecedents (Geva & Orlowski 1996).

As indicated previously in certain applications, the identiWcation of causal

factors and/or functional dependencies may of themselves provide considerable

insight into the problem domain for the end-user. However, this may not be the

only beneWt. In the context of rule extraction from trained ANNs, one of the issues

upon which comment has already been made is the complexity of the various rule

extraction algorithms. In particular, algorithms such as KT and Subset are ex-

ponential in the number of ANN inputs. Hence reducing the number of attributes

by eliminating those that are irrelevant in determining the decision has the

potential of making a direct impact on the tractability of such algorithms by

signiWcantly reducing the search space. In addition this has the potential to obviate

one of the key problems in both the VIA and the rule-extraction-as-learning

(Craven & Shavlik 1994) algorithms, namely Wnding an initial set of speciWc cases

that can then be used to synthesize more general rules.

One impediment to the use of functional dependencies to preprocess the
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training set data is that the determination of all functional dependencies is in itself

exponential in the number of domain attributes. Geva & Orlowski (1996) sugges-

ted some heuristics by which the process of discovering and enumerating all

functional dependencies may be made more tractable.

Conclusions

As evidenced by the diversity of real-world application problem domains in which

rule extraction techniques have been applied, there appears to be a strong and

continuing demand for the end-product of the rule extraction process, namely a

comprehensible explanation as to how and why the trained ANN arrived at a given

result or conclusion. This demand appears to fall broadly within two groups: (a)

ANN solutions that have already been implemented and where ipso facto the user

is interested in identifying and possibly exploiting the potentially rich source of

information that already exists within the trained ANN; and (b) a green-Weld

situation where a user has a data set from a problem domain and is interested in

what relationships exist within the data given and what general conclusions can be

drawn.

The Wrst group requires the development of rule extraction techniques that can

be applied to existing ANNs. At this stage it would appear that, notwithstanding

the initial success of decompositional approaches such as that of the KT algorithm

of Fu (1991, 1994) the pedagogical approach is well placed to serve this set.

Similarly it could be argued that the second group might well become the province

of those rule extraction techniques that use specialized ANN training regimes,

given the reported success of, for example, KBANN/M-of-N, BRAINNE, RULEX,

etc. However, it also clear that no single rule extraction/rule reWnement technique

or method is currently in a dominant position to the exclusion of all others.

A pressing problem then is the formulation of a set of criteria for matching the

set of techniques to the requirements of a given problem domain. For example, at

a practical level, what has not yet emerged is a means of determining which rule

extraction technique is optimal for application problem domains involving real

valued data as distinct from discrete data. Further it is also uncertain as to whether

the reported improvement in performance of ANN/rule extraction techniques

vis-à-vis other induction techniques for extracting rules from data, applies in all

problem domains. Hence a pressing requirement is for a set of comparative

benchmark results across a range of problem domains similar to that undertaken

with the original Three Monks problem proposed by Thrun et al. (1991).

A related issue is that in an increasing number of applications there are reports

of situations in which the extracted rule set has shown better generalization

performance than the trained ANN from which the rule set was extracted (Towell
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& Shavlik 1993; Andrews & Geva 1997). Similar observations have also been made

in the area of extracting symbolic grammatical rules from recurrent ANNs (Giles

et al. 1992; Omlin et al. 1992; Giles & Omlin 1993a,b). However, Giles & Omlin

(1993a,b) also reported that larger networks tend to show a poorer generalization

performance. While these results are signiWcant, what is not clear at this stage is

the extent to which this superior performance can be ascribed to the elimination

of the remaining error over the output unit(s) after the ANN training has been

completed (i.e. the rest error). Hence an important research topic is also to

identify the set of conditions under which an extracted rule set shows better

generalization than the original network.

This chapter has described the reasons for the emergence of the Welds of rule

extraction and rule reWnement from ANNs and described a taxonomy for classify-

ing rule extraction algorithms. A selection of published rule extraction/reWnement

techniques was discussed to illustrate the taxonomy. The chapter also highlighted

a variety of important issues relevant to the Weld that deserve the attention of

researchers in the Weld. Rule extraction can have an important role in medical AI

systems when used in conjunction with trained ANNs for the reasons given at the

beginning of the chapter, namely: the ability to provide a human comprehensible

explanation facility through extracting rules from the trained ANN; the ability to

be able to use the extracted rules to gain an insight into the regions of input space

where the ANN produces correct, false positive and false negative decisions; the

possible explicitation of previously unrecognized relationships between clinical

factors important for diagnosis and prognosis; and Wnally by rule reWnement

making possible the use of symbolic knowledge with connectionist inductive

learning techniques for the reWnement of existing domain knowledge by network

training and subsequent rule extraction.
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13

Confidence intervals and prediction intervals
for feedforward neural networks

Richard Dybowski and Stephen J. Roberts

ArtiWcial neural networks have been used as predictive systems for a variety of

medical domains, but none of the systems encountered by Baxt (1995) and

Dybowski & Gant (1995) in their reviews of the literature provided any measure of

conWdence in the predictions made by those systems. In a medical setting,

measures of conWdence are of paramount importance (Holst et al. 1998), and we

introduce the reader to a number of methods that have been proposed for

estimating the uncertainty associated with a value predicted by a feedforward

neural network.

The chapter opens with an introduction to regression and its implementation

within the maximum likelihood framework. This is followed by a general intro-

duction to classical conWdence intervals and prediction intervals. We set the scene

by Wrst considering conWdence and prediction intervals based on univariate

samples, and then we progress to regarding these intervals in the context of linear

regression and logistic regression. Since a feedforward neural network is a type of

regression model, the concepts of conWdence and prediction intervals are applic-

able to these networks, and we look at several techniques for doing this via

maximum likelihood estimation. An alternative to the maximum likelihood

framework is Bayesian statistics, and we examine the notions of Bayesian conW-

dence and prediction intervals as applied to feedforward networks. This includes a

critique on Bayesian conWdence intervals and classiWcation.

Regression

Regression analysis is a common statistical technique for modelling the relation-

ship between a response (or dependent) variable y and a set x of regressors x
1
, . . ., x

d

(also known as independent or explanatory variables). For example, the relation-

ship could be between whether a patient has a malignant breast tumour (the

response variable) and the patient’s age and level of serum albumin (the re-

gressors). When an article includes a discussion of artiWcial neural networks, it is

customary to refer to response variables as targets and regressors as inputs.
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Furthermore, the ordered set Mx
1
, . . ., x

d
N is sometimes referred to as an input

vector. We will adopt this practice for the remainder of this chapter.

Regression assumes that target y is related to input vector x by stochastic and

deterministic components. The stochastic component is the random Xuctuation

of y about its mean k
y
(x); for example, one possibility is

y = k
y
(x) + e,

where noise e, with zero mean, has a Gaussian distribution. The deterministic

component is the functional relationship between k
y
(x) and x.

If the ‘true’ functional relationship between k
y
(x) and x is given by

k
y
(x) = f (x ; w

true
), (13.1)

where w is a set of parameters, regression attempts to estimate this relationship

from a Wnite data set (a derivation or training set) by estimating the parameter

values from the data. This is done by adjusting the values of w, under the

assumption that f is the true function, to give

k̂
y
(x; ŵ) = f (x ; ŵ), (13.2)

where a hat denotes an estimated value. The function f (x ; ŵ) will be referred to as

a regression function,1 and it will be used interchangeably with k̂
y
(x ; ŵ). The

best-known example of Eq. (13.2) is the simple linear regression function,

k̂
y
(x; ŵ) = ŵ

0
+

d

;
i=1

ŵ
i
x

i
, (13.3)

where ŵ
0
ŵ

1
, . . ., ŵ

d
are the regression coeYcients.

The maximum likelihood framework

Suppose we have a dataset Mx(1), y (1), . . ., x (N), y (N)N, where y (n) is the target value

associated with the n-th input vector x (n), and we wish to Wt a regression function

f (x ; ŵ) to this data. How do we select ŵ?

Maximum likelihood estimation (MLE) is based on the intuitive idea that the

best estimate of ŵ for f (x ; ŵ) is that set of parameter values ŵ
MLE

for which the

observed data have the highest probability of arising. More formally,

ŵ
MLE

= arg max
ŵ

p(y(1), . . ., y (N) D x (1), . . ., x (N), ŵ), (13.4)

p(· D · ·) denoting a probability function.2

Let the distribution of y about k
y
(x) be deWned by a conditional probability

distribution p(y D x). For regression function f (x ; ŵ), this distribution is approxi-
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mated by p̂(y D x, ŵ) with mean k̂
y
(x ; ŵ); therefore, if the cases of dataset

Mx(1), y (1), . . ., x (N), y (N)N are sampled independently from the same population, Eq.

(13.4) can be simpliWed to

ŵ
MLE

= arg min
ŵ C−

N

;
n=1

ln p̂(y (n) D x (n), ŵ)D . (13.5)

If the distribution of y about k
y
(x) is assumed to be Gaussian,

p̂(y D x, w) =
1

J2np
y

expG
− [k̂

y
(x ; w) − y]2

p2
y

H , (13.6)

substitution of Eq. (13.6) into the negative sum of Eq. (13.5) (and ignoring

constant terms) gives

ŵ
MLE

= arg min
w

Err(w), (13.7)

where

Err(w) =
1

2

N

;
n=1

[k̂
y
(x (n); w) − y (n)]2, (13.8)

Err(·) denoting an error function.

If a feedforward neural network (FNN) f (x ; ŵ) is trained on data set

Mx(1), y (1), . . ., x (N), y (N)N by minimizing Err(w), where w are the network weights, it

can be shown that the resulting network approximates the mean value for y

conditioned on x (Bishop 1995, pp. 201–203),

f (x ; ŵ
MLE

) [ k
y
(x), (13.9)

the approximation becoming equality if N goes to inWnity and f (x ; ŵ) has

unlimited Xexibility. Thus, from Eq. (13.2), an FNN trained via Err(w) can be

regarded as a regression function.

Sources of uncertainty

There are two types of prediction that we may want from a regression function for

a given input x: one is the mean k
y
(x); the other is the target value y associated with

x.

Even if we are fortunate to have a regression function equal to the true model, so

that k̂
y
(x ; ŵ) is equal to k

y
(x) for all x, y cannot be determined with certainty. This

is due to the intrinsic random Xuctuation of y about its mean k
y
(x) (target noise).



Figure 13.1. An illustration of a regression function. The ‘true’ model consists of a probability function
p(y D x) for y, with a mean ky(x) (bold curve) which is dependent on x. Data set
M(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), (x(4), y(4))N can be regarded as having been obtained by first
randomly sampling Mx(1), x(2), x(3), x(4N from a population and then randomly sampling y(1) from
p(y D x(1)), y(2) from p(y D x(2)), y(3) from p(y D x(3)), and y(4) from p(y D x(4)). Given the resulting data
set M(x(1), y(1)), (x(2), y(2)), (x(3), y(3)), (x(4), y(4))N, a regression function k̂y(x; ŵ) (dashed line) at-
tempts to estimate ky(x) by adjustment of a set of model parameters w.
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When y is continuously valued, the best one can do is establish a predictive

probability density on y or a region where y is most likely to occur – a prediction

interval. We will return to the concept of prediction intervals in the next section,

our attention here being focused on k̂
y
(x ; ŵ).

The acquisition of a training set Mx (1), y (1), . . ., x (N), y(N)N is prone to sampling

variation. There are two reasons for this. Firstly, there is variability in the random

sampling of x (1), . . ., x (N) from the associated population. Secondly, for each

selected x (n), there is a random Xuctuation in the value of y about the mean k
y
(x),

as deWned by p(y D x) (Figure 13.1 illustrates the univariate case). Consequently, the

training set used for an FNN is only one of a large (possibly inWnite) number of

possibilities. Since each possible training set can give rise to a diVerent set of

network weights ŵ, it follows that there is a distribution of k̂
y
(x ; ŵ) values for a

given input x.

If we randomly sample (with replacement) an inWnite number of data sets D,

the resulting k̂
y
(x ; ŵ) values will be distributed about the mean (or expected value)

E
D
[k̂

y
(x ; ŵ)] with sampling variance

E
D
[Mk̂

y
(x ; ŵ) − E

D
[k̂

y
(x ; ŵ)]N2]

but E
D
[k̂

y
(x ; ŵ)] is not necessarily equal to k

y
(x), the diVerence

E
D
[k̂

y
(x ; ŵ)] −k

y
(x)
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being the bias. The average proximity of k̂
y
(x ; ŵ) to k

y
(x), taken over all D, is

related to the bias and sampling variance by the expression

E
D
[Mk̂

y
(x ; ŵ) − k

y
(x)N2] =

ME
D
[k̂

y
(x ; ŵ)] − k

y
(x)N2

MbiasN2

+ E
D
[Mk̂

y
(x ; ŵ) − E

D
[k̂

y
(x ; ŵ)]N2]

variance

.
(13.10)üúýúþ üúýúþ

Bias is due to a regression function having insuYcient Xexibility to model the

data adequately. However, on increasing the Xexibility in order to decrease bias,

sampling variance is increased (this was graphically illustrated by Bishop (1995, p.

336); thus, optimal

E
D
[Mk̂

y
(x ; ŵ) − k

y
(x)N2]

requires a trade-oV between bias and variance (Gemen et al. 1992). The standard

method for achieving this trade-oV with FNNs is to augment the error function

with a term that penalizes against overWtting (a regularization term), such as the

weight decay procedure (Hinton 1989).

When a regression function is an FNN, there are additional sources of error in ŵ
(Penny & Roberts 1997). One is due to the fact that an error function can have

many local minima resulting in a number of possible ŵ. Another potential error in

ŵ arises from suboptimal training, for example by premature termination of a

training algorithm.

In the above discussion, uncertainty in k̂
y
(x ; ŵ) has been attributed to uncer-

tainty in ŵ, but there are two sources of uncertainty not originating from ŵ,

namely uncertainty in the input values (input noise, see p. 322) and uncertainty in

the structure of the regression model (model uncertainty). As regards the latter, the

regression model consists of two parts: an assumed structure for the model and a

set of parameters w whose meaning is speciWc to the choice of model structure;

therefore, uncertainty in k̂
y
(x ; ŵ) should reXect the uncertainty in model structure

as well as the uncertainty in ŵ. An approach to this problem has been suggested by

Draper (1995), in which a range of structural alternatives are considered, but we

are not aware of an application of this method to FNNs.

Classical confidence intervals and prediction intervals

There is uncertainty in the values of k̂
y
(x ; ŵ) and y due to their respective

distributions about the true mean k
y
(x). Such uncertainties can, in principle, be

quantiWed by conWdence and prediction intervals. We will deWne these terms and

consider their application to regression, and thus to FNNs.
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Let k
v
be the mean of a population of values v. The mean v6 of a sample S drawn

randomly from the population is a point estimate of k
v
but, given that v6 is unlikely

to be exactly equal to k
v
, how reliable a measure of k

v
is v6 ? A response to this

question is to derive a lower limit j
L
(S) and an upper limit j

U
(S) from S such that

there is a 95% probability that interval [j
L
(S), j

U
(S)] will contain k

v
. By this we

mean that, if an inWnite number of samples S
1
, S

2
, . . . of equal size are drawn

randomly (with replacement) from the population, 95% of the intervals

[j
L
(S

1
), j

U
(S

1
)], [j

L
(S

2
), j

U
(S

2
)], · · ·

associated with these samples will overlap k
v
, which is Wxed. Such an interval is

referred to as a (classical) 95% conWdence interval for k
v
.3

If sample S consists of univariate values v(1), . . ., v(N), one can also consider an

interval [t
L
(S), t

U
(S)] such that there is a 95% probability that a new value v(N+1)

drawn randomly from the population will occur within the interval. Such an

interval is referred to as a 95% prediction interval for v(N+1). Whereas a conWdence

interval is for a population parameter, a prediction interval is for a single value

randomly drawn from the population.

As an example, for sample v(1), . . ., v(N), where v is continuously valued, the 95%

prediction interval for v(N+1) is given by (Geisser 1993, pp. 6–9)

v6 ± t
0.025[N−1]AsS

1

N
+ 1B ,

where t
0.025[N−1]

is the required critical value of Student’s t-distribution (N − 1

degrees of freedom), and s is the standard deviation of the sample. This interval is

wider than the 95% conWdence interval for k
v
,

v6 ± t
0.025[N−1]AsS

1

NB ,

because v(N+1) is variable whereas k
v
is constant.

When v is binary valued, k
v

is equivalent to p(v = 1), but the construction of a

conWdence interval for p(v = 1) is complicated by the fact that v6 is discrete

(Dudewicz & Mishra 1988, pp. 561–566). The discrete nature of v6 results in a

conWdence interval [j
L
(S), j

U
(S)] with at least a 95% probability of containing

p(v = 1). However, for large N, v6 can be assumed to have a normal distribution

(Hogg & Craig 1995; pp. 272–273). Given that v is either 0 or 1 when it is binary

valued, and nothing in between, there is no prediction interval for v(N+1) as such.4

For the remainder of this chapter, conWdence and prediction intervals will be

understood to be of the classical type, unless stated otherwise.



Figure 13.2. True function (dashed line) and several regression functions (solid lines) in the vicinity of xo.
The different regression functions are caused by variation in ŵ due to sampling variation.
Each black dot is a possible value for k̂y(xo; ŵ), the open circle representing the correct value
ky(xo). (After Wonnacott & Wonnacott 1981.)
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Confidence and prediction intervals for simple linear regression

ConWdence and prediction intervals can also be applied to regression, where they

are collectively referred to as error bars by some authors. Variation in a Wnite

sample S leads to variation in ŵ and thus variation in k̂
y
(x ; ŵ). Consequently,

there is a distribution of possible values for k̂
y
(x

o
; ŵ) about k

y
(x

o
), where x

o
is a

particular value for x. This is illustrated in Figure 13.2. Above, we described the

idea of attaching an interval [j
L
(S), j

U
(S)] to v6 such that the interval has a 95%

probability of overlapping with k
v
. In an analogous manner, we can conceptualize

the existence of a 95% conWdence interval [j
L
(S, x

o
), j

U
(S, x

o
)] for k

y
(x

o
) attached

to each k̂
y
(x

o
; ŵ) by deWning it in a manner analogous to the probabilistic

interpretation given to conWdence interval [j
L
(S), j

U
(S)] above, namely that

[j
L
(S, x

o
), j

U
(S, x

o
)] has a 95% probability of overlapping k

y
(x

o
), which is Wxed. A

conceptual representation of this idea is given in Figure 13.3. Furthermore,

motivated by the above deWnition of prediction interval [t
L
(S), t

U
(S)], one can

also conceptualize the existence of a 95% prediction interval [t
L
(S, x

o
), t

U
(S, x

o
)]

for the unknown value of y associated with x
o
. For example, if we linearly regress y

on x using Mx(1), y (1), . . ., x(N), y (N)N as the sample S, the 95% conWdence interval for

k
y
(x

o
) is

k̂
y
(x

o
; ŵ) ± t

0.025[N−2]AsS
1

N
+

(x
o
− x6 )2

N

;
n=1

(x(n) − x6 )2
B , (13.11)

and the 95% prediction interval for y at x
o

is



Figure 13.3. An illustration of classical confidence intervals. Variation in ŵ due to sampling variation
results in a distribution of possible k̂y(xo; ŵ) values (Figure 13.2). This distribution is defined
by a probability distribution p(k̂y(xo; ŵ)) (the Gaussian curve). Four possible values of
k̂y(xo; ŵ) randomly sampled from p(k̂y(xo; ŵ)) are shown (black dots). Also shown are the
95% confidence intervals associated with these four values. The triangle indicates the
position of k̂y(xo). Ninety-five per cent of all values sampled from p(k̂y(xo; ŵ)) will have their
intervals correctly bracketing ky(xo) if k̂y(xo; ŵ) is not biased. If k̂y(xo; ŵ) is biased, then the
mean of p(k̂y(xo; ŵ)) will not coincide with ky(xo). (After Wonnacott & Wonnacott 1985.)
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k̂
y
(x

o
; ŵ) ± t

0.025[N−2]AsS
1

N
+

(x
o
− x6 )2

N

;
n=1

(x(n) − x6 )2

+ 1B , (13.12)

where s is the standard deviation for y (1), . . ., y (N) and x6 is the mean of x(1), . . ., x(N)

(Figure 13.4). Wonnacott & Wonnacott (1981, pp. 42–47) gave a derivation of

these intervals in the context of simple linear regression, and Penny & Roberts

(1997) have reviewed prediction intervals associated with other forms of linear

regression.

A set of conWdence intervals constructed continuously over an input x produces

a two-dimensional conWdence band. In a similar manner, a continuous set of

prediction intervals over x produces a prediction band.

Confidence intervals for logistic regression

Logistic regression is the most popular technique for modelling a binary target y as a

function of input vector x (Hosmer & Lemeshow 1989; Collett 1991).5 This is



Figure 13.4. Linear regression function (solid line) with a 95% confidence band for ky(x) (region bounded
by the inner dashed lines) and a 95% prediction band for y (region bounded by the outer
dashed lines) based on intervals (13.11) and (13.12), respectively. Each open circle repre-
sents a data point.
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done by assuming that probability p(y = 1 D x) is related to x by a logistic function,

p(y = 1 D x) =G1 + expC−Aw
0
+

d

;
i=1

w
i
x

iBDH
−1

. (13.13)

When y is binary, k
y
(x) is equivalent to p(y = 1 D x), therefore, Eq. (13.13) can be

estimated as a regression function

p̂(y = 1 D x ; ŵ) =G1 + expC−Aŵ
0
+

d

;
i=1

ŵ
i
x

iBDH
−1

. (13.14)

In the context of maximum likelihood, Eq. (13.5) still applies but the binary

nature of y implies a binomial distribution for y,

p(y D x) = p(y = 1 D x)y[1 − p(y = 1 D x)](1−y).
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It follows that the error function for Eq. (13.7), which is the negative logarithm of

the relevant probability density, becomes

Err(w) = −
N

;
n=1

My(n)p̂(y = 1 D x (n); w) + [1 − y (n)][1 − p̂(y = 1 D x (n); w)]N. (13.15)

As with any regression modelling, logistic regression is susceptible to sampling

variation; consequently, the regression parameters, and thus the logistic regression

function, are subject to variation. A representation of this variation is obtained

from Figure 13.2 by replacing k
y
(x

o
) with p(y = 1 D x

o
) and k̂

y
(x

o
; ŵ) with p̂(y =

1 D x
o
; ŵ), respectively. Just as with linear regression, the variation of p̂(y = 1 D x

o
; ŵ)

about p(y = 1 D x
o
) due to variation in ŵ leads to the concept of a conWdence

interval [j
L
(S, x

o
), j

U
(S, x

o
)] for p(y = 1 D x

o
). This interval has been derived

analytically by Hauck (1983). If sample size N is large (N [ 100), that 95%

conWdence interval for p(y = 1 D x) is approximated by the logistic transform of

logit p̂(y = 1 D x ; ŵ) ± Js2

a[d+1]
xTR̂x/N, (13.16)

where x is a d + 1 dimensional vector (1, x
1
, . . ., x

d
)T, R̂ is the covariance matrix for

ŵ, and s2

a[d+1]
is the s2 critical value for the 100(1 − a) percentage point for d + 1

degree of freedom (Figure 13.5).6 See Santner & DuVy (1989, pp. 238–239) for

further discussion.

Confidence intervals for feedforward neural networks

So far, we have looked at linear and logistic regression, but if we have k̂
y
(x; ŵ)

from an FNN, how can we obtain a conWdence interval for k
y
(x)? We start with

two approaches: the delta method and the bootstrap method.

The delta method

If a variable v has a Gaussian distribution with variance Var(v), a 95% conWdence

interval for the mean of v is given by

v ± z
0.025

JVar(v),

where z
0.025

is the critical point of the standard normal distribution. The delta

method provides an estimate of this variance via the Taylor series.

If lŵ is the mean vector for ŵ, the Wrst-order Taylor expansion of k̂
y
(x; ŵ)

around lŵ gives the approximation

k̂
y
(x; ŵ) [ k̂

y
(x ; lŵ) + g(x)(ŵ − lŵ), (13.17)

where the i-th element of vector g(x) is the partial derivative Lk̂
y
(x ; ŵ)/Lŵ

i

evaluated at ŵ = lŵ. According to the delta method (Efron & Tibshirani 1993, pp.



Figure 13.5. Logistic regression function (solid line) with a 95% confidence band for p(y = 1 D x) (region
bounded by the dashed lines) according to Hauck’s method (i.e. interval (13.16)).
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313–315), it follows from Eq. (13.17) that the variance for k̂
y
(x; ŵ) over all

possible samples is approximated by

Var¡(k̂
y
(x ; ŵ)) = gT(x)Rg(x), (13.18)

where R is the covariance matrix for ŵ.

The elements of a Hessian matrix H are second-order partial derivatives7

H
i,j

=
L2Err(w)

Lw
i
Lw

j

,

evaluated at w = ŵ, where Err(w) is the relevant error function. Covariance matrix

R is related to the Hessian (Press et al. 1992, pp. 672–673, 685), and if the error

function is deWned as in Eq. (13.8) and noise variance p2

e is independent of x then

Eq. (13.18) can be replaced by8



Figure 13.6. Regression function (solid line) obtained from a feedforward network with a 95% confi-
dence band for ky(x) (region bounded by dashed lines) based on the delta method (i.e.
interval (13.20)).
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Var¡(k̂
y
(x; ŵ)) = p2

eg
T(x)H−1g(x). (13.19)

Tibshirani (1996) estimates p2

e using

p2

e =
N

;
i=1

[y (i) − k̂
y
(x (i); ŵ)]2/N.

From Eq. (13.19), and assuming a Gaussian target noise distribution, we have

the approximate 95% conWdence interval for k
y
(x) (Figure 13.6)

k̂
y
(x; ŵ) ± z

0.025
Jp2

eg
T(x)H−1g(x). (13.20)

Regularization is the inclusion of a penalty term in an error function to

discourage overWtting of the network to the training data. This improves the

ability of the network to generalize from the data. If regularization is implemented
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by the weight-decay term (a/2)&
i
w2

i
, interval (13.20) is replaced by (Tibshirani

1996)9

k̂
y
(x ; ŵ) ± z

0.025
JgT(x)(H/p2

e − a)−1g(x). (13.21)

The bootstrap method

Suppose we have a random sample S taken from a population with parameter h,

and we obtain an estimate ĥ(S) of h from S. The bootstrap method is a remarkable

computer-based resampling technique for assigning measures of accuracy to

statistical estimates (Efron 1979),10 and it will provide a conWdence interval for

any population parameter estimate whatsoever. This involves creating a number11

of bootstrap samples S(*1), . . ., S(*B) by repeatedly resampling S in a random manner

in order to provide a distribution of ĥ(S): ĥ(S(*1)), . . ., ĥ(S(*B)). The bootstrap

estimate of the standard error of ĥ(S) is given by (Efron & Tibshirani 1993, pp.

45–49)

SE¡
boot

(ĥ(S)) =S
1

B − 1

B

;
b=1

[ĥ(S(*b)) − ĥ
boot

]2,

where ĥ
boot

is the bootstrap estimate of ĥ given by the mean &B
b=1

ĥ(S(*b))/B, and B is

typically in the range 25 to 200.

In the context of regression, two types of bootstrap sample can be considered

(Efron & Tibshirani 1993, pp. 113–115):

pairs sampling in which regression is based on the bootstrap sample

Mx(*i,1), y (*i,1), . . ., x (*i,N), y (*i,N)N

taken from the true sample Mx (1), y (1), . . ., x (N), y (N)N, where (*i, 1), . . ., (*i, N) is

the i-th random sample with replacement of the integers 1, . . ., N;

residual sampling in which regression is based on the bootstrap sample

Mx(1), k̂
y
(x (1); ŵ) + r(*i,1), . . ., x (N), k̂

y
(x (N); ŵ) + r(*i,N)N,

where r(*i,1), . . ., r(*i,N) is a random sample of the N residuals associated with

k̂
y
(x (1); ŵ), . . ., k̂

y
(x (N); ŵ), respectively.

Residual sampling has the advantage that it limits inferences to the set of input

values x (1), . . ., x (N) actually observed (Baxt & White 1995), but, unlike pairs

sampling, it uses the strong assumption that residuals are independent of the

inputs. Furthermore, the x values are assumed to be random in pairs sampling but

Wxed in residual sampling. The algorithms for pairs sampling and residual samp-

ling are as follows.
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Algorithm 1. (Bootstrap pairs sampling)

begin

let M(x(1), y (1)), . . ., (x (N), y(N))N be the true sample S;

for b = 1 to B do

randomly sample (with replacement) N (x, y)-pairs from S;

let M(x (*b,1), y (*b,1)), . . ., (x (*b,N), y (*b,N))N be the random sample;

derive regression function k̂
y
(x ; ŵ(*b)) from training set

M(x (*b,1), y (*b,1)), . . ., (x (*b,N), y (*b,N))N;

endfor

end

Algorithm 2. (Bootstrap residual sampling)

begin

let M(x(1), y (1)), . . ., (x (N), y(N))N be the true sample S;

derive regression function k̂
y
(x ; ŵ) from S;

let R be the set of residuals Mr(1), . . ., r(N)N, where r(n) = y (n)−k̂
y
(x(n); ŵ);

for b = 1 to B do

randomly sample (with replacement) N residuals from R;

let Mr(*b,1), . . ., r(*b,N)N be the random sample;

derive regression function k̂
y
(x ; ŵ(*b)) from training set

M(x (1), k̂
y
(x (1); ŵ) + r(*b,1)), . . ., (x (N), k̂

y
(x (N); ŵ) + r(*b,N))N;

endfor

end

For both the pairs-sampling and residual-sampling approaches, the bootstrap

estimate of k̂
y
(x) is given by the mean provided by the ensemble of regression

functions k̂
y
(x ; ŵ(*1)), . . ., k̂

y
(x; ŵ(*B)):

k̂
y,boot

(x) =
1

B

B

;
b=1

k̂
y
(x ; ŵ(*b)). (13.22)

Furthermore, the bootstrap estimate of the standard error of k̂
y
(x ; ŵ), which is a

function of x, is given by

SE¡
boot

(k̂
y
(x ; ·)) =S

1

B − 1

B

;
b=1

[k̂
y
(x ; ŵ(*b)) − k̂

y,boot
(x)]2, (13.23)

with k̂
y,boot

(x) deWned as in Eq. (13.22). Assuming a normal distribution for

k̂
y
(x; ŵ) over the space of all possible ŵ, we have

k̂
y,boot

(x) ± t
0.025[B]

SE¡
boot

(k̂
y
(x ; ·))

as the 95% bootstrap conWdence interval for k
y
(x) (Heskes 1997).
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As stated earlier, logistic regression provides a regression function that esti-

mates the conditional probability p(y = 1 D x). By using a logistic transfer function

for the output node, and the cross-entropy error function (Eq. 13.15), p(y = 1 D x)

can also be estimated by an FNN trained with binary target values. Furthermore,

the bootstrap estimate k̂
y,boot

(x) provides a mean conditional probability with the

advantages of a bagged predictor (Breiman 1996). The concept of a conWdence

interval for p(y = 1 D x), as used for logistic regression, can also be applied to an

FNN; however, we have not found a published description of a bootstrap conW-

dence interval for p(y = 1 D x) via an FNN.

A disadvantage of the bootstrap method is that the computational cost could be

high when data sets or networks are large; however, Tibshirani (1996) found that

the bootstrap approach provided more accurate conWdence intervals than did the

delta method. A contribution to this success is that bootstrap sampling takes into

account the variability of FNNs due to diVerent initial network weights. Another

factor in favour of the bootstrap method is the fact that the delta method requires

computation of derivatives and Hessian matrix inversion, the latter being a

potential source of failure.

Prediction intervals for feedforward neural networks

If y has a Gaussian distribution with mean E[y D x] and variance Var(y D x), a 95%

prediction interval for y is given by

E[y D x] ± z
0.025

JVar(y D x).

This is the basis for an approximate prediction interval, as follows.

The variance of y conditioned on x is deWned by

Var(y D x) = E[(E[y D x] − y)2 D x].

Recall that an FNN k̂
y
(x (n); ŵ) trained with respect to error function

1

2

N

;
n=1

[k̂
y
(x (n); w) − y (n)]2, (13.24)

can approximate E[y D x]. This suggests that, in order to obtain E[(E[y D x] − y)2 D x]

in place of E[y D x] by means of an FNN p̂2
y
(x; û), we should replace y in error

function (13.24) with (E[y D x] − y)2. Therefore, if k̂
y
(x ; ŵ) is assumed to be equal

to E[y D x], an FNN p̂2
y
(x; û) for the estimation of Var(y D x) can be derived by using

1

2

N

;
n=1

[p̂2
y
(x; u) − [k̂

y
(x (n); ŵ) − y(n)]2]2 (13.25)

as the error function. This leads to the approximate 95% prediction interval



Figure 13.7. Data with increasing variance. The regression function (solid line) was estimated by a
feedforward network. Another feedforward network was used to estimate the input-depend-
ent variance from which a 95% prediction band (region bounded by dashed lines) was
obtained by interval (13.26).

Figure 13.8. Both the regression function (solid line) and its associated 95% prediction band (region
bounded by dashed lines) were obtained from a Nix–Weigend network.
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k̂
y
(x; ŵ) ± z

0.025
Jp̂2

y
(x ; û). (13.26)

A 95% prediction band resulting from this interval is shown in Figure 13.7.

Rather than using two separate networks, Nix & Weigend (1995) proposed a

single network with one output for k̂
y
(x ; ŵ) and another for p̂2

y
(x ; û), using

1

2

N

;
n=1
C

[k̂
y
(x (n); w) − y (n)]2

p̂2
y
(x ; u)

+ ln p̂2
y
(x ; u)D

2

(13.27)

as the error function. This approach can produce improved prediction intervals

for y compared with the previous approach as a result of it acting as a form of

weighted regression (weighted in favour of low noise regions) (Figure 13.8). The

simpler approach based on expression (13.25) tries to Wt around high noise

regions, possibly distorting the low noise regions (Figure 13.9), whereas weighted

regression is not inXuenced by regions of high Xuctuation.

An underlying assumption in using either expression (13.25) or (13.27) is that

k̂
y
(x; ŵ) is equal to E[y D x], but, when this assumption is false, there will be



Figure 13.9. Same data as that in Figure 13.8 but, instead of using a Nix–Weigend network, a separate
feedforward network estimated the variance. This resulted in a decrease in the accuracy of
the 95% prediction band (region bounded by dashed lines).
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uncertainty in k̂
y
(x ; ŵ), in which case expression (13.26) will underestimate the

95% prediction interval. A prediction interval that allows for the uncertainty in

both the regression function k̂
y
(x ; ŵ) and the noise y − k

y
(x) is

k̂
y
(x ; ŵ) ± t

0.025[l]
JVar¡(k̂

y
(x ; ŵ)) + p̂2

e, (13.28)

where p̂2

e is the estimated noise variance, but the degrees of freedom l required for

an FNN is not known at the time of writing. Heskes (1997) proposed the bootstrap

method as a way to derive expression (13.28). Bootstrap estimate (13.23) was used

for Var¡(k̂
y
(x ; ŵ)), and an auxiliary FNN, trained on the unused portions of the

bootstrap samples, was used to estimate p̂2

e. Although Heskes obtained more

realistic prediction intervals than those provided by the Nix & Weigend (1995)

method, we feel that his technique requires further analysis.

The methods used in this section are based on maximum likelihood estimation,

but variances estimated by MLE are biased:

E[Var¡
MLE

(y D x)] \ Var(y D x).

This is caused by a tendency of an interpolant to try to Wt to the data, thereby

underestimating Var(y D x). Consequently, if interval (13.26) or (13.28) is used as

the 95% prediction interval for y, the length of the interval will be underestimated.

The Bayesian framework

The primary purpose of statistics is to make an inference about a population on

the basis of a sample taken from the population. In classical statistics, the inference

is based solely on the data constituting the sample, whereas, in Bayesian statistics,

the inference is based on a combination of prior belief and sample data (Lee 1997).

In order to make a Bayesian inference about a random variable h, prior belief
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about h in the form of a prior (probability) distribution p(h), is combined with a

sample S of values in order to produce a posterior (probability) distribution p(h D S)

for h.

ConWdence and prediction intervals are also deWned within the Bayesian frame-

work. Let k
v

be the mean of a population of values v, and let S be an observed

sample of values drawn from the population. If k
v
is regarded as a random variable

with posterior distribution p(k
v
D S), [j

L
(S), j

U
(S)] is a 95% Bayesian conWdence

interval for k
v

if, according to p(k
v
D S), there is a 95% probability that k

v
will fall

within [j
L
(S), j

U
(S)] (Barnett 1982, pp. 198–202). Note the diVerence between a

classical conWdence interval and a Bayesian conWdence interval: in the classical

approach, k
v
is Wxed and [j

L
(S), j

U
(S)] varies with S; in the Bayesian approach, k

v

is a random variable and [j
L
(S), j

U
(S)] is Wxed once S is available (Lee 1997, pp.

49–50).

If sample S consists of univariate values v(1), . . ., v(N), and p(v(N+1) D S) is the

posterior distribution for v(N+1), [t
L
(S), t

U
(S)] is a 95% Bayesian prediction

interval for v(N+1) if, according to p(v(N+1) D S), there is a 95% probability that

[t
L
(S), t

U
(S)] will contain v(N+1) (Barnett 1982, pp. 204–205).

Bayesian intervals for regression

Bayesian statistics provides a very diVerent approach to the problem of unknown

model parameters such as network weights. Instead of considering just a single

value for a model parameter, as done by maximum likelihood estimation,

Bayesian inference expresses the uncertainty of parameters in terms of probability

distributions and integrates them out of the distribution of interest. For example,

by expressing the uncertainty in weight vector w as the posterior probability

distribution p(w D S), where S is the observed sample, we have

p(y D x, S) =Pw

p(y D x, w)p(w D S)dw (13.29)

PPw

p(y D x, w)p(S D w)p(w)dw. (13.30)

The integral of Eq. (13.30) can be solved analytically with approximations

(MacKay 1991). If the distribution of the noise and the prior weight distribution

p(w) are assumed to be Gaussian, a Gaussian posterior distribution p(y D x, w
MP

)

for y can be derived in which

Ê[y D x] = k̂
y
(x ; w

MP
), (13.31)

where w
MP

is w at the maximum of the posterior weight distribution p(w D S)

(where subscript MP denotes ‘most probable’), and



Figure 13.10. A 95% Bayesian prediction band for y (region bounded by dashed lines) based on interval
(13.34). The regression function (solid line) is from a feedforward network.
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Var¡(y D x) = b−1 + gT(x)A−1g(x), (13.32)

where the elements of matrix A are the second-order partial derivatives (with

respect to w) of the regularized error function

b
2

N

;
n=1

[k̂
y
(x (n); w) − y (n)]2 +

a
2
;
i

w2
i

(13.33)

evaluated at w = w
MP

. The second term in expression (13.33) (the regularization

term) results from the assumption that p(w) in Eq. (13.30) is Gaussian. This leads

to the approximate 95% Bayesian prediction interval for y (Figure 13.10)

k̂
y
(x ; w

MP
) ± z

0.025
Jb−1 + gT(x)A−1g(x). (13.34)
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Note that MLE has been avoided through the use of Eq. (13.29).

The Bayesian analysis resulting in expression (13.32) demonstrates that the

variance for p(y D x, S) has contributions from the intrinsic noise variance b−1 and

from the weight uncertainty. Qazaz et al. (1996) discussed how, in the context of

generalized linear regression, this is aVected by the distribution of data points.

Instead of using a constant value for noise variance b−1, Bishop & Qazaz (1995)

allowed it to be dependent on x. From 100 artiWcially generated data sets, each

consisting of 10 data points, they demonstrated that the Bayesian approach can

give an improved estimate of noise variance compared with a more biased

estimate obtained from the same data using MLE.

Bayesian intervals for regression-based classification

We consider, as before, a feedforward system that estimates class-conditional

posterior probabilities. For class C
i
, say, given datum x, this is denoted as

p(C
i
D x) = p(y

i
= 1 D x). The K outputs p̂(y

1
= D x ; w), . . ., p̂(y

K
= 1 D x ; w) of such a

classiWer, hence, must lie in the interval [0, 1] and sum to unity. This may be

simply achieved via the softmax (or generalized sigmoid) mapping of a set of latent

variables, r
1
, . . ., r

K
, such that

p̂(y
i
= 1 D x ; w) =

exp(r
i
)

&K
j=1

exp(r
j
)
. (13.35)

For a two-class problem, we need consider only one output, p̂(y = 1 D x ; w), and Eq.

(13.35) reduces to the well-known logistic sigmoid,

p̂(y = 1 D x ; w) = g(r(x ; w)) = M1 + exp[ − r(x ; w)]N−1.

For ease of notation we will consider, henceforth, the two-class case, with a single

output estimating p(C
1
D x) (which may also be denoted p(y = 1 D x)).

MacKay (1992b) suggested approximating the variation of r with w by a linear

(Wrst-order) expansion, and the density over w, p(w D S), by a unimodal normal

distribution. This enables p(r D x ; w, S) to be evaluated easily from p(w D S). If we

make a Laplace approximation to the latter (de Bruijn 1970) then p(r D x ; w, S) will

also be approximated by a Gaussian (normal) distribution with mean (and mode)

at

r
MP

(x) = r(x ; w
MP

).

The variance of p(r D x ; w, S) is given as (e.g. Bishop 1995, p. 405)

Var¡(r D x ; w, S) = hT(x)B−1h(x), (13.36)

where h(x) is the partial derivative Lr(x ; w)/Lw
i

evaluated at w = w
MP

and the
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elements of the Hessian matrix, B, are the second-order partial derivatives of the

error function with respect to w, evaluated at w = w
MP

,

B
i,j

=
L2Err(w)

Lw
i
Lw

j

.

The error function is normally a cross-entropy measure (Eq. (13.15)) with an

additive regularization term.

We may consider the location of the mode (most probable value) of the latent

distribution, r
MP

(x), as propagating through the sigmoidal non-linearity, g(.), to

form a MLE for the posterior,

p̂(y = 1 D x ; w, S) = g(r
MP

(x)).

The monotonicity of g(.) means that the upper and lower bounds of a conWdence

interval on the latent distribution p(r D x ; w, S) could be mapped to equivalent

points in the posterior space. This is supported by advocates of set-based (or

interval-based) probability (e.g. Kyburg & Pittarelli 1996).

From the viewpoint of Bayesian decision theory, however, the notion of a

conWdence interval on posterior probabilities in a classiWcation setting is redun-

dant as uncertainty (conWdence) is uniquely taken into account under a Bayesian

derivation of the single-valued posteriors. We consider an optimal classiWer,

which probably operates by assigning an unknown datum x to class C
k* if and only

if

p(C
k* D x) = max

k

Mp(C
k
D x)N,

in other words, in a two-class setting for which p(C
1
D x) = p(y = 1 D x), x is classiWed

to class C
1
if p(y = 1 D x) [ 1 − p(y = 1 D x). A strict measure of the loss or uncertain-

ty associated with a decision to C
k* is 1 − p(C

k* D x). Our inherent conWdence in a

decision is given by this quantity. Note that, if equal penalties are accrued for

misclassiWcation from all classes (i.e. the so-called loss matrix is isotropic) the same

decision will be made, in a two-class case, for p(C
k* D x) = 0.51 or 0.99, but our

conWdence in the decision is dramatically diVerent. Indeed, it is common practice

to include a ‘reject’ class such that x is rejected if p(C
k* D x) \ 1 − d, where d M [1/

2, 1] is a measure of the cost associated with falsely rejecting the sample x. How

then is uncertainty incorporated in the Bayesian derivation of the posteriors?

Consider the measure p(y = 1 D x ; w, S) (the posterior for class C
1
) explicitly

dependent upon the input x and implicitly on the ‘training’ data set S and the set

of unknown parameters, w, which code the analysis model. The MLE framework
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considers only the most probable parameter set, w
MP

, which is used to estimate

p(y = 1 D x ; w, S). This results in p(y = 1 D x ; w
MP

, S).

In contrast, the Bayesian paradigm integrates over the unknown parameters,

p̃(y = 1 D x ; S) =Pw

p(y = 1 D x ; S, w)p(w D S)dw.

If we consider our analysis model in which p(y = 1 D x ; w, S) is obtained via a

monotone mapping g(.) (the logistic sigmoid) from a continuous-valued latent

variable r, i.e. p(y = 1 D x ; w, S) = g(r; x, w, S), then we may rewrite the above as

p̃(y = 1 D x ; S) =Pr

g(r; x, w, S)p(r D x ; w, S)dr,

where p(r D x ; w, S) is the distribution in r induced by the distribution in the

weights w upon which r is dependent. The above integral, however, is typically

analytically intractable but may be easily evaluated using numerical techniques.

MacKay (1992a) popularized some approximations (originally considered by

Spiegelhalter & Lauritzen (1990)) that not only avoid this process but also

highlight intuitively the way in which uncertainty in w, which propagates as an

uncertainty in r (i.e. p(r D x ; w, S) is wide), changes the posterior probability. This

change in the posterior is known as moderation and typically results in improved

cross-entropy errors (MacKay 1992a). This approximation considers a modiWca-

tion to the sigmoid equation of the form

p̃(y = 1 D x, S) [ gMi[p2
r
(x)]r

MP
(x)N, (13.37)

in which

i[p2
r
(x)] =A1 +

np2
r
(x)

8 B
−1/2

and p2
r
(x) is the variance of the latent variable distribution, as deWned in Eq.

(13.36). Figure 13.11 depicts the eVect changes in the latent variance (uncertainty)

have on the classiWcation probability, p̃(y = 1 D x, S) = p(C
1
D x, S). Consider, for

example, r
MP

(x) = 2. Note that the resultant estimated posterior probability goes

down towards 1/2 as the uncertainty in r increases. The uncertainty in a decision is

the distance from unity of the largest posterior, which is worst when the posterior

equals the class prior (1/2 in this two-class problem). In a principled way,

therefore, uncertainty (high variance) in the latent distribution is automatically

represented as a lower certainty of decision.

The tacit assumption has been made in the above analysis that the density over



Figure 13.11. Changes in slope of the sigmoid due to latent variable uncertainty.
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the weights, p(w D S), is unimodal. For the vast majority of analysis systems,

however, there are many non-equivalent local maxima in the density which would

be taken into account if the requisite marginal integral was indeed over all w space.

We may assume, however, that most probability mass is concentrated in the

regions of w space associated with peaks in p(w D S). Integration over all w space

may hence be approximated by integration over a (Wnite) number of regions, R
i
,

each of which contains a peak in p(w D S). Hence

p(r D x ; S) [;
i

p(R
i
D S)PwMRi

p(r D x ; w, S,R
i
)p(w D S,R

i
)dw

which may be written as

p(r D x ; S) = ;
i

c
i
p(r D x ; S,R

i
).
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The latter equation represents a weighted average (with weightings given by c
i
) of

latent densities from a committee of classiWers. Each latent distribution in the

summation may, for example, be approximated as a Gaussian, as may the resultant

committee distribution. The latter has mean

rcomm
MP

(x) = ;
i

c
i
r
MP,i

(x),

where r
MP,i

(x) are the modes (and means) of p(r D x ; S,R
i
), and a variance of

p2
comm

(x) =;
i

c
i
p2

r,i
(x) + ;

i

c
i
(r

MP,i
(x) − rcomm

MP
(x))2 . (13.38)

This variance may thence be used, for example, with Eq. (13.37) to provide a

moderated posterior probability that takes into account uncertainty due to impre-

cision in the parameters of each constituent member of the committee (the Wrst

term in Eq. (13.38)) and also uncertainty due to disagreement between committee

members (the second term in Eq. (13.38)). It is noted that committees are

probably better in performance than the average performance of their members

(Bishop 1995, pp. 364–369).

Markov chain Monte Carlo sampling

Determination of the integral in Eq. (13.29) can, in principle, be achieved numeri-

cally using

p(y D x, S) [
1

L

L

;
i=1

p(y D x, w(i)). (13.39)

This avoids the Gaussian approximation adopted on p. 315 and elsewhere.

The set Mw(1), . . ., w(L)N of weight vectors used for approximation (13.39) is

sampled from p(w D S) by means of Markov chain Monte Carlo (MCMC) sampling

(Gilks et al. 1996). In the two standard versions of MCMC sampling (the Metrop-

olis method and Gibbs sampling), the space of possible w values (state-space) is

explored by random walk; however, sampling through a random walk can per-

form poorly when the state-space has a large number of dimensions. In such a

situation, Neal (1996) advocates the hybrid Monte Carlo method in which state-

space is replaced by a phase-space consisting of (w, p) pairs in which ‘position’

vector w is augmented with a ‘momentum’ vector p. Unlike Metropolis and Gibbs

sampling, this exploits the gradient information contained in a back-propagation-

trained network.

An example of the application of MCMC is its use by Goldberg et al. (1998) to

model input-dependent variance, which they did using a Gaussian process (Will-

iams 1999).
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The assumption that p(y D x, w) is Gaussian whenever y is continuous-valued

will not always be appropriate in the real world as it is possible for p(y D x, w) to be

skewed or multimodal due to the noise being non-Gaussian. Distribution

p(y D x, w) can take on non-Gaussian forms by setting it equal to a mixture model

composed of a sum of Gaussian kernel functions (Everitt & Hand 1981). The

input-dependent mean and variance of the distribution can be derived from the

mixture model by MLE (Bishop 1994) and by MCMC (Dybowski 1997), but there

is then the problem of deWning an interval when a distribution is asymmetric or

multimodal.

Input noise

As mentioned on p. 302, one source of uncertainty in the output of an FNN is

uncertainty in the input values. Some methods for estimating errors due to input

noise have been reviewed by Press et al. (1992, pp. 666–670), Tresp et al. (1994)

and Townsend & Tarassenko (1997).

Wright (1999) has taken a Bayesian approach to the problem in which the true

but unobserved input x is perturbed by noise to give a noisy, observed input z. If z
o

denotes a new observed input, and y
o

is the associated target value, the predictive

distribution p(y
o
D z

o
, S) can be expressed by integrating over the unknown x

o
:

p(y
o
D z

o
, S) =Pxo

p(y
o
D x

o
, S)p(x

o
D z

o
)dx

o
. (13.40)

If there is a small level of Gaussian noise on the true input, Eq. (13.40) leads to the

following expression for the variance of y
o
:

Var¡(y
o
D z

o
) = b−1 +p2

x
hT(z

o
)h(z

o
) + gT(z

o
)A−1g(z

o
), (13.41)

which is similar to Eq. (13.32) but with an additional term due to the introduction

of noise to x. The extra term consists of the variance p2
x

of x multiplied by the

squared partial derivative Lk̂
y
(x ; w)/Lx

i
evaluated at x = z

o
.

If the assumptions leading to Eq. (13.41) do not hold then p(y
o
D z

o
, S) is

evaluated numerically, with MCMC used to estimate the inner integral in

p(y
o
D z

o
, S) =Pxo

p(x
o
D z

o
) CPx,w

p(y
o
D x

o
, w)p(x, w D S)dxdwD dx

o
,

but a limitation of this approach is that p(x
o
D z

o
) is required.

Conclusion

A neural network correctly trained with binary target values can estimate condi-

tional class probabilities and, although it is possible to deWne a Bayesian conW-
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dence interval for a posterior probability, the section on Bayesian intervals for

regression-based classiWcation described why, from the viewpoint of Bayesian

decision theory, such an interval is unnecessary. Furthermore, for the case when

target values are real-valued, Bishop & Qazaz (1995) have demonstrated that

variances estimated within the Bayesian framework can be less biased than those

estimated by MLE; consequently, the Bayesian approach is preferred to MLE.

A problem with the Bayesian approach (whether by hybrid MCMC or via

Gaussian approximations) is that implementing it tends to be more troublesome

than with MLE. These diYculties are restricted to neural networks and are due to

the approximations used to obtain the mathematical formalism. When generaliz-

ed linear models are used, the implementation becomes easy and straightforward

because the approximations become exact. The accounting for parameter uncer-

tainty in Bayesian methods works only if the computations are done reasonably

exactly, and not by gross approximations. In contrast, MLE is easier to implement

in terms of both stability of the algorithm and speed of convergence (as measured

by central processing unit time). Of the MLE-based methods, the bootstrap

method has been reported to provide more accurate conWdence intervals than the

delta method and more accurate prediction intervals than the Nix–Weigend

method. Nevertheless, the advantages of the Bayesian framework suggest that

eVorts should be made towards developing stable techniques in this area so that

Bayesian prediction and conWdence intervals can be obtained reliably.
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NOTES

1. We have used the expression regression function instead of regression model as the former

refers to an estimated relationship between ky(x) and x (Robbins & Munro 1951), whereas

the latter refers to a family of possible relationships.

2. Symbol p will be used both for probability density functions and probability mass functions,

the correct meaning being understood from the context in which it is used. For those

readers unfamiliar with probability theory, we recommend Wonnacott & Wonnacott

(1985, pp. 52–150) followed by Ross (1988).

3. Although conWdence intervals with equal tails are the most common form, there are other

possibilities (Barnett 1982, pp. 172–176).

4. The predictive distribution for v(N+1) is given by
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p(v(N+1) = 1 D v6 , N) = (v6 N + 1)/(N + 1).

5. Both linear and logistic regression models belong to the class of models called generalized

linear models (Dobson 1990). These have the general form

g(ky(x ; w)) = w0 +

d

;
i=1

wixi,

where g is the link function. In simple linear regression, g(a) = a, whereas in logistic

regression, g(a) = logit(a).

6. A clear account of vectors and matrices is provided by Anton (1984).

7. The Hessian matrix and calculation of its inverse H−1 are discussed by Bishop (1995, pp.

150–160).

8. If noise variance p2

e
is not independent of x then H/p2

e
in Eq. (13.18) is replaced by a matrix

G deWned by (Penny & Roberts 1997)

Gk,l =

N

;
i=1

1

p2

e
(x (i))G

Lk̂y(x
(i); ŵ)

Lŵk

Lk̂y(x
(i); ŵ)

Lŵl

+ [y (i) − k̂y(x
(i); ŵ)]

L2k̂y(x
(i); ŵ)

LŵkLŵl
H .

9. Maximum likelihood is referred to as maximum penalized likelihood if the error function is

regularized.

10. The bootstrap method should not be confused with the jack-knife or cross-validation (Efron

& Gong 1983).

11. The number of bootstrap samples needed for reliable estimates depends on the type of

statistics we are after. In the case of estimating the mean of a random variable, a relatively

small number of samples are required, whilst for estimating variance, a larger number is

needed, since the estimate of the variance is more sensitive to noise.
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Artificial neural networks: practical
considerations for clinical application

Vanya Gant, Susan Rodway and Jeremy Wyatt

Introduction

The past nine years have seen a steady increase in the number of publications

concerning artiWcial neural networks (ANNs) in medicine (Figure 14.1). Many of

these demonstrate that neural networks oVer equivalent if not superior perform-

ance when compared with other statistical methods, and in some cases with

doctors, in several areas of clinical medicine. Table 14.1 gives a by no means

exhaustive list of academically driven applications, which are notable for their

breadth of potential application areas. Despite this academic research portfolio

demonstrating success, we know of very few examples of an ANN being used to

inform patient care decisions, and few (if any) have been seamlessly incorporated

into everyday practice. Furthermore, we know of no randomized clinical trial

(RCT) examining the impact of ANN output on clinical actions or patient

outcomes. This is in sharp contrast to the 68 RCTs published since 1976 assessing

the impact of reminders and other decision support systems, none of them ANNs,

on clinical actions and patient outcomes included in Hunt et al.’s (1998) system-

atic review.

To check whether our personal experience is reXected in the literature, we

conducted a search of the Medline bibliographic database in all languages for the

period January 1993 to March 2000 using the Medical Subject Headings term

‘Neural-networks- (computer)’. Using the Silver Platter software, this yielded

3101 articles. When Wltered using the Medline Publication Type = ‘clinical-trial’,

this number plummeted 50-fold to 61 articles. We examined the 61 abstracts of

these articles for any evidence that the output of the ANN had been given to

clinicians or others to guide real patient care decisions, or quality improvement

activities such as comparative audit. Despite their classiWcation as a clinical trial,

all of the studies were carried out on retrospective data, with none suggesting any

clinical use of the ANN output. We also tried other publication types including

‘controlled clinical trial’, ‘randomized controlled trial’ and ‘clinical trial phase III’.

No article describing clinical use was found. Filtering the 3101 ANN articles using



Figure 14.1. The increasing publication rate for neural network applications in medicine.

330 V. Gant et al.

this last term yielded just one article (0.03% of total), which turned out to be a

reanalysis of data collected during a completed RCT. Such a search strategy would

normally have a sensitivity of 50–60% for RCTs (McKibbon et al. 1990). Thus we

believe there are 0–1 articles published on Medline since 1993 describing the

clinical use of ANN outputs, let alone a rigorous randomized study. We note,

however, the large number of publications, both from the original group and from

independent third parties, on the capabilities of the PAPNET system, described

elsewhere in this book (Chapters 2 and 3). To our knowledge this is the sole

example of ANN technology that has not only been assessed in both retrospective

and prospective trials, but also implemented in patient care pathways, either as a

commercial service or as an ‘in-house’ technology for the originating pathologists.

To date, however, no prospective study speciWcally examining its impact on

patient care or outcomes has been published.

Notwithstanding this anomaly, the potential for ANNs in medicine continues

to grow with each new sphere of application, covering not only the areas of

prediction of clinical states at some future date (life vs. death, relapse from treated

cancer), but also the assessment of likelihood of disease from both ‘hard’ inputs

(such as biochemical proWles), as well as more complex datasets (electroen-

cephalogram waveforms, tracking eye movements, clinical imaging). It is notable

that ANNs seem particularly successful as analysers of visual information, whether

obtained from light microscopes (histopathology, cytology) or radiological equip-

ment (ventilation perfusion and positron emission tomography scans).

So why have we not seen their implementation?
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We believe that the very plasticity of ANNs as regards not only their internal

architecture but also their adaptability to diVerent data sets is also their Achilles’

heel. It is exactly these extraordinarily wide ranging novel potential applications

that bring with them equally novel and complex considerations of not only where

they Wt in the clinical decision-making algorithm, but also how ethically and

legally acceptable their implementation might be. These considerations can be

interpreted as important obstacles standing in the way of such devices becoming

commonplace in clinical practice, which is traditionally dominated by decisions

made by human clinicians. More speciWcally, the obstacles arise from a lack of

deWned criteria in several spheres of operation, such as their position in the

decision-making process, uncertainty concerning their role, the lack of a support

infrastructure, diYculties with evaluation of performance, and the ethical and

legal issues that Xow therefrom. All these conspire to make any process designed to

address the necessary homologation through oYcial national and international

bodies (such as the Medical Devices Agency and the European In Vitro Diagnostic

Medical Devices Commission) diYcult and tortuous. This chapter addresses these

speciWc areas of diYculty. We describe legal issues in the context of the UK legal

system, although it is likely that most of the points we raise would apply at least in

its broad principles to most, if not all, national legal structures. We conclude by

suggesting some criteria that must be met for successful clinical application.

Data refinery and decision-taking: some examples illustrating
uncertainty of role

Consider a clinician making a decision from patient data, such as a pathologist

examining a biopsy specimen down the microscope to decide whether cancer is

present or not. The eye and brain are besieged by a mass of raw visual data that

must be preprocessed and Wltered. The Wrst stage in this data-processing is to

abstract relevant features (Figure 14.2). For example, the pathologist will Wlter the

raw visual data to abstract features such as ‘nuclear pleomorphism’ or ‘penetration

though the basement membrane’. The hallmark of experienced pathologists – and

radiologists – is that they recognize signiWcant features instantly and reliably from

images. If questioned about how they achieve this, some may be able to provide an

explanation, often a post hoc rationalization. However, most will admit that it is

simply a learned skill, defying explanation – the ‘paradox of expertise’ (Dreyfus &

Dreyfus 1988). The same is true for a cardiologist listening for a fourth heart

sound or a psychiatrist determining whether a patient has insight or not.

It is not enough, however, simply to recognize features; these need to be

interpreted or assembled to support decision-making before the clinician takes an



Table 14.1. Several recent applications of neural networks to different areas of clinical
medicine

Subject (Ref.) Comparator Result

Assessment of need for

neurosurgery in trauma (Li et al.

2000)

Logistic regression, radial basis

function (RBF) and multilayer

perceptron (MLP) ANN

ANN outperformed logistic

regression model for need to

operate; MLP superior to RBF

Prediction of coronary artery

stenosis from angiographic

records (Mobley et al. 2000)

None IdentiWes additional patients who

in retrospect did not need

angiography

Prediction of schizophrenia from

eye-tracking dysfunction

(Campana et al. 1999)

Discriminant analysis Back-propagation neural

network analysis of eye tracking

performance correctly classiWed

more patients as schizophrenic

than did discriminant analysis

Detection of suicidal tendency

from patient Wles (Modai et al.

1999)

Logistic regression Back-propagation neural

networks were very successful at

predicting serious suicidal

tendency and isolated several

discriminant factors not detected

by logistic regression

Prediction of bladder cancer

reoccurrence from clinical data

(Qureshi et al. 2000)

Assessment by clinicians Neural networks outperformed

clinicians’ successful prediction

rate

Prediction of survival after breast

cancer from histology data

(Lundin et al. 1999)

Logistic regression Neural networks were

consistently more accurate in

survival prediction than was

logistic regression. Performance

was particularly impressive for

15-year follow up, even without

access to information concerning

original lymph node status

Description of extent and

severity of myocardial perfusion

defects measured using SPET

scintigrams (Lindahl et al., 1999)

Assessment by clinicians Neural networks and clinicians

correctly classiWed the

scintigrams 70% of the time

Prediction of relapse of prostatic

carcinoma after prostatectomy

from histology and clinical data

(Potter et al. 1999)

Logistic regression, Cox

regression

Genetically engineered neural

networks consistently

outperformed other statistical

methods and oVered the best

predictive performance

ClassiWcation of mammogram

lesions as benign or malignant

(Huo et al. 1999)

None Neural networks were found to

rely heavily on a single

radiographic feature for decision.

Performance was improved when

combined with a hybrid one-step

rule-based method
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Table 14.1. (cont.)

Subject (Ref.) Comparator Result

ClassiWcation of early renal

transplant rejection from

histological features (Furness et

al. 1999)

Logistic regression, conventional

histopathological reporting

Neural networks predicted

rejection better than logistic

regression and ‘expert’

histopathologists

Prediction of the likelihood of

pulmonary embolism from

ventilation–perfusion scans

(Scott 1999)

Clinical assessment of scans;

‘gold standard’ pulmonary

angiography

Neural network predictive

performance was superior to

that of clinicians in prediction

of embolism in cases with

normal chest X-rays

Detection of invisible coronary

artery surgical anastomotic

errors from graft Xow data in

mongrel dogs (Cerrito et al.

1999)

Surgeon’s visual assessment Neural networks interpreted

graft Xow characteristics and

detected anastomotic errors

more consistently than did the

surgeon’s assessment at the

time of the minimally invasive

surgery

Prediction of mortality following

intracerebral heamorrhage

(Edwards et al. 1999)

Logistic regression Neural networks correctly

classiWed 100% of patients as

alive or dead using

demographic and radiological

criteria, as opposed to a value

of 85% for logistic regression

Prediction of creatinine clearance

in HIV-infected patients using

clinical and laboratory data

(Herman et al. 1999)

Five other established

mathematical models for this

prediction

Neural networks performed

better than all Wve equations

Detection of prostatic carcinoma

using clinical and prostatic

ultrasonic data (Ronco &

Fernandez 1999)

Logistic regression Predictive capability of neural

networks was superior to

logistic regression in terms of

both positive and negative

predictive values

Prediction of obstructive sleep

apnoea (OSA) from 23 clinical

criteria (Kirby et al. 1999)

None Neural networks had a 98.9%

positive predictive value for

OSA, and did not misclassify

(i.e. ‘miss’) patients with

moderate to severe OSA

Prediction of tacrolimus blood

levels in liver transplantation

patients (Chen et al. (1999)

None Neural networks predicted

tacrolimus blood levels

precisely using patient variables

Prediction of breast carcinoma

from mammographic and

patient history data (Lo et al.

1999)

Clinical radiologists Neural networks consistently

outperformed radiologists, and

performed even better when

patient age was incorporated
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action. In our example, pathologists must assign both a diagnosis (e.g. melanoma)

and a stage (e.g. Clarke’s level III) before a surgeon can operate. Far from being

intuitive and data driven, this process uses rather few data – the abstracted features

– and is heavily dependent on explicit, often written, rules, conventions and

deWnitions.

As Figure 14.2 suggests, either of these two stages in the clinical ‘data reWnery’

can be carried out by a human or an artiWcial neural net. However, given that there

is a greater need for insight as one moves from preprocessing and Wltering to

interpretation and decision-making, the balance favours the human towards the

right hand side, and leaves most opportunities open for ANN on the left. This is

supported too by the fact that rules for humans become more diYcult as the data

they are interpreting become increasingly complex; human performance is per-

haps more variable when rules are unclear. There is accordingly much less chance

of (and need for) an explicit model. Thus it seems that ANNs can perhaps be safely

substituted for humans for low level data-Wltering tasks, assuming they can be

shown in rigorous, reliable experiments at least to match the performance of

expert humans, and to output the features that humans need for later processing.

This role is exactly the kind of niche that the best-known clinical ANN, PAPNET

(Boon et al. 1995), has fulWlled.

With such a concept in mind, we discuss two examples of potential applications

for ANNs in the clinical arena. These speciWc examples are used to illustrate the

diVerent positions that ANNs can take up in the chain of information to decision-

making; neither is in routine clinical use. The third example illustrates how

PAPNET was implemented in ‘real life’, after having found its ‘niche’, and how the

structure within which it is placed provides safeguards generally considered

acceptable by all.
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ANN interpretation of images: VQ scans as an example

One of the drivers for ANN development in clinical science has always been that

the data sets produced by the physical measurement technology of biological

systems are complex. Such complexity makes direct human interpretation very

diYcult, giving any decision a built-in element of uncertainty. Such uncertainty

implies that human decisions following data interpretation must be expressed in

the context of limits of conWdence. This is the case for radionuclide ventilation–

perfusion scans for the diagnosis of suspected pulmonary embolism. The scans

shown in Figure 14.3 illustrate the problem of interpretation facing nuclear

medicine physicians, whose scans have been described on occasion as ‘nebulo-

grams from the Department of Unclear Medicine’. The appearance of these images

contrasts sharply with the more explicit ‘gold standard’ pictures produced by

alternative but more invasive technology such as computed tomography (CT)

pulmonary angiography, also shown for the sake of comparison.

The diagnosis of pulmonary embolism from such scans carries with it very

important clinical decisions; needless administration of anticoagulant agents is

potentially lethal, and conversely witholding treatment with anticoagulants in

proven cases of embolism may be similarly lethal. In practice, these scans are read

by trained physicians, who are free to report them using a variety of terms

implying certainty (or not). Accordingly, reports are issued often couched in

terms such as ‘deWnite’, ‘likely’, ‘unlikely’, ‘non-diagnostic’, ‘no deWnite evidence’.

Some physicians prefer to report the scans in terms of betting odds that the scan

does not show embolism (‘there is a four-to-one chance that this scan is normal

. . .’). By so doing the clinician imparts more or less conWdence in the primary

(essentially all-or-none) diagnosis of embolism or no embolism. These practices

are accepted and acceptable; although interestingly it might be argued that to be

too didactic (and sometimes wrong) in one’s reporting style is to open the door to

criticism in the courts in those cases where the interpretation of the scan is

subsequently discovered to be incorrect.

What makes these practices legally acceptable is the defence available in a civil

action for negligent failure to act with appropriate care. This defence is based on

the view that a responsible body of opinion would act in the same way. Thus a

range of acceptable performance or approach is permissible in the human-

decision making model. We would nevertheless hope that the ‘driver’ for softening

reports with terms implying probability rather than certainty relates to a justiWed

and carefully considered limit to the diagnostic quality of the scan (as perceived by

human interpretation), rather than a fear of subsequent litigation.



(a)

(b)

Figure 14.3. (a) Ventilation–perfusion (VQ) (Tc99m-Technegas and Tc99m-Maa) scan showing a triple
matched perfusion abnormality in the right lower lobe inferoposteriorly. Right posterior
oblique images are shown with ventilation on the left and perfusion on the right panel.
(b) Computed tomography pulmonary angiogram showing a peripheral wedge infarction in
the right lower lobe and a filling defect in an adjacent right lower lobe segmental pulmonary
artery. (Figures very kindly supplied by Dr Brian Neilly, Department of Nuclear Medicine,
Glasgow Royal Infirmary, Scotland.)

336 V. Gant et al.



337 Practical considerations for clinical application

The human decision-maker

In law the human decision-maker is judged by the comparable actions of his or her

peers.

In the Weld of clinical negligence, a breach of the duty of care to a patient is

judged by measuring the action of the clinician against the standard reasonably to

be expected from a practitioner in the same Weld. Although this is often referred to

as the ‘Bolam test’, the case of Bolam v. Friern Hospital Management Committee

[1957] 2 All ER 118 in fact referred to the ‘ordinary skill of an ordinary competent

man exercising that particular art’. The ‘ordinary skill’ test was that which had

been propounded in the earlier decision in Hunter v. Hanley [1955] SC 200. There

it was said that ‘The true test for establishing negligence in diagnosis or treatment

on the part of a doctor is whether he has been proved to be guilty of such failure as

no doctor of ordinary skill would be guilty of if acting with ordinary care.’

As the law has evolved, the issue of reasonableness has entered into this test.

Lord Scarman in Siddaway v. Governors of Bethlem Royal Hospital [1985] AC 871

worded the test thus: ‘A doctor is not negligent if he acts in accordance with a

practice accepted at the time as proper by a reasonable body of medical opinion

even though other doctors adopt a diVerent practice.’ It is now generally accepted

that a particular practice is judged objectively against the hypothetical reasonably

competent practitioner.

Conversely, the defence to an allegation of negligence is that a body of opinion

would have acted in the same way. One of the best-known statements of this

principle is the speech of Lord Scarman in Maynard v. West Midlands Health

Authority [1984] 1 WLR 634: ‘It is not enough to show that there is a body of

competent professional opinion which considers that theirs was a wrong decision,

if there also exists a body of professional opinion, equally competent, which

supports the decision as reasonable in the circumstances.’ In various cases this test

has been referred to as ‘responsible’, ‘distinguished’ and ‘respectable’.

The human agent is, therefore, aVorded a certain amount of leeway to reXect the

range of acceptable approaches to a problem where either legitimate diVerences of

opinion can exist or where it is accepted that the problem solver is inherently

fallible.

The interesting point behind such apparent leniency is that it originates,

essentially, from conWdence in the decision-maker and his or her training. So an

expert in a particular Weld may be relied upon because he or she has followed

accepted and acceptable training pathways and demonstrated continued excel-

lence by good results.

If we translate this to a machine model, considerable diYculties ensue.

In the Wrst place, there is formidable suspicion in relation to any model that

replaces human reasoning, intuition and insight. Where such a model actually
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challenges or betters human reasoning, our cynicism is heightened unless we can

satisfy ourselves that the mechanics of the reasoning are so perfectly created as to

be infallible. For example, we will pit our wits against a chess computer program

or will rely upon a global positioning system because either we have conWdence in

the method by which the conclusion is reached or we know that we can, if we wish,

test the result by some other means.

Contrast an ANN. Only two points are potentially amenable to measurement

and conWdence. In the Wrst place, strict parameters can be set for the detailed and

accurate training of the ANN. Secondly, if the end result can be measured or

checked against known data, conWdence can be instilled in the accuracy of the

answer provided by the ANN. The missing link, of course, is the mechanism by

which the ANN reaches this result.

When, in this context, machine takes over from human, mistakes or variety of

interpretation are no longer acceptable and will not serve as a legal justiWcation for

a frankly incorrect prediction.

The additional complication is the inability to ‘compare’ the deductions of an

ANN with other ANNs in the same Weld. ANNs are trained only for a speciWc task.

There is nothing comparable. It follows that, in the law of negligence, reliance

upon the deduction of the ANN will arguably present a fresh problem. Such a

problem will arise because ANNs are unlikely to be aVorded any leeway, unlike

that which is permitted to their human counterparts employed on the same

decision-making task.

Obstacles to ANN replacing human beings in interpretation of VQ scans

With the above in mind, it is easier to understand the obstacles in the way of ANNs

replacing human beings in the interpretation of VQ scans.

Several publications demonstrate that ANNs can be trained in this context and

their successful diagnostic performance subsequently measured against an unre-

lated dataset (such as that of Scott (1999)). As set out above, the law accepts that

radiologists may not always be right, and are not necessarily required to perform

faultlessly.

Validation of the ANN in this context should be related to the performance of

human observers, or to a better-deWned endpoint or ‘gold standard’. In this case

the results of the (more invasive) pulmonary angiogram, where radio-opaque dye

is injected directly into the pulmonary circulation, oVer the requisite ‘gold stan-

dard’, against which both the doctors and the ANN can be compared. The original

training set should, if at all possible, contain such gold standard data, as otherwise

the network would perform only as well as the radiologists. There remains a

fundamental problem, however, with this particular ANN application. The ANN

is here acting not only as a data Wlter but also as a diagnostic device, oVering an
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interpretation of the data. The Wnal human decision-making is therefore to accept

or reject the ANN’s conclusion of the signiWcance of the scan in question. We

consider that this step should continue to be essential; the best solution here

would be for the radiologist to examine the scans in the light of the ANN’s decision.

The ANN in this role should therefore be that of an ‘adviser’ rather than a

diagnostician, and the Wnal decision as to the scan’s signiWcance is ultimately a

human one.

ANN interpretation of clinical data – mortality in the critically ill

This example of the potential for ANNs in the clinical arena illustrates several

points that are much more diYcult to embrace in an ethical and legal sense.

Dybowski et al. (1996) demonstrated that an ANN could predict mortality in the

critically ill by using selected physiological parameters of organ function and

patient demographics as input Welds. Whilst prediction accuracy was not perfect,

it was superior to that obtained by logistic regression. The ANN here acted as a

data reWnery, producing an output that could be interpreted in many diVerent

ways, and used for many diVerent purposes. The authors pointed out that the

ANN was designed with the speciWc purpose of gaining insight into those factors

associated with poor prognosis. Thus the role of the ANN was deWned as a means

to an end, namely insight into critical illness and death.

The work of another group, using diVerent statistical techniques, but also

predicting mortality in the critically ill was unfortunately interpreted as a possible

means of allocating increasingly scarce resources to those patients whose probabil-

ity of death (as measured by their system) was lower. Much criticism from public

and professional bodies ensued. Whilst both systems were valuable as data reWnery

tools for research into those elements responsible for mortality, the perceived

diVerence between these two systems designed for identical data sets and desired

outputs was therefore one of the role or the purpose to which they were put. This is

not diYcult to understand in the ethical context of the doctor’s overwhelming

duty to act in the best interests of his or her patient. This is a duty in relation to the

speciWc patient and not the patient body as a whole. So, in the example above, the

prediction of mortality for the purpose of allocating scarce resources would place

the needs of the general above the needs of the speciWc patient. Patient A, deprived

of treatment as a result of a prediction of mortality, would have a cast iron claim

for negligence during the period of absent medical care and the fact that he died

(in accordance with the prediction of the ANN) would act as no defence to the

action by his family. In the same example, however, the ANN prediction could

arguably be used to support the contention that the patient would have died in any

event.
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The example illustrates well the increasing diYculties facing ANN implementa-

tion when these are used more at the ‘decision-making’, rather than the ‘data-

reWning’ end of the clinical management spectrum. The further towards the

decision-making end of the spectrum the ANN is placed, the less acceptable it is

for decisions to stand alone.

ANN in ‘real life’: the PAPNET system

This system is described in detail in Chapter 3. BrieXy, the system consists of two

ANNs capable of recognizing those abnormal elements in Papanicolaou-stained

cervical smears that are associated with cancer. The early stages of cervical cancer

are curable, and cervical smears oVer the possibility of detecting these at a stage

that results in cure. National screening cervical programmes place an enormous

burden on cytology laboratories, which have to employ large numbers of trained

technicians. A technician’s job consists of examining every cell in each smear

(numbered in their thousands) to detect those few cells characteristic of early

cancer. This job is time consuming, repetitive, and tedious. PAPNET is designed

to receive stained microscope slides, scan all the formed elements of the slide, and

interpret cells or groups of cells as normal, or not. Abnormal areas are then

digitally photographed, together with their exact xy coordinates on the slide; these

pictures are referred to as ‘tiles’. The pathologist will review these ‘tiles’, and can

choose to return to that precise area of the slide using a suitably designed

microscope Wtted with a motorized microscope stage. The system therefore

analyses data at the ‘input’ end, and does not attempt to ‘decide’ anything other

than taking the pathologist to areas that it has classiWed as abnormal. The system

therefore sits at the ‘data reWnery’ end of the diagnostic equation, by Wltering out

non-diagnostic noise and enriching those elements with diagnostic potential. It is

designed to replace the initial manual screening process, for which it has been

shown to be at least as, and probably slightly more, eVective and robust than its

human counterparts in both retrospective and prospective studies. Some studies

have suggested that the system oVers a lower false negative rate than do its human

counterparts, implying that it ‘misses’ malignancy less often than cytologists do. In

such closely monitored trial situations, therefore, the system appears very attract-

ive. Many European laboratories began to avail themselves of the PAPNET service,

feeling increasingly conWdent that the cells which the system was isolating and

presenting were indeed the most abnormal ones on the smear. The role played by

the ANN-driven system was therefore very well deWned. Its excellent performance

in this strictly deWned role had been demonstrated beyond question; this was also

considered acceptable because interpretation of the images was still ultimately

human. Despite this apparently bright future, the system is now no longer

commercially available. Firstly, the commercial manufacturer charged a consider-

able fee-per-test, which for some laboratories could not be recouped by increased
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eYciency. Secondly, their marketing tactics allegedly implied that cancers might

be ‘missed’ by the inferior performance of cytologists as primary screeners. This

statement was not surprisingly received with much hostility by the American

pathology community. Finally, the company subsequently went into liquidation.

It should be noted that it was not possible to buy the system and install it in

individual laboratories; slides had to be sent to the company’s laboratories, where

they were analysed and sent back with a digital tape containing the tiles ready for

review. This was presumably done in order to retain control of the system and its

internal workings. The signiWcance of this in a legal context is discussed below.

Required evaluation

Much has been written (Wasson et al. 1985; Wyatt & Spiegelhalter 1990; Wyatt &

Altman 1995; Friedman & Wyatt 1998; Altman & Royston 2000) about how to

design and conduct a rigorous evaluation of a classiWcation tool, including:

The selection of representative test cases.

The need for separate test sets of data distinct from those used to train the ANN.

The need not only for good discrimination (low false positive and false negative

rates against a reliable and valid gold standard) but also for good calibration.

Within this uncomplicated framework an ANN can be objectively trained by

‘real-life’ data and have experience of potentially thousands of events with a

known, measurable and measured outcome. Training eYciency can be tested

using an unrelated data set (again with known outcomes), and performance can

therefore be directly validated in terms of sensitivity and speciWcity against a

retrospective gold standard. This exercise can (and should) be repeated in a

prospective manner to ensure consistency of performance over time.

There is less recognition, however, of the need for, and methods of, conducting

Weld trials into the impact of the classiWcation tool on clinical decisions, actions

and patient outcomes.

Once a tool such as an ANN has adequate discrimination and calibration, it is

necessary to test its beneWt as a decision aid, i.e. how much it improves unaided

decisions. For example, if the decisions about choice of drugs taken by doctors are

already optimal, an ANN with 100% diagnostic accuracy may not help. Only a

Weld trial of the impact of providing the ANN output on clinical decisions can

determine how much the doctors will use the ANN, how much they will allow its

output to inXuence their decisions, and how much this will change their patient

care actions. Again, there are studies published concerning how to avoid the many

biases and pitfalls they pose (Wyatt & Spiegelhalter 1991) but, as described earlier,

there is little evidence that the developers of ANNs have so far taken the plunge.



Table 14.2. Cumulative performance criteria and evaluation requirements of
predictive tools as the role of the model is extended

Role of prognostic model Performance criteria (cumulative)

Guiding health policy/management Broad predictive accuracy ( ± 50%)

Guiding biomedical research Accounts for most experimental results

Able to support ‘what if’ queries

Teaching students Number of alternative scenarios supported

Clinical plausibility of scenarios

Able to generate explanations

Guiding the care of groups of patients (CQI) High accuracy for groups of patients

Covers the majority of case types

Valid across institutions/states

Modest data requirements

Grading patient outcomes in clinical trials Good accuracy on each case

Sensitive to important diVerences in patient

state

Reliable in diVerent hands

Guiding choice of low risk tests or treatment in

individual patients

Able to identify atypical cases

Reasonably calibrated probabilities

Good discrimination per case

Explicit model with explanations

Guiding high risk choices in individuals Well-calibrated probabilities

High discrimination per case
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This may be partly because of concern over ethical or legal issues. It may also be

because the requirements for performance and quality are cumulative as one

progresses down the list of possible roles for predictive models (Table 14.2), so

that complex and searching preliminary evaluations are required before reaching

the stage of testing the impact of an ANN on clinical decisions in a Weld trial.

Necessary support infrastructure

Once again, the very plasticity of ANNs represents their Achilles’ heel. A crude

analogy here is the plasticity of human beings. Humans wishing to practice

medicine have to be trained, and then have to prove competence by passing

examinations, and by satisfying statutory authorities that they remain competent

with time – a process referred to as Continuous Medical Education (CME).

Similarly, if they wish to enter the diagnostic disciplines, higher examinations set

by statutorily appointed bodies are necessary. In the UK these disciplines are

governed by the Royal Colleges (of Pathology, Radiology, etc.).
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These mechanisms provide perceived safeguards for the quality of human

decision-making, thereby attempting to protect patients from substandard levels

of care. Because of the omnipresent spectre of human error, however, these

mechanisms can be regarded only as the best available and do not pretend to

ensure patients against the possibility of medical malpractice.

We have illustrated examples in this chapter of systems that are, in theory at

least, capable of making equally important diagnostic decisions. The publications

concerning the success of ANNs, driven by academics, demonstrate that (in an

academic setting) such systems can perform equally well if not better than human

beings. This lack of implementation therefore reXects not so much their capability,

but rather more uncertainty about the universal structure within which they can

be assessed, monitored, endorsed, and implemented in a way acceptable to

clinicians and patients alike.

For this reason, we suggest that the application of ANNs might be loosely placed

within the structure appropriate for pathologists. If ANNs became routine diag-

nostic tools for the clinician, with no reference back to a body of opinion that

might identify faults in the conclusions reached, there is a danger of complacent

reliance on the ANN to the exclusion of other diagnostic procedures or even

common sense. Although the current reliability and performance of ANNs is in

some circumstances exceptional, and there is no reason to doubt that this will not

remain so, no structure exists to ensure that this should remain so. Pathologists

are trained in Good Laboratory Practice; this is the reason why clinicians can, and

do, rely, on the answers to the tests they perform on their patients. The ‘black-box’

nature of the networks themselves also serves to increase feelings of uncertainty

about whether such devices are to be used in critical areas of health care. Unlike

established diagnostic and medical equipment such as microscopes, CT scanners,

biochemistry autoanalysers, and ventilators, such devices are not amenable to

engineering maintenance. It is, however, abundantly clear that they need to be

‘monitored’ for correct use, performance, internal consistency, and may also need

regular ‘upgrades’ in the form of (perhaps) retraining on larger or more appropri-

ate data sets. Without such monitoring, these devices are very unlikely to be

endorsed either by health care organizations, or by patients.

As regards ANNs whose role has been designed as data-reWning devices, we

suggest that their implementation cannot proceed because of the lack of endorse-

ment and approval by any statutory authority.

The UK Royal College of Pathologists oversees and governs those doctors who

have been charged with providing quality and excellence in diagnostic laboratory

skills (such as histopathology, chemical pathology, immunology, haematology,

and microbiology). Clinicians whose performance is endorsed by such statutory

bodies responsible for the principles of Good Laboratory Practice and Continuous
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Medical Education are accepted and acceptable in an ethical and legal sense.

Implicit in this statement are the concepts of ‘policing’ performance and protect-

ing the public from those clinicians whose performance becomes substandard for

whatever reason.

ANNs created by, and borne out of, academic curiosity, have no such umbrella

organization to represent them. They currently have neither identity nor ethical

and legal framework within which they can be legitimately incorporated into

clinical decision-making. The fact that they are ‘black boxes’ is probably of no

consequence, as human beings are accepted as decision-makers in the absence of

easily deWnable reasons (see the paradox of the expert, above).

The most promising area for ANNs in medicine consists of their ability to act as

‘data reWneries’ for large and complex data sets; their ability to make decisions

based on the experience of thousands of individual records is particularly attract-

ive. A correctly trained network containing the post hoc experience of the clinical

features and outcome of, say, 10 000 patients is a potentially very valuable clinical

tool. We suggest that there must be a regulatory body for the assessment, mainte-

nance, and supervision of such tools.

The traditional diagnostic pathology disciplines are currently not able to em-

brace such novel technology based in mathematics. It is therefore diYcult to see

how to integrate ANNs within recognized pathology specialities, although many

practices and procedures in pathology could be applied to ANNs. One can

envisage, therefore, the necessity for the development of Departments of, for

example, Neural Networking and Decision Support within health care organiz-

ations. The aim would be to promote the development of, and design and

implement the strategies for, the maintenance and quality control aspects of

network applications. Such departments would have to work together with clini-

cians to initiate proper systems for the integration and use of ANNs in the clinical

arena. A link with pathologists would also seem logical, as they are familiar with

the concept of quality control, which is central to the safe continuing existence of

an ANN.

It is diYcult to begin to assess the true value of ANNs on clinical practice as no

RCT data exist speciWcally examining this; it may be that no such trials have been

performed because the behaviour, design, and role of ANNs do not Wt easily, for

both ethical and legal reasons, into any existing statutory regulatory structure.

Until such a regulatory structure exists, no progress can be made. It should not

be the remit of academics, industry, or both, who are responsible for such

networks, to implement these systems. Furthermore the plasticity (and therefore

room for error through incorrect usage) of ANNs implies that clinicians should

equally not be charged with being guardians of such technology. There are

examples where much simpler technology has been incorrectly used by doctors
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outside the normal ‘safety envelope’ provided by statutory bodies such as the

Royal College of Pathologists, and litigation has ensued.

Until this fundamental problem is resolved we see no way whereby the advan-

tages of ANNs can be exploited for the beneWt of the individual patient; some of

these concepts are explored in the following section concerning their legal status.

Some legal aspects of ANN implementation

What is the legal definition of ANN?

For reasons that will be outlined brieXy in this chapter, the manner in which ANNs

are used, as well as the purposes to which they may be put, will lead to speciWc legal

outcomes, which we will discuss.

ANNs begin their life as mathematical models ‘trained’ for a speciWc purpose.

Because the creator of the ANN already knows the application to which he or she

intends the ANN to be put, this analysis of legal ramiWcations may appear to place

the cart before the horse. As we will show, however, the manner in which the law

will determine liability for faulty outcomes will probably have the eVect of itself

dictating the areas in which ANNs will be most widely used.

The ‘black box’ concept

We are not aware of any legal precedents that have considered the medical

applications of ANNs nor sought to give legal deWnition. The law has considered

the issue of computer technology, both software and hardware, and articles and

papers abound in relation to artiWcial intelligence and computer-aided decision-

making. The concept of ANNs, however, is novel in the following respects:

Although involving hardware and software, the inner workings of individual

ANNs are diYcult to visualize (the ‘black-box’ problem (see Hart & Wyatt

1990)).

The ultimate commercial producer of the ANN is, in practice, unlikely to release

the source code for the structure to the endpoint user for fear of piracy and

replication.

The accuracy of the results from ANNs can be measured only against known

parameters. In other words, this is not equivalent to a machine, tool or

equipment where the results stand for themselves. For example, an electron

microscope or a thermometer can be relied upon because the manner by which

the result is arrived at is known.

Why is this important?

The practical future of ANNs must lie in their potential commercial value. The

beneWciary of such use in medical applications is the patient.
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To render the use of ANNs commercially viable, the patient population at

which they are aimed is likely to be high and probably worldwide.

Thus, in terms of legal liability for any failure in the ANN system, in legal terms

the patient is likely to fall into the category of ‘third party’. In other words the

patient is unlikely to be a direct party to any contract involving the use of ANNs.

In law, the direct relationship in this context would be governed by a contract.

For the patient to have an eVective remedy should he or she be harmed by any fault

in the system, the usual remedy would be through strict liability of the manufac-

turer of a product or through negligence.

Product liability

Most jurisdictions entertain the concept that the manufacturer of faulty goods is

strictly liable to an end-user for any damage caused by such faults.

In European and UK law, this liability has been reduced to legislation.

Under the Consumer Protection Act 1987,1 which was implemented under the

European Product Liability Directive, the patient has the opportunity to make a

direct claim against the ‘producer’ of a defective ‘product’ for any damage caused

by such defects. Because the claimant does not have to prove negligence or breach

of contract, this is a remedy arising out of what is known as strict liability.

In the context of widespread use of ANNs by hospital or health Trusts and

medical institutions, it would plainly be in their interests to direct any litigation

away from themselves and against the creator of the speciWc ANN.

The Wrst question, therefore, arises: is an ANN a product in the legal sense?

A product is deWned in the 1987 Act as ‘any goods or electricity and . . . includes

a product which is comprised in [sic] another product whether by virtue of being a

component part or raw material or otherwise’.

The deWnition of defect is set out in Section 3 of the Act. A relevant defect is one

that aVects the safety of the product. In the context of ANNs used for health

beneWts to patients, any defect is likely to come within the deWnition.

It follows that if an ANN is deWned as a machine or computer hardware, it

would undoubtedly qualify as a product and come within the provisions of the

Act.

If, on the other hand, ANNs are deWned as comparable to software, the Act

would not bite. In reality the actual ANN includes both software and hardware.

Any defect in the software that has an eVect upon the performance of the machine

itself would be a defect within the meaning of the Act.

In a third scenario, if the ANN remains with the manufacturer and the Trust is

only sending specimens and receiving reports (albeit reports generated by the

ANN) such reports will not conform to the deWnition of a product. In the
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PAPNET application, for example, the slides were sent to the company’s labora-

tory. In such a situation, as long as it can be shown that it is the fault in the ANN

itself that has led to an inaccurate or incorrect report, it should still be open to the

patient, harmed by an incorrect report, to sue the manufacturer directly if it can be

shown that it is a defect in the ANN rather than later human intervention that has

caused his or her damage.

If ANNs are deWned as products, then the Act provides that the producer of the

ANN will be liable for any damage caused wholly or partly by a defect in a product.

Such liability will also fall upon anyone holding himself or herself out to be the

producer of the product or anyone who has imported the product into a European

member state from outside the member states in order to supply it to another in

the course of business.

As long as the Trust or medical institution does not come within the deWnition

of someone holding himself out to be the producer, then liability will rest with the

original manufacturer of the ANN. Whether or not the Trust or user holds himself

or herself out as a producer may be signiWcant in the context of the proposal to set

up internal Departments of (for example) Neural Networking and Decision

Support. A department with the necessary skills to police the quality control

aspects of the ANN may expose itself to liability as the producer of the same. It

would be iniquitous if something that could be of considerable Wnancial and

medical beneWt were disregarded because of such diYculties and the potential for

exposure to litigation may simply be the price that has to be paid for such scientiWc

advancement.

A further area in which a Trust or user might Wnd itself exposed to strict liability

for any errors in the ANN is found in the provisions of Section 2(3) of the Act.

This section provides that any person who supplied the product to the person

suVering damage is liable for the damage if he or she cannot provide the person

who has suVered damage with the identity of the producer.

In order for the Trust/user to avoid liability under this section it will be

necessary to argue that the purpose to which the ANN was put did not involve the

supplying of the product. The Trust/user ought in any event to be easily able to

identify the producer.

There are defences provided by the Act. In Section 4(1), anyone sued under the

Act is provided with a defence if the state of scientiWc and technical knowledge at the

relevant time was not such that a producer of products of the same description as the

product in question might be expected to have discovered the defect if it had existed in

the products while they were under his or her control.

This so-called ‘state of the art’ defence poses numerous conundrums in the

context of ANNs. In the Wrst place there may in fact be only one producer of ANNs

for a particular application. Would such a producer be able to rely upon the state
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of knowledge of a producer of ANNs in a diVerent Weld? In the second place, there

is the whole issue of the inability of any producer to know ‘how’ the ANN works or

what deductive process it employs to produce a result. In real terms, no producer

could ever be expected to discover a defect in the ANN itself.

Contract

Whether regarded as products or not, it is axiomatic that any defects in ANNs

could give rise to serious legal consequences. The contractual framework within

which the ANN is put to practical use is likely to be of central importance in

establishing who pays for any eventual damage.

The relationship between the original creator and the end-user of an ANN will

normally be governed by one or a series of contracts. It should, therefore, be

possible for the Trust/user to protect itself against exposure to huge damage claims

by the inclusion of carefully worded terms. In those circumstances it should not

matter whether the contract is for the actual supply of the ANN itself (for use

internally in a department) or for the provision of test results. It ought also to be

possible for the manufacturer to obtain insurance in respect of any defects in the

ANN.

The end result of a faulty ANN used in a medical context is likely to be damage

in the form of personal injury to a patient or patients. In English law, personal

injury has historically been deWned as ‘any disease and any impairment of a

person’s physical or mental condition’.

Various statutes limit or control the extent to which a party to a contract can

exempt himself or herself from liability by reference to a term of that contract and

Section 2 of the Unfair Contract Terms Act 19772 prohibits limitation or exclusion

of liability for death or personal injury arising from negligence. Negligence is

deWned in the Act as the breach:

(a) of any obligation arising from the express or implied terms of a contract to take
reasonable care or exercise reasonable skill in the performance or a contract;

(b) of any common law duty to take reasonable care or exercise reasonable skill (but not any
stricter duty)

Since it is anticipated that the most likely reason for a failure in an ANN will arise

from negligent training or some act or human error, an exclusion clause in these

terms ought not to be eVective.

Section 2 will always apply in relation to actions for personal injury. Circum-

stances may arise, however, in which the loss suVered by the Trust/user is purely

economic.

In this instance, Section 2 does not apply to a contract relating to ‘the creation

or transfer of a right or interest in any patent, trade mark, copyright, registered
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design, technical or commercial information or other intellectual property . . .’.

It appears that Section 2 is thought to apply to software but that the require-

ment of reasonableness will have to be met. The Act imposes such a requirement

and sets out Wve guidelines. These cover the relative strengths of bargaining

position between the parties: whether a customer was induced to enter into the

contract, whether the customer ought to have known of the existence and extent of

the exclusion clause, where the exclusion clause is dependent upon a condition not

being complied with, whether compliance with the condition was practicable, and

whether the goods were manufactured, processed or adapted to the special order

of the customer.

A case of importance in this regard is St Albans City and District Council v.

International Computers Ltd [1997] FSR 251. This was a case concerning an error

in software supplied by the defendant for the purpose of assessing the level of

community charge. The error led to the charge being set too low and large

Wnancial losses ensued. There was plainly a breach of contract but the defendant

sought to rely upon limitation clauses in the agreement, which set their liability at

£100 000.

The judge at Wrst instance decided that the limitation clause was unreasonable.

This decision was upheld by the Court of Appeal. The decision focused upon the

relative bargaining power of the parties. The courts were clearly inXuenced by the

fact that one was a multinational company and the other a relatively impecunious

local authority.

The case shows that limitation clauses can, in principle, apply to software but it

is also interesting to note (by analogy) that there would be considerable force in an

argument that such a clause would be unenforceable in relation to ANNs. The

producer of the ANN is likely to be a large, proWt-making organization and the

user a relatively impecunious Trust. The bargaining position argument would be

bound to be employed by such a Trust in this jurisdiction. The case reinforces the

need for expert legal advice in drawing up and entering into the contract as well as

the need for prudence on the part of the producer of the ANN in obtaining

adequate insurance to cover potential claims.

Negligence

The background to allegations of negligence in clinical practice have been dis-

cussed above. Any fault in the ANN will be likely to lead to harm to patients who

are not in a contractual relationship with the originator of the ANN. If the patient

cannot sue under the product liability provisions, the next ready route is an action

in negligence either against the manufacturer or the health care provider.

Can the patient sue the manufacturer of the ANN?

In the world of software design, the original author would be unlikely to be held
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responsible to the whole world, even though it could be said to be foreseeable that

a fault could lead to loss or damage.

The famous words of Cardozo C. J. in Ultramares Corporation v. Touche [1931]

174 N.E., a New York Court of Appeal decision often cited with approval by

English courts, still held good and the law sets its face against liability ‘in an

indeterminate amount for an indeterminate time to an indeterminate class’.

In order to succeed in showing that the manufacturer of the ANN owes a duty

to the patient, the latter must be proved to come within a deWned class of people

who must have been in the manufacturer’s contemplation. This is the legal

concept of proximity. The landmark decision on this point is that of the House of

Lords in 1991 in Caparo Industries plc v. Dickman [1990] 2AC 605. This was a case

about the liability of auditors for negligent misstatements in their report upon

which shareholders relied to their Wnancial detriment, but it has redeWned the test

for establishing the existence of duty of care situations.

The test to be applied involves reasonable foreseeability that damage will be

suVered, the existence of proximity in the relationship between the parties and

whether it is fair, just and reasonable to impose a duty.

The ANN will be aimed at a speciWc purpose and thus an identiWable class of

people who could foreseeably suVer injury as a consequence of defects. It is likely,

therefore, that even with an application employed in a national screening process,

the cohort of screened patients would be deemed to come within a Wnite class that

ought to have been in the contemplation of the ANN creator.

It follows that any person injured as a consequence of a fault in an ANN is likely

to be able to claim in negligence against the original manufacturer.

In practice, of course, the Wrst line of attack for an injured patient will probably

be to sue the Trust or medical institution responsible for his care. Exposure to the

threat of such a burden of litigation could be a serious disincentive to such Trusts

to use ANNs. For this reason, the terms of the contract between the ANN

manufacturer and the user and the judicious inclusion of appropriate indemnities

will be of central importance if national institutions are to be encouraged to

employ ANNs in any context.

Limitations on the practical application of ANNs

This leads on to the essential consideration of the limitation of the applications of

ANNs. Because the actual methods by which results are reached can never be

analysed, it is all the more important that ANNs are applied in circumstances

where their continuing accuracy can be assessed by reference to Wxed parameters.

Thus, in the Weld of cervical screening, for example, random quality control checks

can be made by physically examining the smears assessed by the ANN.

This is also important in situations where a ‘grey area’ of liability emerges. If it is
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not plain and obvious that a Trust or user should avoid liability on any of the

grounds set out above, the Trust defence to the patient will lie in the reasonable-

ness of its reliance on the ANN.

The doctor/patient relationship is essentially deWned by the obligation of the

doctor to act in the best interests of his or her patient. This is supplemented by the

requirement to obtain the consent of the patient in relation to treatment and

procedures.

In the use of ANNs in many of the contexts suggested, the consent of the patient

will not be a requirement. Thus, in large-scale screening applications, the patient

will probably be unaware of the use of ANNs. If, however, disaster struck and there

was no ‘producer’ to whom liability could attach, would the Trust inevitably be

doomed to compensate any injured victims?

Here the Wrst practical eVect of the law on limiting the arenas in which ANNs

could sensibly be applied comes into play. In the screening example, if the Trust

was able to show that its use of ANNs was reasonable, was in the best interests of

the patient, that there were eVective systems in place to check the continued

accuracy of the ANN, and there were no reasons to suspect errors, then an

arguable defence to a claim emerges.

Contrast this with the use of ANNs in more experimental situations. To take an

extreme example, the ANN could be used as a predictor for the eYcacy or

otherwise of a particular expensive treatment in a particular patient. For the

reasons set out above, a defence based upon an argument that this is beneWcial to

the patient community as a whole will fail. Such an application will necessarily

deprive particular patients of treatment they would otherwise have received.

Reliance on the ANN to the exclusion of personal judgement in such a situation

would almost certainly be indefensible. The only way in which such an application

could properly be applied would be with the express knowledge and valid consent

of the patient.

These considerations underline the points already made. The use of the ANN is

unlikely to be extended beyond data reWnery or adjunct to decision-making (in the

same way as a textbook) until the law develops and recognizes how to deal with the

complications more sophisticated applications present.

Conclusions: criteria for medical use of ANNs

Table 14.3 illustrates the strengths and weaknesses of ANNs in relation to other

methods of data classiWcation. These are judged by the Wve criteria of accuracy,

generality, clinical credibility, ease of development, and clinical eVectiveness. This

interface between ANNs and clinical need is also discussed by Wyatt (2000). The

table demonstrates the drawbacks of ANNs in several of these criteria, at least



Table 14.3. Criteria for predictive tools and comparison of the ability of three
predictive technologies to satisfy them

ArtiWcial Explicit Knowledge-

neural statistical based

Criterion SpeciWc requirement nets models systems

1. Accuracy Accurate discrimination @ @ ?

Well-calibrated

probabilities

] @? ]

2. Generality Valid when transferred to

other sites

? ? ?

Model can be adjusted to

reduce overoptimism

] @ ?

3. Clinical

credibility

Model’s structure apparent,

explanations available

]@? @

Ability to browse the

system’s ‘knowledge’

] @ @

Simple to calculate

predictions

] @? ]

Ability to display ‘common

sense’

] ] ?

4. Ease of

development

Avoids need for large,

prospective veriWed

database

] ] @?

Avoids need for skilled

personnel

? ? ]

Ability to encode clinical

policy, systematic review

results, etc.

] ] @

Ability to encode aetiology,

disease mechanisms, etc.

] @ @

Ability to learn from

experience

@ @ ]

5. Clinical

eVectiveness

RCT evidence of impact on

clinical process, patient

outcomea

] @ @

From Wyatt & Altman 1995.

aRCT, randomized clinical trials; data from Hunt et al. 1998.
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some of which relate to insuYcient experience with their actual performance in

the Weld and in well-deWned randomized clinical trial settings. Progress therefore

will depend on a careful assessment of ANN performance in tightly controlled

situations, under a tightly controlled set of parameters. The following section

suggests outline protocols for the assessment and possible ultimate adoption of

ANNs in clinical situations.

A suggested outline framework for the application of ANNs in clinical practice

The following is a six-point protocol, which it is suggested should be adopted in

relation to the clinical use of ANNs in any setting:

1. The use must always be for the intention of beneWt to the individual patient

rather than to the patient body as a whole. The use of ANNs to determine

outcome for the purpose of saving money or allocating resources should be

prohibited.

2. The use of an ANN in a speciWc diagnostic or predictive area, and the

advantages accrued therefrom, must always be justiWed by appropriately con-

ducted randomized clinical trials.

3. The parameters deciding where to set ANN sensitivity and speciWcity must be

determined for each and every speciWc application, as must the design and

power calculations necessary for the clinical trial. These parameters depend

upon both the implications of using the technology (the clinical importance of

the output of the ANN) and, in the case of screening, the prevalence of the

disease in the population to be screened. Such decisions should be made up of a

nationally appointed panel of clinicians and statisticians with experience in this

area.

4. ANNs should be used only in locations where there is direct access to expertise

in their design, implementation and quality control.

5. ANNs must be used only within a structure of well-deWned and established

‘Good Network Practice’, supervised by statutory bodies to act as regulators of

continued quality performance.

6. ANNs may be used at the discretion of the treating clinician in circumstances in

which the veracity of the data provided is not capable of being checked against

known scientiWc data at that time. In such circumstances their use shall be

restricted to those patients or volunteers who have been fully informed of the

use of the same and provided with such information as enables such patient

volunteers to provide valid consent to their use.
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NOTES

1. Distinctions in the Act relating to diVerent parts of the UK are not relevant to this chapter.

2. This Act applies to England, Wales and Northern Ireland for contract terms and otherwise

and to Scotland for contract terms alone.
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gastric lesions 37–8

oral epithelial lesions 37

peritoneal eVusions 36–7

pleural eVusions 36–7

thyroid lesions 37

urine 38

urothelial lesion 38

data

exploration 260

test 150

see also clinical data
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323

dementia diagnosis 51–2

cerebral perfusion scans 54–5
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deterministic Wnite-state automata (DFA) 282–5

deviance 248
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doctor/patient relationship 351
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eYcacy prediction 351
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mental tasks 178

separation from EEG 183, 184, 185

electrocardiography (ECG)
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myocardial infarction diagnosis 203, 204

waveform analysis 229–30

electroencephalogram (EEG)

portable acquisition/analysis system 189

signal analysis 175–90
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2-D visualization 93–4

10-dimensional parameterization 93–4

input representation 91–3

obstructive sleep apnoea 98, 99, 100

supervised learning 94–6

unsupervised learning 93–4
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eye blink removal 182–3, 184, 185–6
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end-users 348–9
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epidemiology 14

error function

prediction intervals 312, 313

regression-based classiWcation 318

Escherichia coli

ampicillin model system 158

identiWcation 45, 154

pyrolysis mass spectrometry 162

ethics of ANN applications 331

purpose/role 339

Eubacterium identiWcation 155

European Product Liability Directive 346

event-related potentials 175–7

wavelet transform 176

event-related wavelet 176–7

evolution, simulated 226–8

evolutionary algorithm 227

evolutionary computation 225–8

evolutionary neural networks 225–8

breast cancer diagnosis 231–2

coronary artery disease 229–30, 231

medical applications 229–32
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expert systems 192–3

rules 209

ARTMAP networks 201
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paradox 331

requirements 353
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explanation quality 258

extracorporeal shock wave lithotripsy 133–5
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eye blink removal

classiWcation accuracy 186–9
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sub-Gaussian components 183, 185, 186, 188
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fast Fourier transform 92

feature extraction 120

Wilk’s generalized likelihood ratio test 122–5,
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feature selection 67
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bias 302

class-conditional posterior possibilities 317
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input noise 322
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prediction intervals 312–14

regression function 300, 301, 302

rule extraction 200–1

training set 301

see also multilayer perceptrons

feedforward paradigm 195

Wne needle aspiration cytology 212–16

feature deWnitions 218–19

symbolic rule extraction 214–16
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bacterial taxonomy 150–2

fungi 152
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FNES model 276
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rapid identiWcation by pyrolysis mass
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Bayesian optimal classiWcation 210
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fuzzy min–max network 229, 231

fuzzy-MLP model 276

fuzzy rules 261

decompositional approach 275–6
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fuzzy set theory 11

fuzzy systems
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see also neuro-fuzzy network

gallbladder disease diagnosis 54

gastric lesion cytology 37–8

Gaussian density functions 224
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Gaussian posterior distribution 315–17
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62
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generalization error 287, 288

generalized additive models 240
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Gibbs sampling 321
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Graphic User Interface 140
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hardware 346

hazards 245
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see also coronary artery disease; myocardial
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hidden Markov model 117–18
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hierarchical neural net 229–30

higher level interpretation 67

histopathology 38–43

astrocytoma grading 41–2

axillary lymph node metastasis 40

breast cancer 39–40

hepatocellular carcinoma 41

parathyroid lesions 41

prostate cancer grading 43

renal biopsy 40–1

testicular teratoma staging prediction 42

HIV 1 protease 64–5
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human genome 61

hybrid Monte Carlo method 321
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hyperboxes 231
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image
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processing 66–8

segmentation 67
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independent components analysis 182–3, 184,

185–9

classiWcation accuracy 187–9

extended 182–3, 187–9

information, qualitative 238

information criteria for ANNs 5, 178, 225, 228
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input

factors 289

nodes 147, 148, 227

noise 302, 322

vectors 299

input–output mapping 223

instrument reproducibility 161–3

calibration masses 162

drift 161–2

intensive care
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see also neonatal intensive care

interleukin 6 (IL-6) 46

interpretability of models 12–13

isotope scans 57

iteration 246
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metastasis prediction from gene expression 66

neonatal intensive care 114, 115–16, 117
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Levinson–Durbin algorithm 92

liability 346–8

grey areas 350–1
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logistic regression 4, 239–41
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magnetic resonance imaging (MRI)
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cross-validation 250
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MATLAB 21
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gentamicin concentration prediction 47–8
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pneumonia outcome prediction 46–7
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viral epidemic modelling 47
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minimal neural networks 157
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model uncertainty 302
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metastasis prediction from gene expression 66

protein structure prediction 63–5

Monte Carlo sampling, Markov chain 321–2, 323

mortality prediction in critically ill 339–40
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anticoagulation control with warfarin 60–1

astrocytoma grading 42

astrocytoma MRI 56

axillary lymph node metastasis 40

bacterial identiWcation 44–5, 161
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breast cytology 34, 36

cancer diagnosis from blood tests 58–9
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cerebral perfusion scans 55

chemical mutagenicity prediction 65–6

chest radiographs 53–4
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cocaine abuse 55

decision tree 34–5

dementia diagnosis 52, 55

feature extraction techniques 108, 110

feedforward network 194

Xow cytometry 69

focal bone lesions 55–6

gallbladder disease diagnosis 54

gastric lesion cytology 37–8

gentamicin concentration prediction 47–8

graphical models 17

hepatitis activity prediction 60

hepatocellular carcinoma histopathology 41
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hidden units 95

image analysis parameters 36

ischemic event prediction 59–60

isotope scans 57

liver disease diagnosis 52–3

mammography 49–50
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neonatal chest radiographs 53
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physiological signals 110–11, 113
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pneumonia outcome prediction 47

prostate cancer grading 43

protein structure prediction 63–5

pulmonary embolism diagnosis 50–1

renal biopsy automated segmentation 40–1

scaling 217n

septic shock outcome prediction 46

serum myoglobin measurements 60
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skeletal age 57

statistical aspects 4–7
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multivariate data 148, 149
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phycocyanin 151

phycoerythrin 151

phytoplankton Xow cytometry 150–2

pleural eVusion cytology 36–7
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classiWcation 241–4
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protein structure prediction 61, 63–5
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distributed representation 7
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graphical models 17
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rule reWnement 279–80

statistical aspects 8–9

supervised learning 9
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urinary tract infections 161
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chest radiographs 53–4
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mammography 48–50
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receiver operator characteristic (ROC) curve 48,
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bootstrap method 311

feedforward neural networks 301, 302

prediction intervals 313–14
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