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Preface 

I am often asked, “Do you have a good text I can read on analysis of DNA array 
data?” This is an attempt at providing such a text for students and scientists 
alike who venture into the field of DNA array data analysis for the first time. 
The book is written for biologists and medical researchers without special 
training in data analysis and statistics. Mathematical stringency is sacrificed 
for intuitive and visual introduction of concepts. Methods are introduced 
by simple examples and citations of relevant literature. Practical computer 
solutions to common analysis problems are suggested, with an emphasis on 
software developed at and made freely available by my own lab. The text 
emphasizes gene expression analysis. 

This text takes over where the DNA array equipment leaves you: with 
a file containing an image of the microarray. If the equipment has already 
performed an analysis of the image, you are left with a file of signal inten- 
sities. The information in that file will prompt questions such as: How is it 
scaled? What is the error in the data? When can I say that a certain gene 
is up-regulated? What do I do with the thousands of genes that show some 
regulation? How much information can I get out of my data? This text will 
attempt to answer those questions and others that will come into mind as you 
delve further into the data. 

Since the appearance of the first edition, the field has virtually exploded, 
with thousands of papers published on DNA microarrays and data analysis. A 
new generation of microarray equipment, allowing in situ synthesis of chips, 
has appeared. New public software packages have appeared, and improved 

xiii 



XiV PREFACE 

methods for data analysis have been published. The second edition includes 
all these new and recent developments and also contains new chapters on 
image analysis, experiment design, interpretation of results, oligonucleotide 
probe design, data integration, and systems biology. The second edition 
aims to be the most comprehensive and up-to-date book available on DNA 
microarrays. 

Each chapter has a section on Further Reading, which categorizes key 
literature by topic. 

A web companion site' is available with copy-paste code examples from 
the book, errata, experimental protocols, and more. 

STEEN KNUDSEN 

Lyngbv, Denmark 

December 2003 

' http://www.cbs.dtu.dMsteen/book.html 
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1 
Introduction to DNA 

Microarray Technology 

1.1 HYBRIDIZATION 

The fundamental basis of DNA microarrays is the process of hybridization. 
Two DNA strands hybridize if they are complementary to each other. Com- 
plementarity reflects the Watson-Crick rule that adenine (A) binds to thymine 
(T) and cytosine (C) binds to guanine (G). One or both strands of the DNA 
hybrid can be replaced by RNA and hybridization will still occur as long as 
there is complementarity. 

Hybridization has for decades been used in molecular biology as the basis 
for such techniques as Southern blotting and Northern blotting. In Southern 
blotting, a small string of DNA, an oligonucleotide, is used to hybridize to 
complementary fragments of DNA that have been separated according to size 
in a gel electrophoresis. If the oligonucleotide is radioactively labeled, the 
hybridization can be visualized on a photographic film that is sensitive to 
radiation. In Northern blotting, a radio-labeled oligonucleotide is used to 
hybridize to messenger RNA that has been run through a gel. If the oligo is 
specific to a single messenger RNA, then it will bind to the location (band) of 
that messenger in the gel. The amount of radiation captured on a photographic 
film depends to some extent on the amount of radio-labeled probe present in 
the band, which again depends on the amount of messenger. So this method 
is a semiquantitative detection of individual messengers. 

DNA arrays are a massively parallel version of' Northern and Southern 
blotting. Instead of distributing the oligonucleotide probes over a gel con- 
taining samples of RNA or DNA, the oligonucleotide probes are attached 
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2 INTRODUCTION TO DNA MICROARRAY TECHNOLOGY 

Fig. 7.7 Hybridization of two DNA molecules. Dotted line: hydrogen bonds. 

to a surface. Different probes can be attached within micrometers of each 
other, so it is possible to place many of them on a small surface of one square 
centimeter, forming a DNA array. The sample is labeled fluorescently and 
added to the array. After washing away excess unhybridized material, the 
hybridized material is excited by a laser and is detected by a light scanner 
that scans the surface of the chip. Because you know the location of each 
oligonucleotide probe, you can quantify the amount of sample hybridized to 
it from the image generated by the scan. 

There is some contention in the literature on the use of the word "probe" in 
relation to microarrays. Throughout this book the word "probe" will be used 
to refer to what is attached to the microarray surface. And the word "target" 
will be used to refer to what is hybridized to the probes. 

Where before it was possible to run a couple of Northern blots or a cou- 
ple of Southern blots in a day, it is now possible with DNA arrays to run 
hybridizations for tens of thousands of probes. This has in some sense rev- 
olutionized molecular biology and medicine. Instead of studying one gene 
and one messenger at a time, experimentalists are now studying many genes 
and many messengers at the same time. In fact, DNA arrays are often used to 
study all known messengers of an organism. This has opened the possibility 
of an entirely new, systemic view of how cells react in response to certain 
stimuli. It is also an entirely new way to study human disease by viewing how 
it affects the expression of all genes inside the cell. Figure I .2 illustrates the 
revolution of DNA arrays in biology and medicine by the number of papers 
published on the topic. 

1.2 GOLD RUSH? 

The explosion in interest in DNA microarrays has almost been like a gold 
rush. Is there really that much gold to be found with this new technology? I 
am afraid that, in the short term, there will be some disappointments. Yes, you 
can learn about the gene expression in your organism or disease of interest, 
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Fig. 1.2 The number of papers published per year referring to DNA microarrays. 

but does that make you wiser? Typically, the wealth of data generated results 
in more questions than answers. There is one exception to this, and that is 
where DNA arrays have been used for diagnostics and prognostics. Here, 
DNA arrays have shown promising results in almost all the fields where they 
have been applied. This is where I think that the greatest short-term success 
of DNA microarray technology lies. 

On a longer time scale molecular biology will benefit tremendously from 
the systemic approach offered by DNA microarrays and other massively 
parallel approaches. Many important discoveries lie in the interpretation 
of microarray data - more so from large compilations of experiments and 
large-scale experiments than from small experiments with just a few arrays. 

1.3 THE TECHNOLOGY BEHIND DNA MICROARRAYS 

When DNA microarrays are used for measuring the concentration of messen- 
ger RNA in living cells, aprobe of one DNA strand that matches a particular 
messenger RNA in the cell is used. The concentration of a particular messen- 
ger is a result of expression of its corresponding gene, so this application is 
often referred to as expression analysis. When different probes matching all 
messenger RNAs in a cell are used, a snapshot of the total messenger RNA 
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pool of a living cell or tissue can be obtained. This is often referred to as an 
expression projle because it reflects the expression of every single measured 
gene at that particular moment. Expression profile is also sometimes used to 
describe the expression of a single gene over a number of conditions. 

Expression analysis can also be performed by a method called serial anal- 
ysis ofgene expression (SAGE). Instead of using microarrays, SAGE relies on 
traditional DNA sequencing to identify and enumerate the messenger RNAs 
in a cell (see Section 1.3.6). 

Another traditional application of DNA microarrays is to detect mutation 
in specific genes. The massively parallel nature of DNA microarrays allows 
the simultaneous screening of many, if not all, possible mutations within a 
single gene. This is referred to as genotyping (Chapter 12). 

The treatment of array data does not depend so much on the technology used 
to gather the data as it depends on the application in question. Genotyping 
and expression analysis are two completely different applications, and they 
will be treated separately in this text. Most of the information will address 
analysis of expression data, and a separate chapter will address genotyping 
chips. 

For expression analysis the field has been dominated in the past by two 
major technologies. The Affymetrix, Inc. GeneChip system uses prefabri- 
cated oligonucleotide chips (Figures 1.3 and 1.4). Custom-made chips use 
a robot to spot cDNA, oligonucleotides, or PCR products on a glass slide or 
membrane(Figure 1.5). 

More recently, several new technologies have entered the market. In the 
following, several of the major technology platforms for gene expression 
analysis will be described. 

1.3.1 Affymetrix GeneChip Technology 

Affymetrix uses equipment similar to that which is used for making silicon 
chips for computers, and thus allows mass production of very large chips at 
reasonable cost. Where computer chips are made by creating masks that con- 
trol a photolithographic process for removal or deposition of silicon material 
on the chip surface, Affymetrix uses masks to control synthesis of oligonu- 
cleotides on the surface of a chip. The standard phosphoramidite method for 
synthesis of oligonucleotides has been modified to allow light control of the 
individual steps. The masks control the synthesis of several hundred thousand 
squares, each containing many copies of an oligo. So the result is several 
hundred thousand different oligos, each of them present in millions of copies. 

That large number of oligos, up to 25 nucleotides long, has turned out to be 
very useful as an experimental tool to replace all experimental detection pro- 
cedures that in the past relied on using oligonuclotides: Southern, Northern, 
and dot blotting as well as sequence specific probing and mutation detection. 

For expression analysis, up to 40 oligos are used for the detection of each 
gene. Affymetrix has chosen a region of each gene that (presumably) has the 
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... TGTGATGGTGGGAATTGGGTCAGAAGGACTGTGGCTAGGCGCTGCC ... 
GGAATTGGGTCAGAAGGACTGTGGC Perfect match oligo 

GGAATTGGGTCAC AAGGACTGTGGC Mismatch ohgo 

Perfect match probe cells 
Mismatch probe cells 

Fig. 1.3 The Affymetrix GeneChip technology. The presence of messenger RNA is detected 
by a series of probe pairs that differ in only one nucleotide. Hybridization of fluorescent 
messenger RNA to these probe pairs on the chip is detected by laser scanning of the chip 
surface. (Figure by Christoffer Bro.) 

least similarity to other genes. From this region 11 to 20 oligos are chosen 
as perfect matches (PM) (i.e., perfectly complementary to the mRNA of that 
gene). In addition, they have generated 1 1 to 20 mismatch oligos (MM), which 
are identical to the PM oligos except for the central position 13, where one 
nucleotide has been changed to its complementary nucleotide. Affymetrix 
claims that the MM oligos will be able to detect nonspecific and background 
hybridization, which is important for quantifying weakly expressed mRNAs. 
However, for weakly expressed mRNAs where the signal-to-noise ratio is 
smallest, subtracting mismatch from perfect match adds considerably to the 
noise in the data (Schadt et al., 2000). That is because subtracting one noisy 
signal from another noisy signal yields a third signal with even more noise. 

The hybridization of each oligo to its target depends on its sequence. All 
11 to 20 PM oligos for each gene have a different sequence, so the hybridiza- 
tion will not be uniform. That is of limited consequence as long as we wish 
to detect only changes in mRNA concentration between experiments. How 
such a change is calculated from the intensities of the 22 to 40 probes for 
each gene will be covered in Section 4.3. 

To detect hybridization of a target mRNA by a probe on the chip, we need 
to label the target mRNA with a fluorochrome. As shown in Figure 1.4, the 
steps from cell to chip usually are as follows: 

0 Extract total RNA from cell (usually using TRIzol from Invitrogen or 
RNeasy from QIAGEN). 
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mRNA T7-promoter 

- A k k k k A  
Total RNA 

-AAAAA - - -~ 

T T T T T ~  

Reverse 
transcription 7 - A A A A A  

Hybridization 
and scanning 

-+z 4- + ++ / 
T T T T T U  

-AAAAA 

1 Second strand 
cDNA synthesis 

+++ 

- T T T T T D  *F - A A A A A U  

CTP, ATP, GTP, 
UTP and biotin 
labelled CTP and 
UTP 

- - - - A A A A a  

Fragmentation + \ f f r : : r - =  ; ; ; ; ; ; ; 

Synthesis of biotin- 

labeled cRNA 

Fig. 7.4 Preparation of sample for GeneChip arrays. Messenger RNA is extracted from 
the cell and converted to cDNA. It then undergoes an amplification and labeling step before 
fragmentation and hybridization to 25-mer oligos on the surface of the chip. After washing of 
unhybridized material, the chip is scanned in a confocal laser scanner and the image analyzed 
by computer. (Figure by Christoffer Bro.) 

0 Separate mRNA from other RNA using poly-T column (optional). 

0 Convert mRNA to cDNA using reverse transcriptase and a poly-T 
primer. 

0 Amplify resulting cDNA using T7 RNA polymerase in the presence of 
biotin-UTP and biotin-CTP, so each cDNA will yield 50 to 100 copies 
of biotin-labeled cRNA. 

0 Incubate cRNA at 94 degrees in fragmentation buffer to produce cRNA 

0 Hybridize to chip and wash away non-hybridized material. 

0 Stain hybridized biotin-labeled cRNA with Streptavidin-Phycoerythrin 

fragments of length 35 to 200 nucleotides. 

and wash. 

0 Scan chip in confocal laser scanner (optional). 
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Table 7.7 Performance of the Affymetrix GeneChip technology. Numbers refc:r to chips in 
routine use and the current limit of the technology (Lipshutz et al., 1999; Baugh et al., 2001). 

Routine use Current limit 

Starting material 5 pg total RNA 2 ng total RNA 

Difference detection twofold changes 10% changes 
Discrimination of related genes 70-80% identity 93% identity 
Dynamic range (linear detection) 

Number of genes per array 12,000 40,000 

Detection specificity 1 : lo5 1 : lo6 

3 orders of magn. 4 orders of magn. 
Probe pairs per gene 20 4 

0 Amplify the signal on the chip with goat IgG and biotinylated antibody. 

0 Scan chip in scanner. 

Usually, 5 to 10 pg of total RNA are required for the procedure. But new 
improvements to the cDNA synthesis protocols reduce the required amount to 
100 ng. If two cycles of cDNA synthesis and cRNA synthesis are performed, 
the detection limit can be reduced to 2 ng of total RNA (Baugh et al., 2001). 
MessageAmp kits from Ambion allow up to 1000 times amplification in a 
single round of T7 polymerase amplification. The current performance of the 
Affymetrix GeneChip technology is summarized in Table I .  1 .  

1.3.2 Spotted Arrays 

In another major technology, spotted arrays, a robot spotter is used to move 
small quantities of probe in solution from a microtiter plate to the surface 
of a glass plate. The probe can consist of cDNA, PCR product, or oligonu- 
cleotides. Each probe is complementary to a unique gene. Probes can be 
fixed to the surface in a number of ways. The classical way is by non-specific 
binding to polylysine-coated slides. The steps involved in making the slides 
can be summarized as follows (Figure 1.5): 

0 Coat glass slides with polylysine. 

0 Prepare probes in microtiter plates. 

0 Use robot to spot probes on glass slides. 

0 Block remaining exposed amines of polylysine with succinic anhydride. 

0 Denature DNA (if double-stranded) by heat. 

The steps involved in preparation of sample and hybridizing to the array 
can be summarized as follows (Figure 1.5): 
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Prepare Sample Print Microarray 

Fig. 7.5 The spotted array technology. A robot is used to transfer probes in solution from a 
microtiter plate to a glass slide where they are dried. Extracted mRNA from cells is converted 
to cDNA and labeled fluorescently. Reference sample is labeled red and test sample is labeled 
green. After mixing, they are hybridized to the probes on the glass slide. After washing away 
unhybridized material, the chip is scanned with a confocal laser and the image analyzed by 
computer. (See color plate.) 

0 Extract total RNA from cells. 

0 Optional: isolate mRNA by polyA tail. 

0 Convert to cDNA in the presence of Amino-allyl-dUTP (AA-dUTP). 

0 Label with Cy3 or Cy5 fluorescent dye linking to AA-dUTP. 

0 Hybridize labeled mRNA to glass slides. 

0 Wash unhybridized material away. 

0 Scan slide and analyze image (see example image in Figure 1.6). 

The advantage compared to Affymetrix Genechips is that you can design 
any probe for spotting on the array. The disadvantage is that spotting will 
not be nearly as uniform as the in situ synthesized Affymetrix chips and that 
the cost of oligos, for chips containing thousands of probes, becomes high. 
From a data analysis point of view, the main difference is that in the cDNA 
array usually the sample and the control are hybridized to the same chip using 
different fluorochromes, whereas the Affymetrix chip can handle only one 
fluorochrome so two chips are required to compare a sample and a control. 
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Table 1.2 shows the current performance of the spotted array technology 

Fig. 1.6 Spotted array containing more than 9000 features. Probes against each predicted 
open reading frame in Bacillus subrilis are spotted twice on the slide. Image shows color 
overlay after hybridization of sample and control and scanning. (See color plate. Picture by 
Hanne Jarmer.) 

1.3.3 Digital Micromirror Arrays 

In 1999, Singh-Gasson et al. published a paper in Nature Biotechnology 
showing the feasibility of using digital micromirror arrays to control light- 
directed synthesis of oligonucleotide arrays. Two commercial companies 
were formed based on this technology. NimbleGen (www.nimblegen.com) 
synthesizes DNA arrays using digital micromirrors and sells the manufac- 
tured arrays to the customer. Febit (www.febit.de) makes an instrument, the 
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Table 1.2 Performance of the spotted array technology (Schena, 2000). 

Routine use 

Starting material 
Dynamic range (linear detection) 
Number of probes per gene 
Number of genes or ESTs per array 

10-20 pg total RNA 
3 orders of magnitude 
1 
M 10,000 

Fig. 1.7 The Febit DNA processor with microchannel structure. Left a two-dimensional 
view of the microchannels. Right a three-dimensional view of the microchannels including 
inlet and outlet of each channel. Copyright Febit AG. Used with permission. 

Geniom One, which allows the customer to control digital micromirror syn- 
thesis in his own lab (Baum et al., 2003). The design of the microarray is 
uploaded by computer and the synthesis takes about 12 hours in a DNA pro- 
cessor (Figure 1.7 and 1.8). Then the fluorescently labeled sample is added, 
and after hybridization and washing the fluorescence is read by a CCD camera 
and the resulting image returned to the computer. All steps are integrated into 
a single instrument. 

1.3.4 lnkjet Arrays 

Agilent has adapted the inkjet printing technology of Hewlett Packard to the 
manufacturing of DNA microarrays on glass slides. There are two fundamen- 
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Table 1.4 Performance of bead arrays (Illumina, 2003). 

Starting material 
Detection limit 0.15 pM 

Probe length 50 mers 

50-200 ng total RNA 

Number of probes per gene 4-10 

Feature spacing 6 Pm 
Probes per array 1,500 
Array matrix 96 samples 

1.3.5 Bead Arrays 

Illumina (www.illumina.com) has marketed a bead-based array system. In- 
stead of controlling the location of each spot on a slide, they let small glass 
beads with covalently attached oligo probes self-assemble into etched sub- 
strates. A decoding step is then performed to read the location of each bead 
in the array before it is used to hybridize to fluorescently labeled sample. 

1.3.6 Serial Analysis of Gene Expression (SAGE) 

A technology that is both widespread and attractive because it can be run on 
a standard DNA sequencing apparatus is serial analysis of gene expression 
(SAGE) (Velculescu et al., 1995; Yamamoto et al., 2001). In SAGE, cDNA 
fragments called tags are concatenated by ligation and sequenced. The num- 
ber of times a tag occurs, and is sequenced, is related to the abundance of its 
corresponding messenger. Thus, if enough concatenated tags are sequenced 
one can get a quantitative measure of the mRNA pool. Bioinformatics first 
enters the picture when one wishes to find the gene corresponding to a partic- 
ular tag, which may be only 9 to 14 bp long. Each tag is searched against a 
database (van Kampen et al., 2000; Margulies et al., 2000; Lash et al., 2000) 
to find one (or more) genes that match. 

The steps involved in the SAGE methods can be summarized as follows 
(see also Figure 1.9): 

0 Extract RNA and convert to cDNA using biotinylated poly-T primer. 

0 Cleave with a frequently cutting (4 bp recognition site) restriction 
enzyme (anchoring enzyme). 

0 Isolate 3’-most restriction fragment with biotin-binding streptavidin- 
coated beads. 

0 Ligate to linker that contains a type IIS restriction site for and primer 
sequence. 
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Fig. 1.8 Graphical illustration of the in situ synthesis of probes inside the Febit DNA 
processor. Shown are three enlargements of a microchannel, each illustrating one step in 
the synthesis. 1: the situation before synthesis. 2: selected positions are deprotected by 
controlling light illumination via a micromirror. 3: substrate is added to the microchannel and 
covalently attached to the deprotected positions. (See color plate. Copyright Febit AG. Used 
with permission.) 

Table 1.3 Performance of the Febit Geniom One technology (Febit, 2002). 

Starting material 
Detection limit 

Probe length User selectable (10-60mers) 
Feature size 34 pm by 34 pm 
Probes per array Minimum 6,000 
Arrays per DNA processor Up to eight 
Sample throughput About 80 samples per week 

10 pg total RNA 
0.5 pM spiked transcript control 

Number of probes per gene 4-10 

tally different approaches. Pre-synthesized oligos or cDNAs can be printed 
directly on a glass surface. These are called deposition arrays. Another ap- 
proach uses solid-phase phosporamidite chemistry to build the oligos on the 
array surface one nucleotide at a time. 



Fig. 1.9 Schematic overview of SAGE methods (based on Velculescu et al. 1995). (See 
color plate.) 

0 Cleave with tagging enzyme that cuts up to 20 bp away from recognition 
site. 

0 Ligate and amplify with primers complementary to linker. 

0 Cleave with anchoring enzyme, isolate ditags. 

0 Concatenate and clone. 

0 Sequence clones. 
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The analysis of SAGE data is similar to the analysis of array data described 
through out this book except that the statistical analysis of significance is 
different (Man et al., 2000; Lash et al., 2000; Audic et al., 1997). 

1.4 PARALLEL SEQUENCING ON MICROBEAD ARRAYS 

A conceptual merger of the SAGE technology and the microbead array tech- 
nology is found in the massively parallel signature sequencing (MPSS) on 
microbead arrays, marketed by Lynx (www.lynxgen.com). cDNA is cloned 
into a vector together with a unique sequence tag that allows it to be attached 
to a microbead surface where an anti-tag is covalently attached. Instead of 
quantifying the amount of attached cDNA to each bead, the number of beads 
with the same cDNA attached is determined. This is done by sequencing 16- 
20 basepairs of the cDNA on each bead. This is done by a clever procedure 
of repeated ligation and restriction cycles intervened by fluorescent decod- 
ing steps. The result is the number of occurrences of each 16-20 basepair 
signature sequence, that can be used to find the identity of each cDNA in a 
database just as is done with SAGE. 

Fig. 1.10 Megaclone bead arrays. cDNA attached to bead surface via tag-antitag hybridiza- 
tion. (From Lynx used with permission.) 

1.4.1 Emerging Technologies 

Nanomechanical cantilevers (McKendry et al., 2002) can detect the hybridiza- 
tion of DNA without any fluorescent labeling. The cantilevers are made of 
silicon, coated with gold, and oligonucleotide probes are attached. When 
target-probe hybridization occurs, the cantilever bends slightly and this can 
be detected by deflection of a laser beam. The amount of deflection is a func- 
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tion of the concentration of the target, so the measurement is quantitative. 
An alternative to laser beam detection is piezo-resistive readout from each 
cantilever. As the number of parallel cantilevers increases, this technology 
shows promise for sensitive, fast, and economic quantification of mRNA ex- 
pression. The company Concentris (www.concentris.com) currently offers a 
commercial 8-cantilever array. 

Fig. 1.11 Artist’s illustration of array of 8 nanomechanical cantilevers. Binding of targets 
leads to bending that is detected by deflection of a laser beam. (Used with permission from 
Concentris.) 

1.5 EXAMPLE: AFFYMETRIX VS. SPOTTED ARRAYS 

Our lab has in a collaboration (Knudsen et al., 2001) performed both cDNA 
array analysis and Affymetrix chip analysis of human T-cells infected with 
Human Immunodeficiency Virus (HIV). Figure 1.12 shows mRNA extracted 
from the T-cells and visualized with a cDNA array. First, the mRNA was 
converted to cDNA and then it was labeled with a fluorochrome. We used 
a red fluorochrome for the mRNA that was extracted from the HIV-infected 
cells (experiment, sample, or treatment) and we used a green fluorochrome 
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Fig. 7.72 cDNA microarray of genes affected by HIV infection. (See color plate.) 

for mRNA that was extracted from the noninfected cells (control). Because 
we used different fluorochromes we could apply both sample and control to 
the same chip where we have already spotted probes for the genes we were 
interested in. Figure 1.12 shows such genes. 

After hybridization and washing, the chip was scanned and the image 
processed by a computer. We can now deduce the ratio between the expression 
of each gene in HIV-infected cells and the gene in uninfected cells as the ratio 
between the intensity of red and green color. If the color is yellow, there 
is no change. If it is red, there is an upregulation; if it is green there is a 
downregulation (Figure I .  12). We can also estimate mRNA concentration 
from the intensity of the spot. 

We took the same mRNA, processed it, and put i t  on an Affymetrix chip 
with 6800 human genes. Figure 1.13 shows part of the surface of this chip 
that probes for just one gene. Before putting it on the chip, the mRNA was 
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Fig. 7.73 Part of Affymetrix chip probing one gene affected by HIV infection. 

converted to cDNA and an in v i m  transcription step was used to ainplify the 
amount of mRNA. After fragmentation and labeling with a fluorescent dye, the 
sample was hybridized to the chip surface where a total of 40 oligonucleotide 
probes of length 25 are used to detect the presence and concentration of 
each gene messenger. Twenty oligos are chosen from different areas of the 
gene. Each of these oligos is called a perfect match (PM). For each PM oligo 
there is an identical oligo with one mismatch at the center position of the 25- 
mer. This mismatch (MM) oligo is included to compensate for nonspecific 
hybridization as well as cross-hybridization. 

In Figure 1.13 the PM oligos and MM oligos are shown on top of each 
other. Note that Affymetrix does not use a two-color system, so we have to 
run one chip for the sample and one chip for the control. The conditions for 
comparing those two chips will be described in a later section. 

1.6 SUMMARY 

Spotted arrays are made by deposition of a probe on a solid support. ,4ffymetrix 
chips are made by light mask technology. The latter is easier to control and 
therefore the variation between chips is smaller in the latter technology. 
Spotted arrays offer more flexibility, however. Data analysis does not differ 
much between the two types of arrays. Digital micromirror technology com- 
bines the flexibility of the spotted arrays with the speed of the prefabricated 
Affymetrix chips. 

Serial analysis of gene expression (SAGE) is yet another method for an- 
alyzing the abundance of mRNA by sequencing concatenated fragments of 
their corresponding cDNA. The number of times a cDNA fragment occurs 
in the concatenated sequence is proportional to the abundance of its corre- 
sponding messenger. 

Figure 1.14 shows a schematic overview of how one starts with cells in 
two different conditions (with and without HIV virus, e.g.) and ends up with 
mRNA from each condition hybridized to a DNA array. 
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conditions. (See color plate.) 

Overview of methods for comparing mRNA populations in cells from two different 
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Table 7.5 Overview of commercially available microarray technologies 

Factory synthesis Customer synthesis 

Affy metrix mask-directed photolithography 
Agilent ink-jet 
NimbleGen micromirror photolithography 
Febit micromirror photolithograpt 
Spotted arrays robot spotting robot spotting 
MPSS cloning and sequencing 
Illumina Beads oligos attached to beads 
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2 
Overview of Data Analysis 

Figure 2.1 presents an overview of the general data analysis methods presented 
in this book. In particular it shows the order in which to apply them and which 
methods to choose in different situations. For clarity, not all possible orders 
of analysis have been shown. For example, PCA and clustering can be 
performed after an ANOVA or t-test. 

See Table 2.1 for where to find details of the individual methods. 

Table 2.1 Section and page number for methods shown in Figure 2.1 

Method Section Page 

Image analysis 
Normalization 
t-test 
ANOVA 
PCA 
Clustering 
Pathway analysis 
Promoter analysis 
Function prediction 
Classification 

3 
4.1 
4.6 
4.6 
5.1 
6 
8.1 
7.2 
7.1 
10 

25 
33 
41 
41 
55 
63 
85 
78 
77 
101 

23 
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Fig. 2.1 Overview of data analysis methods presented in this book. 



Image Analysis 

Image analysis is an important aspect of microarray experiments. It can have a potentially 
large impact on subsequent analysis such as clustering or the identification of differentially 
expressed genes. 

--Yang, 200 I 

Analysis of the image of the scanned array seeks to extract an intensity for 
each spot or feature on the array. In the simplest case, we seek one expression 
number for each gene. The analysis can be divided into several steps (Yang 
et al., 2001): 

0 Gridding 

0 Segmentation 

0 Intensity extraction 

0 Background correction 

This chapter will first describe the basic concepts of image analysis and 

25 

then list a number of software packages available for the purpose. 
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3.1 GRIDDING 

Whether you have a scanned image of a spotted array or an image of an 
Affymetrix Genechip, you need to identify each spot or feature. That is 
accomplished by aligning a grid to the spots, because the spots are arranged 
in a grid of columns and rows. For photolithographically produced chips this 
may be easier than for robot spotted arrays, where more variation in the grid 
is possible. For the latter a manual intervention may be necessary to make 
sure that all the spots have been correctly identified. 

Fig. 3.1 Aligning a grid to identify the location of each spot. 

3.2 SEGMENTATION 

Once the spots have been identified, they need to be separated from the 
background. The shape of each spot has to be identified. The simplest 
assumption is that all spots are circular of constant diameter. Everything 
inside the circle is assumed to be signal and everything outside is assumed 
to be background. This simple assumption rarely holds, and therefore most 
image analysis software includes some more advanced segmentation method. 
Adaptive circle segmentation estimates the diameter separately for each spot. 
Adaptive shape segmentation does not assume circular shape of each spot and 
instead tries to find the best shape to describe the spot. Finally, the histogram 
method analyzes the distribution of pixel intensities in and around each spot 
to determine which pixels belong to the spot and which pixels belong to the 
background. 



INTENSITY EXTRACTION 27 

fig, 3.2 Illustration of segmentation methods. A: Image before segmentation, B: Fixed 
circle segmentation, C: Adaptive circle segmentation, D: Adaptive shape segmentation. 

3.3 INTENSITY EXTRACTION 

Once the spot has been separated from the surrounding background, an in- 
tensity has to be extracted for each spot and potentially for each surrounding 
background. Typical measures are the mean or median intensity of all pixels 
within the spot. 

3.4 BACKGROUND CORRECTION 

On some array images, a slight signal is seen in the area that is in between 
spots. This is a background signal and it can be subtracted from the spot 
intensity to get a more accurate estimate of the biological signal from the 
spot. There are some problems associated with such a background correction, 
however. First, it does not necessarily follow that the background signal is 
added to the spot signal. In other words, some spots can be seen with lower 
intensity than the surrounding background. In that case, the surrounding 
background should clearly not be subtracted from the spot. 

fig. 3.3 Illustration of “ghost” where the background has higher intensity than the spot. In 
this case, subtracting background from spot intensity may be a mistake. 

Second, a local estimation of background is necessarily associated with 
some noise. Subtracting such a noisy signal from a weak spot signal with 
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noise will result in a number with even more noise. For weakly expressed 
genes this noise increase can negatively affect the following statistical analysis 
for differential expression. 

The effect of not subtracting a background is that the absolute values may 
be slightly higher and that fold changes may be underestimated slightly. On 
balance, we choose not to subtract any local background but we do subtract 
a globally estimated background. This can, for example, be the second or 
third percentile of all the spot values. This is similar to the approach used 
by Affymetrix GeneChip software, where the image is segmented into 16 
squares, and the average of the lower 2% of feature intensities for each block 
is used to calculate background. This background intensity is subtracted from 
all features within a block. 

That leaves the issue of spatial bias on an array. This topic is usually 
considered under normalization. We have investigated spatial bias both for 
spotted arrays and Affymetrix arrays and found it to be significant in spotted 
arrays (Workman et al., 2002). We define spatial bias as an overall trend 
of fold changes that vary with the location on the surface (see Figure 3.4). 
Such a bias can be removed with Gaussian smoothing (Workman, 2002). In 
essence, the local bias in fold change is calculated in a window and subtracted 
from the observed fold change. 

3.5 SOFTWARE 

3.5.1 Free Software for Array Image Analysis 

(From http://ihome.cuhk.edu.hk/”b400559/arraysoft~image.htm) 

0 Dapple 
Washington University. 
http://www.cs.wustl.edu/~7Ejbuhler//research/dapple/ 

0 F-Scan 
National Institutes of Health. 
http://abs.cit.nih.gov/fscan/ 

0 GridGrinder 
Corning Inc. 
http://gridgrinder.sourceforge.net/ 

0 Matarray 
Medical College of Wisconsin. 

http://ww w.mcw.edu/display/router.asp?docid=530 

0 P-Scan 
National Institutes of Health. 
http://abs.cit.nih.gov/pscan/index.htrnl 
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Fig- 3.4 Spatial effects on a spotted array. The blue-yellow color scale (see color plate) 
indicates fold change between the two channels. A spatial bias is visible (left). Gaussian 
smoothing captures the bias (right). which can the be removed by subtraction from the image 
(center). From Workman (2002). 

0 ScanAlyze 
Lawrence Berkeley National Lab. 

http://rana.lbl .govEisenSoftware.htm 

0 Spotfinder 
The Institute for Genomic Research. 

http://www. tigr.org/software/tm4/spotfinder. html 

0 UCSFSpot 
University of California, San Francisco. 
http://jainlab.ucsf.edu/Downloads.html 

3.5.2 Commercial Software for Array Image Analysis 

(From http://ihome.cuhk.edu.hW”b400559/arraysoft~image.htm) 

0 AIDA Array Metrix 
Raytest GmbH. 

http://www.raytest.de 
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0 ArrayFox 
Imaxia Corp. 
http://www.imaxia.com/products.htm 

Media Cybernetics, Inc. 
http://www.mediacy.com/arraypro. htm 

0 ArrayPro 

0 Arrayvision 
Imaging Research Inc. 
http://www.imagingresearch.corn/products/ARV.asp 

0 GenePixPro 
Axon Instruments, Inc. 
http://www.axon.com/CN-GenePixSoftware.htm1 

BioDiscovery, Inc. 
http:l/www.biodiscovery.com/imagene.asp 

CLONDIAG Chip Technologies GmbH. 
http://ww w.clondiag.com/products/sw/iconoclust/ 

0 ImaGene 

0 IconoClust 

0 Microarray Suite 
Scanalytics, Inc. 
http://www.scanalytics.com/product/inicroarray/index.shtml 

0 Koadarray 
Koada Technology. 

http://www,koada.com//koadarray/ 

0 Lucidea 
Aniersham Biosciences. 
http://www 1 ,amershambiosciences.com/ 

0 MicroVigene 
VigeneTech, Inc. 
http://www.vigenetech.com/product.htm 

0 Phoretics Array 
Nonlinear Dynamics. 
http://www.phoretix.com/products/array-products.htm 

0 Quantarray 
PerkinElmer, Inc. 

http://las.perkinelmer.com/ 

CSIRO Mathematical and Information Sciences. 
http://experimental.act.cmis.csiro.~~u/Spot/index.php 

0 spot 
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3.6 SUMMARY 

The software that comes with your scanner is usually a good start for image 
analysis. If possible, use a global background correction instead of subtracting 
a locally estimated background from each spot. It is always a good idea to 
look at the image of a chip to observe any visible defects, bubbles, or clear 
spatial bias. 

3.7 FURTHER READING 

Yang, Y. H., Buckley, M. J., and Speed, T. P. (2001). Analysis of cDNA 
microarray images. Briejings in Bioinformatics 2(4):341-349. 

Yang, Y. H., Buckley, M. J., Dudoit, S.,  and Speed, T. P. (2001). Comparison 
of methods for image analysis on cDNA microarray data. Technical 
report #584, Department of Statistics, University of California, Berke- 
ley. 

Workman, C., Jensen, L. J., Jarmer, H., Berka, R., Saxild, H. H., Gautier, L., 
Nielsen, C., Nielsen, H. B., Brunak, S, and Knudsen, S. (2002). A new 
non-linear normalization method for reducing variance between DNA 
microarray experiments. Genome Biology 3(9):0048. 

'Software available in affy package of Bioconductor http://www.bioconductor.org 
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4 
Basic Data Analysis 

In gene expression analysis, technological problems and biological variation make it dif- 
ficult to distinguish signal from noise. Once we obtain reliable data, we look for patterns 
and need to determine their significance. 

-Vingron, 2001 

4.1 NORMALIZATION 

Microarrays are usually applied to the comparison of gene expression profiles 
under different conditions. That is because most of the biases and limitations 
that affect absolute measurements do not affect relative comparisons. There 
are a few exceptions to that. One is that you have to make sure that what you 
are comparing is really comparable. The chips have to be the same under 
the different conditions, but also the amount of sample applied to each chip 
has to be comparable. An example will illustrate this. Figure 4..1 shows a 
comparison between two chips where the same labeled RNA has been added 
to both. Ideally, all the intensity measurements on one chip should match 
those on the other, all points should lie on the diagonal. They do not, and they 
reveal both random and systematic bias. The systematic bias is revealed by a 
deviation from the diagonal that increases with intensity. This is a systematic 
bias that is signal dependent. It becomes even more pronounced when we plot 
the logarithm of the ratio versus the logarithm of the intensity (Figure 4.1 B). 
This is often referred to as an M vs. A plot or MVA plot and it is often used 
to identify signal dependent biases. 

33 
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Fig. 4.7 Comparison of the probe intensities between two Affymetrix chips with the same 
labeled RNA applied. A: Log of intensity versus log of intensity. B: Log of ratio (A1 = 
log(chipl/chip2)) versus average log intensity ( A  = (log chip1 + log chip2)/2). The curve 
in B shows a lowess (locally weighted least squares fit) applied to the data. 
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We cannot remove the random bias (we will deal with it later by using 
replicates), but we can remove systematic bias. This is often referred to as 
normalization. Normalization is based on some assumptions that identify 
reference points. 

L ,,.: 

. .~._ .-..- 

4.1.1 One or More Genes Assumed Expressed at Constant Rate 

These genes are referred to as housekeeping control genes. Examples include 
the GAPDH gene. Multiply all intensities by a constant until the expression 
of the control gene is equal in the arrays that are being compared. For arrays 
with few genes this is often the only normalization method available. This 
is, however, a linear normalization that does not remove the observed signal 
dependent nonlinearity. In the MVA plot of Figure 4.1B it amounts to addi- 
tion of a constant to the ratio to yield the normalized data of Figure 4.2A. The 
systematic bias is still present. It would lead you to conclude that weakly 
expressed genes are upregulated on chip 1 relative to chip 2, whereas highly 
expressed genes are downregulated on chip 1 relative to chip 2. This con- 
clusion we know is false, because be put the same RNA on both chips. If 
you have more control genes with different intensity you can draw a normal- 
ization curve by fitting a curve through them. That makes the normalization 
signal-dependent similar to what is seen in Figure 4.2B. 
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Fig. 4.2 Comparison of linear normalization (A) with signal dependent normalization (B). 

4.1.2 Sum of Genes is Assumed Constant 

This assumes that the total messenger RNA in a cell is constant which may 
hold true if you are using a large transcriptome chip with thousands of genes. It 
is the approach used by Affymetrix in the GeneChip software. All intensities 
on one chip are multiplied by a constant until they have the same sum or 
average as the chip you want to compare to. The problem is that this is 
still a linear normalization, that does not remove the signal dependent bias 
(Figure 4.2A). If your array contains only a few hundred genes that were 
selected for their participation in a certain process, the assumption of constant 
sum may not be a good one. Then it may be better to rely on one or more 
housekeeping control genes. 

4.1.3 Subset of Genes is Assumed Constant 

Li and Wong (2001b) have proposed a method whereby the constant control 
genes are not known a priori, but are instead identified as genes whose 
intensity rank does not differ more than a threshold value between two arrays. 
This invariant set is defined iteratively and used to draw a normalization curve 
that is signal dependent. In practice, this method works extremely well, and 
it has compared well to all other normalization methods developed. 

4.1.4 Majority of Genes Assumed Constant 

We have developed a signal dependent normalization method, qspline (Work- 
man, 2002), that assumes that the overall intensity distributions between two 
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arrays should be comparable. That means that the quantiles' of the distribu- 
tions, plotted in a quantile-quantile plot, should lie on the diagonal. If they 
do not, they form a normalization curve that is signal dependent. After nor- 
malization, the scatter point smoothing line is close to a straight line through 
zero in the MVA plot (Figure 4.2B). We have compared our method, qspline, 
to the methods of Li-Wong (2001b) and Irizarry (2003) and found them to 
behave very similarly on the datasets we have tested. For spotted arrays, we 
have found our qspline method to perform slightly better on one dataset than 
lowess as proposed by Yang (2002). 

Even if the assumption does not hold, and less than a majority of genes is 
constant, the normalization still works provided that the number of upregu- 
lated genes roughly equals the number of downregulated genes and provided 
that there is no signal-dependent bias in up- or downregulation. 

4.1.5 Spike Controls 

If none of the above assumptions seem applicable to your experiment, there 
is one choice of last resort. You can add a spiked control to your mRNA 
preparation. The idea is to measure the amount of mRNA or total RNA 
extracted from the cell, and then add a known transcript of known concen- 
tration to the pool. This spiked transcript is then assumed to be amplified 
and labeled the same way as the other transcripts and detected with a unique 
probe on the array. The spiked transcript must not match any gene in your 
RNA preparation, so for a human RNA preparation an E. coli gene could be 
used. After scanning the array you multiply all measurements on one array 
until the spiked control matches that on the other array. 

This approach has the limitation that it results in a linear normalization that 
does not correct signal-dependent bias (unless you use many spiked control 
genes with different concentration). Finally, it is only as accurate as the 
accuracy of measuring the total amount of RNA and the accuracy of adding 
an exact amount of spiked transcript. 

4.2 DYE BIAS, SPATIAL BIAS, PRINT TIP BIAS 

The above mentioned global normalization methods (in particular the signal- 
dependent ones) work well for factory-produced oligonucleotide arrays such 
as Affymetrix GeneChips. For arrays spotted with a robot, however, there 
may be substantial residual bias after a global normalization. First, there is a 
dye bias. The dyes Cy3 and Cy5 have different properties that are revealed if 
you label the same sample with both dyes and then plot the resulting intensities 

' A quantile has a fixed number of genes below it in intensity. The first quantile could have 1% of the 
genes below it in intensity, the second quantile have 2% of the genes below it in intensity, and so on. 
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against each other. Such a plot reveals that the bias is signal dependent. For 
that reason, the signal-dependent normalization methods mentioned above 
will also remove the dye bias, and after signal-dependent normalization you 
can directly compare Cy3 channels to Cy5 channels. If you are unable to use 
a signal dependent normalization method, a typical approach to removing dye 
bias is to use a dye swap, which means that you label each sample both with 
Cy3 and Cy5 and then take the ratio of the averages of each sample. Note, 
however, that dye swap normalization does not remove signal dependent bias 
beyond the dye bias. 

Spatial bias was dealt with in the Chapter 3 .  Removing it requires knowl- 
edge of the layout of the array. 

Finally it is often possible to observe a print tip bias. The spots on the 
array are usually not printed with the same printing tip. Instead, several tips 
are used to print in parallel. So the spots on the array are divided into groups 
where each group of spots have been made with the same tip. When you 
compare the average log ratio within the print tip groups, you can observe 
differences between print tip groups. These can be due to a non-random order 
in which genes are printed, or they can be due to spatial biases or they can be 
due to true physical differences between the print tips. To remove the print tip 
bias is relatively straightforward. First you perform a linear normalization of 
each print tip group until their average signal ratio is equal. Then you perform 
a global signal dependent normalization to remove any signal dependent bias. 

4.3 EXPRESSION INDICES 

For spotted arrays using only one probe for each gene you can calculate 
fold changes after normalization. For Affymetrix GeneChips and other tech- 
nologies relying on several different probes for each gene it is necessary to 
condense these probes into a single intensity for each gene. This we refer to 
as an expression index. 

4.3.1 Average Difference 

Affymetrix, in the early version (MAS 4.0) of their software, calculated an 
Average Difference between probe pairs. A probe pair consists of a perfect 
match (PM) oligo and a mismatch (MM) oligo for comparison. The mismatch 
oligo differs from the perfect match oligo in only one position and is used 
to detect nonspecific hybridization. Average Difference was calculated as 
follows: 

where N is the number of probe pairs used for the calculation (probe pairs 
which deviate by more than 3 standard deviations from the mean are excluded 
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from the calculation). If the AvgDiff number is negative or very small, it 
means that either the target is absent or there is nonspecific hybridization. 
Affymetrix calculates an Absolute Call based on probe statistics: Absent, 
Marginal, or Present (refer to the Affymetrix manual for the decision matrix 
used for making the Absolute Call). 

4.3.2 Signal 

In a later version of their software (MAS 5.0), Affymetrix has replaced 
AvgDiff with a Signal, which is calculated as 

Signal = Tukeyhiweight [log(PM, - CT,)], 

where Tukey biweight is a robust estimator of central tendency. To avoid 
negative numbers when subtracting the mismatch, a number CT is subtracted 
that can never be larger than PM. Note, however, that this could affect the 
normality assumption often used in downstream statistical analysis (Giles and 
Kipling, 2003). 

4.3.3 Model-Based Expression Index 

Li and Wong (2001 a, b) instead calculate a weighted average difference: 

where @n is a scaling factor that is specific to probe pair PM, - MM, and 
is obtained by fitting a statistical model to a series of experiments. This 
model takes into account that probe pairs respond differently to changes in 
expression of a gene and that the variation between replicates is also probe-pair 
dependent. Li and Wong have also shown that the model works without the 
mismatches (MM) and then usually has lower noise than when mismatches 
are included. Software for fitting the model (weighted average difference 
and weighted perfect match), as well as for detecting outliers and obtaining 
estimates on reliability is available for download.* Lemon and coworkers 
have compared the Li-Wong model to Affymetrix' Average Difference and 
found it to be superior in a realistic experimental setting (Lemon et al., 2001). 
Note that model parameter estimation works best with 10 to 20 chips. 

4.3.4 Robust Multiarray Average 

Irizarry et al. (2003) have published a Robust Multiawdy Average that also 
reduces noise by omitting the information present in the mismatch probes of 
Affymetrix GeneChips: 

'http://www.dchip.org 
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RMA = Medianpolish[log PM, - a,)], 

where Median polish is a robust estimator of central tendency and a is a 
scaling factor that is specific to probe PM, and is obtained by fitting a 
statistical model to a series of experiments. 

4.3.5 Position Dependent Nearest Neighbor Model 

All the above expression indices are a statistical treatment of the probe data 
that assume that the performance of a probe can be estimated from the data. 
While this is true, there may be an even more reliable way of estimating 
probe performance: based on thermodynamics. The field of probe design 
for microarrays has been hampered by an absence of good thermodynamic 
models that accurately describe hybridization to an oligo attached to an array 
surface. Zhang et al. (2003a, b) have developed just that. They extend 
the nearest neighbor energy model, that works well for oligonucleotides in 
solution, with a position term that takes into account whether a nucleotide 
(or pair of nucleotides) is at the center of a probe or near the array surface 
or near the free end of the probe. They can use real array data to estimate 
the parameters of this model, and the resulting model works quite well at 
modeling the sequence dependent performance of each probe. As such it can 
be used for condensing the individual probe measures into one number for 
each gene. 

4.4 DETECTION OF OUTLIERS 

Outliers in chip experiments can occur at several levels. You can have an 
entire chip that is bad and consistently deviates from other chips made from 
the same condition or sample. Or you can have an individual gene on a chip 
that deviates from the same gene on other chips from the same sample. That 
can be caused by image artifacts such as hairs, air bubbles, precipitation, and 
so on. Finally, it is possible that a single probe, due to precipitation or other 
artifact, is perturbed. 

How can you detect outliers in order to remove them? Basically, you 
need a statistical model of your data. The simplest model is equality among 
replicates. If one replicate (chip, gene, or probe) deviates several standard 
deviations from the mean, you can consider it an outlier and remove it. The 
t-test measures standard deviation and gives genes where outliers are present 
among replicates a low significance (See Section 4.6). 

More advanced statistical models have been developed that also allow for 
outlier detection and removal (Li and Wong, 2001a, b). 
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4.5 FOLD CHANGE 

Having performed normalization (and, if necessary, expression index con- 
densation) you should now be able to compare the expression level of any 
gene in the sample to the expression level of the same gene in the control. 
The next thing you want to know is: How many fold up- or downregulated is 
the gene, or is it unchanged? 

The simplest approach to calculate fold change is to divide the expression 
level of a gene in the sample by the expression level of the same gene in 
the control. Then you get the fold change, which is 1 for an unchanged 
expression, less than 1 for a down-regulated gene, and larger than 1 for an 
up-regulated gene. The definition of fold change will not make any sense 
if the expression value in the sample or in the control is zero or negative. 
Early Average Difference values from Affymetrix sometimes were, and a 
quick-and-dirty way out of this problem was to set all Average Difference 
values below 20 to 20. This was the approach usually applied. 

The problem with fold change emerges when one takes a look at a scale. 
Up-regulated genes occupy the scale from 1 to infinity (or at least 1000 for a 
1000-fold up-regulated gene) whereas all down-regulated genes only occupy 
the scale from 0 (0.001 for a 1000-fold down-regulated gene) to 1. This scale 
is highly asymmetric. 

The Affymetrix GeneChip software (early version MAS 4.0) calculates 
fold change in a slightly different way, which does stretch out that scale to be 
symmetric: 

f l  if Sample > Control +i -1 if Sample < Control ' 

Sample - Cont,rol 
rnin( Sample, Control) 

AffyFold = 

where Sample and Control are the AvgDiffs of the sample and the control, 
respectively. For calculation of fold change close to the background level, 
consult the Affymetrix manual. 

This function is discontinuous and has no values in the interval from - 1 to 
1. Up-regulated genes have a fold change greater than 1 and down-regulated 
genes have a fold change less than -1. But the scale for down-regulated 
genes is comparable to the scale for up-regulated genes 

Both the fold change and Affyfold expressions are intuitively rather easy 
to grasp and deal with, but for further computational data analysis they are not 
useful, either because they are asymmetric or because they are discontinuous. 
For further data analysis you need to calculate the logarithm of fold change. 
Logfold, as we will abbreviate it, is undefined for the Affymetrix fold change, 
but can be applied to the simple fold change provided that you have taken the 
precaution to avoid values with zero or negative expression. 

It is not important whether you use the natural logarithm (log,), base 2 
logarithm (log2), or base 10 logarithm (loglo). 
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4.6 SIGNIFICANCE 

If you have found a gene that is twofold up-regulated (loglo fold is 0.3), then 
how do you know whether this is not just a result of experimental error? You 
need to determine whether or not a twofold regulation is signijcunt. There 
are many ways to estimate significance in chip experiments. Basically, to 
assess experimental error you have to repeat the experiment and measure 
the variation. If you repeat both control and sample, you can use a t-test to 
determine whether the expression of a particular gene is significantly different 
between control and sample. 

Chip variance 

' 'I - 
": '!L 
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A 

Replicate variance 
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Experiment variance 

I 
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A 

Fig. 4.3 Observed fold changes when comparing (left) chips with the same labeled mRNA, 
(middle) chips with mRNA preparations from two replicate cultures, (right) chips from two 
different experimental conditions. Plots show log of ratio ( M  = log(chipl/chip2)) versus 
average log intensity ( A  = (log chip1 + log chip2)/2) for all genes. 

The t-test looks at the mean and variance of the sample and control dis- 
tributions and calculates the probability that the observed difference in mean 
occurs when the null hypothesis is true3. 

When using the t-test it is often assumed that there is equal variance 
between sample and control. That allows the sample and control to be pooled 
for variance estimation. If the variance cannot be assumed equal you can use 
Welch's t-test which assumes unequal variances of the two populations. 

When using the t-test for analysis of microarray data, it is often a problem 
that the number of replicates is low. The lower the number of replicates, the 
more difficult it will be to estimate the variance. For only two replicates it 

'The null hypothesis states that the mean of the two distributions is equal. Hypothesis testing allows 
us to calculate the probability of finding the observed data when the hypothesis is true. To calculate 
the probability we make use of the normal distribution. When the probability is low, we reject the null 
hypothesis. 



42 BASIC DATA ANALYSIS 

. . . . . . . . 

3 experiment vs 3 control 

J,”h * r P , I I 

.... ~ . ~ . .  Benlamini-Hochberg cutoff 

-2 0 2 4 6 8 

M 

fig. 4.4 Volcano plot showing relationship between P-value and logfold change (M) (Wolfin- 
ger, 2001). M is the average of three replicates of each condition. For comparison a random 
permutation of the data has been included (green points, see color plate). 



SIGNIFICANCE 43 

becomes almost impossible. There are several solutions to this. The simplest 
solution is to take fold change into account for experiments with low number 
of replicates (say less than 3), and not consider genes that have less than 2 
fold change in expression. This will guard against low P-values that arise 
from underestimation of variance, and is similar to the approach used in SAM 
where a constant is added to the gene-specific variance (Tusher et al., 2001). 
The other possibility is to base variance estimation not only on a single gene 
measurement, but to include variance estimates from the whole population. 
Several methods have been developed for this purpose (Kerr et al., 2001; 
Baldi and Long, 2001; Lonnstedt and Speed, 2001). 

The relationship between P-value and fold change is illustrated in a so- 
called volcano plot (Figure 4.4). You can observe large fold changes that are 
not significant (they are most likely due to outliers). Among the significant 
genes (low P-value), you observe genes with both large and small logfold 
change. For comparison, a permutation of the data is included as well. Here, 
samples and controls have been shuffled before repeating the analysis. This 
shows the amount of noise in the data, and what fold changes and P-values can 
be observed in a random permutation of the data. When you choose a cutoff 
in P-value, you can see how many data points from the random permutation 
exceed that cutoff. This is an estimate of your false positive rate. 

4.6.1 Multiple Conditions 

If you have more than two conditions, the t-test may not be the method of 
choice, because the number of comparisons grow if you perform all possible 
comparisons between conditions. The method analysis of variance (ANOVA) 
will, using the F distribution, calculate the probability of finding the observed 
differences in means between more than two conditions when the null hy- 
pothesis is true (when there is no difference in means). 

Software for running the t-test and ANOVA will be discussed in Sec- 
tion 14.5. A web-based method for t-test is available4 (Baldi and Long, 2001). 
Baldi and Long (2001) recommend using the t-test on log-transformed data. 

4.6.2 Nonparametric Tests 

Both the t-test and ANOVA assume that your data follow the normal dis- 
tribution. Although both methods are robust to moderate deviations from 
the normal distribution5, alternative methods exist for assessing significance 
without assuming normality. The WilcoxonMann-Whitney rank sum test 

4http://visitor.ics.uci.edu/genex/cyhert/ 
5Giles and Kipling (2003) have demonstrated that deviations from the normal distribution are small for 
most micromay data, except when using Affymetrix’ MAS 5.0 software 
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will do the same without using the actual expression values from the experi- 
ment, only their rank relative to each other. 

When you rank all expression levels from the two conditions, the best 
separation you can have is that all values from one condition rank higher than 
all values from the other condition. This corresponds to two non overlap- 
ping distributions in parametric tests. But since the Wilcoxon test does not 
measure variance, the significance of this result is limited by the number of 
replicates in the two conditions. It is for this reason that you may find that the 
Wilcoxon test for low numbers of replication gives you a poor significance 
and that the distribution of P-values is rather granular. 

4.6.3 Correction for Multiple Testing 

For all statistical tests that calculate a P-value, it is important to consider the 
effect of multiple testing as we are looking at not just one gene but thousands 
of genes. If a P-value of 0.05 tells you that you have a probability of 5 %  
of making a type I error (false positive) on one gene, then you expect 500 
type I errors (false positive genes) if you look at 10.000 genes. That is 
usually not acceptable. You can use the Bonferroni correction to reduce the 
significance cutoff to a level where you again have only 5 %  probability of 
making one or more type I errors among all 10.000 genes. This new cutoff is 
0.05/10.000 = 5 . lop6. That is a pretty strict cutoff, and for many purposes 
you can live with more type I errors than that. Say you end up with a list 
of 100 significant genes and you are willing to accept 5 type I errors (false 
positives) on this list. Then you are willing to accept a False Discovey Rate 
(FDR) of 5%. Benjamini and Hochberg (1995) have come up with a method 
for controlling the FDR at a specified level. After ranking the genes according 
to significance (P-value) and starting at the top of the list, you accept all genes 
where 

where i is the number of genes accepted so far, rri is the total number of genes 
tested and (I is the desired FDR. For 1: > 1 this correction is less strict than a 
Bonferroni correction. 

The False Discovery Rate can also be assessed by permutation. If you 
permute the measurements from sample and control and repeat the t-test for 
all genes, you get an estimate of the number of type I errors (false positives) 
that can be expected at the chosen cutoff in significance. When you divide 
this number by the number of genes that pass the t-test on the unpermuted 
data, you get the FDR. This is the approach used in the software SAM (Tusher 
et al., 2001). 

If no genes in your experiment pass the Bonferroni or Benjamini-Hochberg 
corrections, then you can look at those that have the smallest P-value. When 
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Table 4.1 Expression readings of four genes in six patients. 

Patient 
Gene N1 N2 A1 A2 B1 B2 

~~ 

a 90 110 190 210 290 310 
b 190 210 390 410 590 610 
C 90 110 110 90 120 80 
d 200 100 400 90 600 200 

you multiply their P-value by the number of genes in your experiment, you 
get an estimate of the number of false positives. Take this false positive rate 
into account when planning further experiments. 

4.6.4 Example I: t-Test and ANOVA 

A small example using only four genes will illustrate the t-test and ANOVA. 
The four genes are each measured in six patients, which fall into three cat- 
egories: normal (N), disease stage A, and disease stage B. That means that 
each category has been replicated once (Table 4.1). 

We can perform a t-test (see Section 14.5 for details) to see if genes differ 
significantly between patient category A and patient category B (Table 4.2). 
But you should be careful performing a t-test on as little as two replicates in 
real life. This is just for illustration purposes. 

Gene b is significantly different at a 0.05 level, even after multiplying the 
P-value by four to correct for multiple testing. Gene u is not significant 
at a 0.05 level after Bonferroni correction, and genes c and d have a high 
probability of being unchanged. For gene d that is because, even though an 
increasing trend is observed, the variation within each category is too high to 
allow any conclusions. 

Table 4.2 r-test on difference between patient categories A and B. 

Patient 
Gene A1 A2 B1 B2 P-value 

U 190 210 290 310 0.0 19 
b 390 410 590 610 0.005 
c 110 90 120 80 1 .ooo 
cl 400 90 600 200 0.606 
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Table 4.3 ANOVA on difference between patient categories N ,  A and B. 

Patient 
Gene N1 N2 A1 A2 B1 B2 P-value 

~ ~~~~~~ 

Q 90 110 190 210 290 310 0.00 1 8 
b I90 210 3 90 410 590 610 0.0002 
c 90 110 110 90 120 80 1 .0000 
d 200 I00 400 90 600 200 0.5560 

Table 4.4 Effect of number of replicates on Type I (FP) and I1 (FN) errors in f-test. 

Number of replicates of each condition 
2 3 4 5 6 

True positives 23 144 405 735 1058 
False positives 8 18 29 45 0 
False negatives 1035 9 14 65 3 323 0 

If we perform an ANOVA instead, testing for genes that are significantly 
different in at least one of three categories, the picture changes slightly (Ta- 
ble 4.3). 

In the ANOVA, both gene a and b are significant at a 0.01 level even after 
Bonferroni correction. So taking all three categories into account increases 
the power of the test relative to the t-test on just two categories. 

4.6.5 Example II: Number of Replicates 

If replication is required to determine the significance of results, how many 
replicates are required? An example will illustrate the effect of the number 
of replicates. We have performed six replicates of each of two conditions in 
a Saccharomyces cerevisiae GeneChip experiment (Piper et al., 2002). Some 
of the replicates have even been performed in different labs. Assuming the 
results of a t-test on this data set to be the correct answer, we can ask: How 
close would five replicates have come to that answer? How close would four 
replicates have come to that answer? We have performed this test (Piper et 
al., 2002) and Table 4.4 shows the results. For each choice of replicates, we 
show how many false positives (Type I errors) we have relative to the correct 
answer and how many false negatives (Type I1 errors) we have relative to 
the correct answer. The number of false positives in the table is close to the 
number we have chosen with our cutoff in the Bonferroni corrected t-test (a 
0.005 cutoff at 6383 genes yields 32 expected false positives). The number 
of false negatives, however, is greatly affected by the number of replicates. 
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Table 4.5 Effect of number of replicates on Type I and I1 errors in SAM (Tusher et al., 
2001). 

Number of replicates of each condition 
2 3 4 5 6 

True positives 27 165 428 74 8 1098 
False positives 3 4 14 27 0 
False negatives 1071 933 670 350 0 

Table 4.5 shows that the t-test performs almost as well as SAM6 (Tusher 
et al., 2001), which has been developed specifically for estimating the false 
positive rate in DNA microarray experiments based on permutations of the 
data. 

While this experiment may not be representative, it does illustrate two 
important points about the t-test. You can control the number of false positives 
even with very low numbers of replication. But you lose control over the false 
negatives as the number of replications go down. 

So how many replicates do you have to perform to avoid any false nega- 
tives? That depends mainly on two parameters. How large is the variance 
between replicates and how small a fold change do you wish to detect. Given 
those it is possible to calculate the number of replicates needed to achieve a 
certain power (1 minus the false negative rate) in the t-test7. 

4.7 MIXED CELL POPULATIONS 

The analysis presented above assumes that we are looking at pure cell pop- 
ulations. In cell cultures we are assuming that all cells are identical, and in 
tissue samples we are assuming that the tissue is homogeneous. The degree to 
which these assumptions are true vary from experiment to experiment. If you 
have isolated a specific cell type from blood, there may still be a mixture of 
subtypes within this population. A tissue sample may contain a combination 
of tumor and normal cells. A growing cell culture contains cells in different 
stages of the cell cycle. 

If the proportion of subtypes is constant throughout the experiment, a 
standard analysis can be applied. You just have to remember that any signal 
arising from a single subtype will be diluted by the presence of other subtypes. 

If the proportion of subtypes vary in the experiment, it may be possible 
to resolve mathematically the proportions and estimate the expression of 
individual subtypes within the population. But the mathematical procedures 

?Software available for download at http://www-stat.stanford.eduTtibs/SAM/index.html 
'For example by using the power.t.test function of the R package available from www.r-project.org 
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for doing this again rest on a number of assumptions. If you assume that 
each cell subtype has a uniform and unchanging expression profile, and that 
the only thing that changes in your experiment is the ratio between cell 
subtypes, the problem becomes a simple mathematical problem of solving 
linear equations (Lu et al., 2003). First you need to obtain the expression 
profile of each of the pure cell subtype in an isolated experiment. Then 
you find the linear combination of the pure profile that best fits the data of 
the mixed cell population experiments. This gives the proportions of the 
individual cell subtypes. 

Another way of separating the samples into their constituent cell types is 
if you have more samples than cell types. Then the problem may become 
determined under a number of constraints (Venet et al., 2001): 

M = GC. 

where M is the matrix of measured values (rows correspond to genes and 
columns correspond to experiments), G is the expression profile of each cell 
type (rows correspond to genes and columns correspond to cell types), and C 
is the concentration matrix (rows correspond to cell types and columns cor- 
respond to measurements). Under a number of assumptions and constraints, 
it may be possible to find an optimal solution G and C from M (Venet et a]., 
2001). 

4.8 SUMMARY 

Whether you have intensities from a spotted array or Signal (use Li and 
Wong’s weighted PM, if possible) from an Affymetrix chip, the following 
suggestions apply: 

0 The standard normalization with one factor to get the same average 
intensity in all chips is a good way to start, but it is not the best way to 
do it. Use signal dependent normalization if possible. 

0 Repeat each condition of the experiment (as a rule-of-thumb at least 
three times) and apply a statistical test for significance of observed 
differences. Apply the test on the normalized intensities (or expression 
indices). For spotted arrays with large variation between slides you can 
consider applying the statistical test on the fold change from each slide 
as well. 

0 Correct the statistical test for multiple testing (Bonferroni correction or 
similar). 

Software for all the methods described in this chapter is available from 
www.bioconductor.org, which will be described in more detail in Chapter 14. 
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3 
Visualization by  Reduction 

of Dimensionality 

The data from expression arrays are of high dimensionality. If you have 
measured 6000 genes in 15 patients, the data constitute a matrix of 15 by 6000. 
It is impossible to discern any trends by visual inspection of such a matrix. 
It is necessary to reduce the dimensionality of this matrix to allow visual 
analysis. Since visual analysis is traditionally performed in two dimensions, 
in a coordinate system of z and y, many methods allow reduction of a matrix of 
any dimensionality to only two dimensions. These methods include principal 
component analysis, correspondence analysis, multidimensional scaling, and 
cluster analysis. 

5.1 PRINCIPAL COMPONENT ANALYSIS 

If we want to display the data in just two dimensions, we want to capture as 
much of the variation in the data as possible in just these two dimensions. 
Principal component analysis (PCA) has been developed for this purpose. 
Imagine 6000 genes as points in a 15-dimensional hyperspace, each dimension 
corresponding to expression in one of 15 patients. You will see a cloud of 6000 
points in hyperspace. But the cloud is not hyperspherical. There will be one 
direction in which the cloud will be more irregular or extended. (Figure 5.1 
illustrates this with only a few points in three dimensions.) This is the direction 
of the first principal component. This direction will not necessarily coincide 
with one of the patient axes. Rather, it will have projections of several, or all, 
patient axes on it. Next, we look for a direction that is orthogonal to the first 
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Fig. 5.1 A cloud of points in three-dimensional space. The cloud is not regular. It extends 
more in one direction than in all other directions. This direction is the first principal component 
(dashed line). 

principal component, and captures the maximum amount of variation left in 
the data. This is the second principal component. We can now plot all 6000 
genes in these two dimensions. We have reduced the dimensionality from 15 
to 2, while trying to capture as much variation in the data as possible. The 
two principal components have been constructed as sums of the individual 
patient axes. 

What will this analysis tell you? Perhaps nothing; it depends on whether 
there is a trend in your data that is discernible in two dimensions. Other 
relationships can be visualized with cluster analysis, which will be described 
in Chapter 6. 

Instead of reducing the patient dimensions we can reduce the gene dimen- 
sions. Why not throw out all those genes that show no variation? We can 
achieve this by performing a principal component analysis of the genes. We 
are now imagining our data as 15 points in a space of 6000 dimensions, where 
each dimension records the expression level of one gene. Some dimensions 
contribute more to the variation between patients than other dimensions. The 
first principal component is the axis that captures most variation between 
patients. A number of genes have a projection on this axis, and the principal 
component method can tell you how much each gene contributes to the axis. 
The genes that contribute the most show the most variation between patients. 
Can this method be used for selecting diagnostic genes? Yes, but it is not 
necessarily the best method, because variation, as we have seen in Section 4.6, 
can be due to noise as well as true difference in expression. Besides, how 
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Table 5.7 Expression readings of four genes in six patients. 

Patient 
Gene N1 N2 A1 A2 B1 B2 

U 90 110 190 2 10 290 3 10 
b 190 210 390 410 590 610 
c 90 110 110 90 120 80 
d 200 100 400 90 600 200 

do we know how many genes to pick? The t-test and ANOVA, mentioned in 
Section 4.6, are more suited to this task. They will, based on a replication of 
measurement in each patient class, tell you which genes vary between patient 
classes and give you the probability of false positives at the cutoff you choose. 

So a more useful application of principal component analysis would be to 
visualize genes that have been found by a t-test or ANOVA to be significantly 
regulated. This visualization may give you ideas for further analysis of the 
data. 

5.2 EXAMPLE 1 : PCA ON SMALL DATA MATRIX 

Let us look at a simple example to visualize the problem. We have the data 
matrix shown in Table 5.1. 

It consists of four genes measured in six patients. If we perform a principal 
component analysis on these data (the details of the computation are shown 
in Section 14.5), we get the biplot shown in Figure 5.2. A biplot is a plot 
designed to visualize both points and axes simultaneously. Here we have 
plotted the four genes as points in two dimensions, the first two principal 
components. It can be seen that genes a, c, and b differ a lot in the first 
dimension (they vary from about -400 to +400), while they differ little in 
the second dimension. Gene d, however, is separated from the other genes in 
the second dimension (it has a value of about -400 in the second dimension). 

Indicated as arrows are the projections of the six patient axes on the 
two first principal components. Start with Patient B1. This patient has a 
large projection (about 0.5) on the first principal component, and a smaller 
projection on the second principal component (about -0.3). The lengths 
of the patient vectors indicate how much they contribute to each axis and 
their directions indicate in which way they contribute. The first principal 
component consists mainly of Patient category B, where expression differs 
most. Going back to the genes, it can be seen that they are ranked according to 
average expression level in the B patients along this first principal component: 
genes c, a, d and b. 
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Fig. 5.2 Principal Component Analysis of data shown in Table 5.1. Note that patients and 
genes use different coordinate systems in this plot. Hence the different scales on the axes. 

The second principal component divides genes into those that are higher 
in Patient B2 than in Patient B1 (gene c, a, and b), and gene d, which is lower 
in Patient B2 than in Patient B1. On the vector projections of the patient axes 
on this component it can be seen that they have been divided into those with 
subcategory 1 (Patients N1, Al,  Bl), which all have a positive projection, and 
those with subcategory 2 (Patients N2, Az, Bz), which all have a negative 
projection. So the second principal component simply compares expression 
in subcategories. 

We can also do the principal component analysis on the reverse (truns- 
posed) matrix (transposition means to swap rows with columns). Figure 5.3 
shows a biplot of patients along principal components that consist of those 
genes that vary most between patients. First, it can be seen that there has 
been some grouping of patients into categories. Categories can be separated 
by two parallel lines. By looking at the projection of the gene vectors we can 
see that gene b and gene d, those that vary most, contribute most to the two 
axes. Now, if we wanted to use this principal component analysis to select 
genes that are diagnostic for the three categories, we might be tempted to 
select gene b and gene d because they contribute most to the first principal 
component. This would be a mistake, however, because gene d just shows 
high variance that is not correlated to category at all. The ANOVA, described 
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Fig. 5.3 Principal Component Analysis of transposed data of Table 5.1. 

in Section 4.6, would have told us that gene b and gene a are the right genes 
to pick as diagnostic genes for the disease. 

5.3 EXAMPLE 2: PCA ON REAL DATA 

Figure 5.4 shows results of a PCA on real data. The R package was used on 
the HIV data (Section 1.5) as described in Section 14.5. The projections of 
the 7 experiments (4 controls (C) and 3 HIV (H)) on the principal components 
are shown as vectors in this biplot. The first principal component captures 
overall differences in expression level among genes-it separates them into 
those with negative expression (AvgDiff) and those with high expression. The 
second principal component separates the genes into those expressed higher 
in HIV than in the controls and those expressed higher in the controls than 
in HIV. What is ignored in this separation, however, is the variance between 
replicates in each group. The t-test (Section 4.6) makes a better selection of 
differentially expressed genes because it takes into account variance between 
replicates. 
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Fig- 5.4 Principal component analysis on real data from HIV experiment. All genes are 
plotted along the first two principal components. Genes are indicated by their name, but there 
are too many and the font is too small to be legible in this plot. The projections of the 7 
experiments (4 controls (C) and 3 HIV (H)) on the principal components are shown as vectors 
in this biplot. 
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5.4 SUMMARY 

Principal component analysis is a way to reduce your multidimensional data 
to a single z - 3 graph. You may be able to spot important trends in your 
data from this one graph alone. If replicates are available it is best to perform 
PCA on data that has already been filtered for significance. 

5.5 FURTHER READING 

Singular Value Decomposition 

Alter, O., Brown, P. O., and Botstein, D. (2000). Singular value decomposi- 
tion for genome-wide expression data processing and modeling. Proc. 
Natl. Acad. Sci. USA 97:lOlOl-10106. 

Holter, N. S., Mitra, M., Maritan, A., Cieplak, M., Banavar, J. R., and Fe- 
doroff, N.V. (2000). Fundamental patterns underlying gene expression 
profiles: Simplicity from complexity. Proc. Natl. Acad. Sci. USA 

Wall, M. E., Dyck, P. A., and Brettin, T. S. (2001). SVDMAN-singular 

97 :a409434 14. 

value decomposition analysis of microarray data. Bioinformatics 17566- 
568. 

Principal Component Analysis 

Dysvik, B, and Jonassen, I. (2001). J-Express: Exploring gene expression 
data using Java. Bioinformatics 17:369-370.' 

Raychaudhuri, S.,  Stuart, J. M., and Altman, R. B. (2000). Principal com- 
ponents analysis to summarize microarray experiments: Application 
to sporulation time series. Pac. Symp. Biocomput. 2000:455-466.* 

Xia, X, and Xie, Z. (2001). AMADA: Analysis of microarray data. Bioin- 

Xiong, M., Jin, L., Li, W., and Boerwinkle, E. (2000). Computational 
methods for gene expression-based tumor classification. Biotechniques 

formatics 17569-570. 

29:1264-1268. 

Correspondence Analysis 

' Software available at http://www.ii.uib.no/%jarted/jexpress/ 
2Available online at http://psb.stanford.edu 



62 VISUALIZATION BY REDUCTION OF DIMENSIONALITY 

Fellenberg, K., Hauser, N. C., Brors, B., Neutzner, A., Hoheisel, J. D., and 
Vingron, M. (2001). Correspondence analysis applied to microarray 
data. Proc. Natl. Acad. Sci. USA 98: 10781-10786. 

Gene Shaving uses PCA to Select Genes with Maximum Variance 

Hastie, T., Tibshirani, R., Eisen, M. B., Alizadeh, A., Levy, R., Staudt, L., 
Chan, W. C., Botstein, D., and Brown, P. (2000). Gene shaving as a 
method for identifying distinct sets of genes with similar expression 
patterns. Genome Biol. 1 :RESEARCH0003.1-21 



Cluster Analysis 

If you have just one experiment and a control, your first data analysis will 
limit itself to a list of regulated genes ranked by the magnitude of up- and 
downregulation, or ranked by the significance of regulation determined in a 
t-test. 

Once you have more experiments-measuring the same genes under dif- 
ferent conditions, in different mutants, in different patients, or at different 
time points during an experiment-it makes sense to group the significantly 
changed genes into clusters that behave similarly over the different conditions. 

6.1 HIERARCHICAL CLUSTERING 

Think of each gene as a vector of N numbers, where N is the number of 
experiments or patients. Then you can plot each gene as a point in N- 
dimensional hyperspace. You can then calculate the distance between two 
genes as the Euclidean distance between their respective data points (as the 
root of the sum of the squared distances in each dimension). 

This can be visualized using a modified version of the small example data 
set applied in previous chapters (Table 6.1). The measured expression level 
of the five genes can be plotted in just two of the patients using a standard 
1% - y coordinate system (Figure 6.1 left). 

You can calculate the distance between all genes (producing a distance 
matrix), and then it makes sense to group those genes together that are closest 
to each other in space. The two genes that are closest to each other, b and d, 
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Table 6.7 Expression readings of five genes in two patients. 

Patient 
Gene N1 A1 

90 
190 
90 

200 
150 

190 
390 
110 
400 
200 

form the first cluster (Figure 6.1 left). Genes a and c are separated by a larger 
distance, and they form a cluster as well (Figure 6.1 left). If the separation 
between a gene and a cluster comes within the distance as you increase it, 
you add that gene to the cluster. Gene e is added to the cluster formed by 
u and c. How do you calculate the distance between a point (gene) and a 
cluster? You can calculate the distance to the nearest neighbor in the cluster 
(gene a) ,  but it is better to calculate the distance to the point that is in the 
middle of the existing members of the cluster (centroid, similar to UPGMA 
or average linkage method). 

When you have increased the distance to a level where all genes fall within 
that distance, you are finished with the clustering and can connect the final 
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Fig. 6.1 Hierarchical clustering of genes based on their Euclidean distance visualized by a 
rooted tree. Note that it is possible to reorder the leaves of the tree by flipping the branches at 
any node without changing the information in the tree. 
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fig. 6.2 Hierarchical clustering of bladder cancer patients using an unrooted tree. The 
clustering was based on expression measurements from a DNA array hybridized with mRNA 
extracted from a biopsy. Numbers refer to patients and the severity of the disease is indicated 
by a color code. (Christopher Workman, based on data published in Thykjaer et al. (2001)). 
(See color plate.) 

clusters. You have now performed a hierarchical agglomerative clustering. 
There are computer algorithms available for doing this (see Section 14.4). 

A real example is shown in Figure 6.2, where bladder cancer patients were 
clustered based on Affymetrix GeneChip expression measurements from a 
bladder biopsy. It is seen in the figure that the clustering groups superficial 
tumors together and groups invasive tumors together. 

Hierarchical clustering only fails when you have a large number of genes 
(several thousand). Calculating the distances between all of them becomes 
time consuming. Removing genes that show no significant change in any 
experiment is one way to reduce the problem. Another way is to use a faster 
algorithm, like K-means clustering. 

6.2 K-MEANS CLUSTERING 

In K-means clustering, you skip the calculation of distances between all 
genes. You decide on the number of clusters you want to divide the genes 
into, and the computer then randomly assigns each gene to one of the K 
clusters. Now it will be comparatively fast to calculate the distance between 
each gene and the center of each cluster (centroid). If a gene is actually 
closer to the center of another cluster than the one it is currently assigned to, 
it is reassigned to the closer cluster. After assigning all genes to the closest 
cluster, the centroids are recalculated. After a number of iterations of this, 
the cluster centroids will no longer change, and the algorithm stops. This is a 
very fast algorithm, but it will give you only the number of clusters you asked 
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Fig. 6.3 K-means clustering of genes based on their Euclidean distance. First, genes are 
randomly assigned to one of the two clusters in K :  1 or 2 (Left). The centroids of each cluster 
are calculated. Genes are then reassigned to another cluster if they are closer to the centroid 
of that cluster (Right). In this simple example, the final solution is obtained after just one 
iteration (Right). 

for and not show their relation to each other as a full hierarchical clustering 
will do. In practice, K-means is useful if you try different values of K. 

If you try the K-means clustering on the expression data used for hierar- 
chical clustering shown in Figure 6.1, with I( = 2, the algorithm may find 
the solution in just one iteration (Figure 6.3). 

6.3 SELF-ORGANIZING MAPS 

There are other methods for clustering, ,ut hierarc,,ical and K-means cover 
most needs. One method that is available in a number of clustering software 
packages is self-organizing maps (SOM) (Kohonen, 1995). SOM is similar 
to K-means, but clusters are ordered on a low-dimensional structure, such 
as a grid. The advantage over K-means is that neighboring clusters in this 
grid are more related than clusters that are not neighbors. So it results in an 
ordering of clusters that is not performed in K-means. 

Figure 6.4 shows how a SOM clustering could fit a two-by-two grid on the 
data of our example (the cluster centers are at each comer of the grid). That 
would result in four clusters, three of them with one member only and one 
cluster with two members. 
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Fig, 6.4 SOM clustering of genes into a two-by-two grid, resulting in four clusters. 

6.4 DISTANCE MEASURES 

In addition to calculating the Euclidean distance, there are a number of other 
ways to calculate distance between two genes. When these are combined 
with different ways of normalizing your data, the choice of normalization and 
distance measure can become rather confusing. Here I will attempt to show 
how the different distance measures relate to each other and what effect, if 
any, normalization of the data has. Finally I will suggest a good choice of 
distance measure for expression data. 

The Euclidean distance between two points u and b in N-dimensional 
space is defined as 

where i is the index that loops over the dimensions of N ,  and the C sign 
indicates that the squared distances in each dimension should be summed 
before taking the square root of those sums. Figure 6.5 shows the Euclidean 
distance between two points in two-dimensional space. 

Instead of calculating the Euclidean distance, you can also calculate the 
angle between the vectors that are formed between the data point of the gene 
and the center of the coordinate system. For gene expression, vector angle 
(Fig. 6.5) often performs better because the trend of a regulation response is 
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Euclidenn distance 
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,” 
Fig. 6.5 Euclidean distance and vector angle between points a and b in two-dimensional 
space. 

more important than its magnitude. Vector angle Q between points a and b in 
N-dimensional space is calculated as 

Finally, a widely used distance metric is the Pearson correlation coefficient: 

You can see that the only difference between vector angle and Pearson 
correlation is that the means (a and 6) have been subtracted before calculating 
the Pearson correlation. So taking the vector angle of a means-normalized 
data set (each gene has been centered around its mean expression value over 
all conditions) is the same as taking the Pearson correlation. 

An example will illustrate this point. Let us consider two genes, a and 
b, that have the expression levels a = (1 ,2 ,3 ,4)  and b = (2 ,4 ,6 ,8)  in four 
experiments. They both show an increasing expression over the four experi- 
ments, but the magnitude of response differs. The Euclidean distance is 5.48, 
while the vector angle distance (1 - cos a)  is zero and the Pearson distance 
(1-Pearson CC) is zero. I would say that because the two genes show exactly 
the same trend in the four experiments, the vector angle and Pearson distance 
make more sense in a biological context than the Euclidean distance. 
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Table 6.2 Expression readings of four genes in six patients 

Patient 
Gene Nl N2 A1 A2 B1 B2 

a 90 110 190 210 290 3 10 
b 190 210 390 410 590 610 
C 90 110 110 90 120 80 
d 200 100 400 90 600 200 

Table 6.3 Euclidean distance matrix between four genes. 

Gene 
Gene a b c d 

a 0.00 5.29 3.20 4.23 
b 5.29 0.00 8.38 5.32 
C 3.20 8.38 0.00 5.84 
d 4.23 5.32 5.84 0.00 

Table 6.4 Vector angle distance matrix between four genes. 

Gene 
Gene a b c d 

a 0.00 0.02 0.42 0.52 
b 0.02 0.00 0.41 0.50 
c 0.42 0.41 0.00 0.5 1 
d 0.52 0.50 0.5 1 0.00 

6.4.1 

Let us try the different distance measures on our little example of four genes 
from six patients (Table 6.2). We can calculate the Euclidean distances (see 
Section 14.4 for details on how to do this) between the four genes. The 
pairwise distances between all genes can be shown in a distance matrix 
(Table 6.3) where the distance between gene a and a is zero, so the painvise 
identities form a diagonal of zeros through the matrix. The triangle above 
the diagonal is a mirror image of the triangle below the diagonal because the 
distance between genes a and b is the same as the distance between genes b 
and a. 

This distance matrix is best visualized by clustering as shown in Figure 6.6, 
where it is compared with clustering based on vector angle distance (Table 6.4) 
and a tree based on Pearson correlation distances (Table 6.5). 

Example: Comparison of Distance Measures 
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Table 6.5 Pearson distance matrix between four genes. 

Gene 
Gene a b C d 

a 0.00 0.06 1.45 1.03 
b 0.06 0.00 1.43 0.98 
C 1.45 1.43 0.00 0.83 
d 1.03 0.98 0.83 0.00 

The clustering in Figure 6.6 is nothing but a two-dimensional visualization 
of the four-by-four distance matrix. What does it tell us? It tells us that vector 
angle distance is the best way to represent gene expression responses. Genes 
a, b, and d all have increasing expression over the three patient categories, 
only the magnitude of the response and the error between replicates differs. 
The vector angle clustering has captured this trend perfectly, grouping a and 
b close together and d nearby. Euclidean distance has completely missed 
this picture, focusing only on absolute expression values, and placed genes 
a and b furthest apart. Pearson correlation distance has done a pretty good 
job, capturing the close biological proximity of genes a and b, but it has 
normalized the data too heavily and placed gene d closest to gene c, which 
shows no trend in the disease at all. 

It is also possible to cluster in the other dimension, clustering patients 
instead of genes. Instead of looking for genes which show a similar transcrip- 
tional response to the progression of a disease, we are looking for patients 
that have the same projile of expressed genes. If two patients have exactly 
the same stage of a disease we hope that this will be reflected in identical 
expression of a number of key genes. Thus, we are not interested in the genes 
that are not expressed in any patient, are unchanged between patients, or 
show a high error. So it makes sense to remove those genes before clustering 

Euclidean Vector angle  Pearson 

Fig. 6.6 Hierarchical clustering of distances (with three different distance measures) between 
genes in the example. 
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Fig. 6.7 Hierarchical clustering of vector angle distances between patients in the example. 

patients. But that requires applying a t-test or ANOVA on the data and in 
order to do so you have to put the data into the categories you presume the 
patients fall into. That could obscure trends in the data that you have not yet 
considered. In practice, you could try clustering both on the full data and on 
data cleaned by t-test, ANOVA, or another method. 

The data in our little example contains too much noise from gene c to 
cluster on the complete set of genes. If an ANOVA is run on the three patient 
categories (Section 4.6) that only leaves genes a and b, and the hierarchical 
vector angle distance clustering based on those two genes can be seen in 
Figure 6.7. But remember that these two genes were selected explicitly for 
the purpose of separating the three patient categories. 

6.5 TIME-SERIES ANALYSIS 

When your data consist of samples from different time points in an exper- 
iment, this presents a unique situation for analysis. There are two funda- 
mentally different ways of approaching the analysis. Either you can take 
replicate samples from each time point and use statistical methods such as 
t-test or ANOVA to identify genes that are expressed differentially over the 
time series. This approach does not rely on any assumptions about the spacing 
between time points, or the behavior of gene expression over time. 

Another way of approaching the analysis is to assume that there is some 
relationship between the time points. For example, you can assume that there 
is a linear relationship between the samples, so that genes increase or decrease 
in expression in a linear manner over time. In that case you can use linear 
modeling as a statistical analysis tool. 

Another possible relationship is a sine wave for cyclical phenomena. The 
sine wave has been used to analyse cell cycle experiments in yeast (Spellman 
et al., 1998). 
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If you have no prior expectation on the response in your data, clustering 
may be the most powerful way of discovering temporal relationships. 

6.6 GENE NORMALIZATION 

The difference between vector angle distance and Pearson correlation comes 
down to a means normalization. There are two other common ways of 
normalizing the expression level of a gene-length normalization and SD 
normalization: 

0 Means: Calculate mean and subtract from all numbers 

0 Length: Calculate length of gene vector and divide all numbers by that 

0 SD: Calculate standard deviation and divide all numbers by it. 

length. 

For each of these normalizations it is important to realize that it is performed 
on each gene in isolation; the information from other genes is not taken into 
account. Before you perform any of these normalizations, it is important that 
you answer this question: Why do you want to normalize the data in that way? 
Remember, you have already normalized the chips, so expression readings 
should be comparable. In general, normalization affects Euclidean distances 
to a large extent, it affects vector angles to a much smaller extent, and it 
hardly ever affects Pearson distances because the latter metric is normalized 
already. My suggestion for biological data is to use vector angle distance on 
non-normalized expression data for gene clustering. 

6.7 VISUALIZATION OF CLUSTERS 

Clusters are traditionally visualized with trees (Figures 6.7,6.6,6.2, and 6.1). 
Note that information is lost in going from a full distance matrix to a tree 
visualization of it. Different trees can represent the same distance matrix. 

In DNA chip analysis it has also become common to visualize the gene 
vectors by representing the expression level or fold change in each experiment 
with a color-coded matrix. Figure 6.8 shows such a visualization of gene 
expression data using both a tree and a color matrix using the ClustArray 
software (Section 14.4). 

6.7.1 

Figure 6.8 is a visualization of the most important genes (selected by their co- 
variance to the progression of the disease) in DNA microarray measurements 
in bladder cancer patients. 

Example: Visualization of Gene Clusters in Bladder Cancer 
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Fig. 6.8 Hierarchical clustering of genes (rows) expressed in bladder cancers (columns). 
Yellow fields show up-regulation of genes (absolute difference in right panel, logfold change 
in left panel), blue fields show down-regulation of genes. (Figure by Christopher Workman 
using ClustAmay software on data from Thykjaer et al., (2001) and postprocessing with Adobe 
Illustrator). (See color plate.) 
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6.8 SUMMARY 

Cluster analysis groups genes according to how they behave in experiments. 
For gene expression, measuring similarity of gene expression using the vector 
angle between expression profiles of two genes makes most sense. 

Normalization of your data matrix (of genes versus experiments) can be 
performed in either of two dimensions. If you normalize columns you nor- 
malize the total expression level of each experiment. A normalization of 
experiments to yield the same sum of all genes is referred to in this book 
as scaling and is described in Section 4.1. Such a normalization is essential 
before comparison of experiments, but a multifactor scaling with a spline or 
a polinomial is even better. 

Normalization of genes in the other dimension may distort the scaling of 
experiments that you have performed (if you sum the expression of all genes 
in an experiment after a gene normalization, it will no longer add up to the 
same number). Also, normalization of genes before calculating vector angle 
is usually not necessary. Therefore, Pearson correlation is not quite as good 
a measure of similarity as vector angle. 
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7 
Beyond Cluster Analysis 

One day we may look back and understand how computation and experimentation with 
biological systems blurred the divide and allowed the 'great crossing' between the inanimate 
and the animate worlds. 

-0uzounis and Valencia, 2003 

7.1 FUNCTION PREDICTION 

Genes that appear in the same cluster have similar transcription response to 
different conditions. It is likely that this is caused by some commonality in 
function or role. If a cluster is populated by genes with known function-and 
that function is similar-you can infer the function of orphan genes in the 
same cluster. 

Another valuable tool to assigning function, in particular for clusters where 
there are no genes with known function, is function prediction. Function pre- 
diction enters the scene where there is no sequence homology to proteins with 
known function. Instead, a number of properties and predicted features of 
the protein can be used to predict a likely function class (Jensen et al., 2002). 
It turns out that proteins with similar function also share some similarities 
in amino acid sequence length, posttranslational modification, cellular desti- 
nation signal, and so on. Taken separately, each of these features is a weak 
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predictor of function category. Taken together, a sufficiently large number of 
features can be used to make fairly accurate predictions of function class'. 

7.2 DISCOVERY OF REGULATORY ELEMENTS IN PROMOTER 
REGIONS 

If a number of genes share a regulatory response to a number of stimuli it is 
reasonable to assume that they do so because they share a binding site for a 
transcription factor in their promoter. 

The ClustArray web-based clustering software (Section 14.4) allows you 
to select the genes in a cluster and search their upstream promoter region 
for such common regulatory elements that can account for the similarity in 
transcription response. This works only for organisms where the promoter 
regions of the genes on the chip are known and included in a database. Cur- 
rently, databases of promoter regions in human and Saccharomyces cerevisiae 
are available at the website. 

Even when you have the promoter sequence, finding common regulatory 
elements is inherently complicated because of the degeneracy of such ele- 
ments. You can use software such as saco-patterns (Jensen and Knudsen, 
2000) to search for patterns that are fully conserved. An example of a fully 
conserved pattern is AGCTTAGG. Such a search is reasonably fast, simple, 
and deterministic, because it is possible to search for all possible patterns up 
to a given length. But it will miss all those patterns that are not conserved 
enough to be picked up by a single pattern such as AGCTTAGG. Transcrip- 
tion factor binding sites are typically degenerate; they tolerate some variation 
in sequence at some locations in the site. The problem is that there is an 
infinite number of possible degenerate sites. Still, software solutions have 
been developed for this problem. Degenerate patterns can be searched with 
software like ann-spec (Workman and Stormo, 2000), but it is sensitive to 
the choice of parameters, and it will not give the same result every time you 
run it. It uses a probabilistic Gibbs sampling approach to guess parameters 
for a weight matrix that describes the regulatory elements. Lawrence's Gibbs 
sampler (Neuwald and Lawrence, 1995; Lawrence et al., 1993), uses a similar 
strategy. 

Running any of these methods to discover regulatory elements will lead 
you into an assessment of the significance of any discoveries. There are two 
good ways of assessing this. First, you can look for the occurrence of the 
discovered element in a background set, either in a set of promoters known 
not to contain the element, or in a set of all promoters in that organism, where 
you can assume that most promoters do not contain the element. Then you 
can compare the frequency of elements in the promoters in your positive set 

' A web server is available at http://www.cbs.dtu.dk/services/ProtFun/ 
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to the frequency of promoters in the background set and perform a statistical 
analysis (sampling without replacement) to calculate the probability that both 
sets have the same occurrence of the elements. If they do, then you have 
not found a biologically relevant element. Remember to correct for multiple 
testing (Bonferroni) before evaluating probabilities (see Section 4.6). Saco- 
patterns includes a statistical evaluation with Bonferroni correction. 

Confirmation of a biologically relevant signal may also come from an 
observation that those genes in the background set that do contain the element 
actually are additional members of the pathway or function class of the 
positive set. 

Finally, a way of assessing significance is to plot a histogram of positional 
preference of the signal relative to the transcription start site. Any obvious 
preference is a substantiation of biological significance, while an absence 
does not rule out significance. 

If you perform any of the tests described above, be sure to perform them 
on promoter extracts of identical length to avoid artifacts of analysis. 

7.2.1 

If you take all 6269 ORFs annotated in the GenBank file of Saccharomyces 
cerevisiue and extract 200 bp starting 300 bp upstream of the ORF, you 
cover most promoter regions in the organism pretty well. If you divide these 
6269 promoter regions into those that have been annotated as related to the 
proteasome (31) and those that have not (6238), you have a positive set and 
a background set, respectively. If you run saco-patterns using these sets as 
positive and background, it finds the sequence GGTGGCAAA present in 
25 of the positive set and 26 of the background set. That is such a vast 
over-representation that the probability that it is not significant-xwen after 
correction for multiple testing-is less than Of the 26 apparent false 
positives in the background set, two are proteases and three are genes related 
to ubiquitin, all of which could very well be coregulated with proteasomes 
(Jensen and Knudsen, 2000). 

Note that in this example we did not use expression analysis such as t-test 
or clustering to generate a positive set of promoters. We used functional 
annotation. You can use any method to generate a positive set and then search 
for patterns overrepresented in that set. 

Example 1 : Discovery of Proteasomal Element 

7.2.2 Example 2: Rediscovery of Mlu Cell Cycle Box (MCB) 

Using the yeast promoter regions from the previous example, but instead sort- 
ing them by the expression in one of the cell cycle experiments (Spellman et 
al., 1998), allows identification of patterns that are correlated with expression: 
Instead of dividing promoter regions into a positive and negative set, we look 
for patterns that are more frequent in up-regulated genes than in nonregulated 
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Fig. 7.7 Logfold distribution of all yeast genes (open bars) in a cell cycle experiment. Log- 
fold distribution of genes containing Mlu cell cycle box (shaded bars) in the same experiment. 
Drawing by Lars Juhl Jensen based on data from Jensen and Knudsen (2000). 

genes or in down-regulated genes, or vice versa. There is a statistical test for 
this and it is called the Kolmogorov-Smirnov rank test (Jensen and Knudsen, 
2000). Figure 7.1 shows the distribution of genes that contain such a pattern, 
the Mlu cell cycle Box (MCB). The well-known MCB pattern, ACGCGT, 
was discovered to be significant by saco-patterns testing all possible patterns 
up to length 8 in the cell cycle experiment. 

7.3 SUMMARY 

It is beyond the cluster analysis that the real data mining takes place: you 
can mine your data for promoter elements involved in the regulation that you 
observe, you can mine for novel functions of orphan proteins, you can mine 
for novel regulatory relationships between genes under study. In the future, 
these analyses should be combined to increase their power in detecting subtle 
relationships that may today be obscured by noise in your data. 
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Systems Biology 

Systems biology is basically the ability to study complex biological systems looking at all 
genes or all proteins, in terms of perturbations and model organisms. It’s studying systems 
by looking at all the elements in the system rather than looking at things one at a time. 

-Hood, 2002 

If you have read the preceeding chapters you will have realized by now that 
there are quite many steps of an analysis and at each step you have a large 
choice of methods and parameters. The chapter on software will show free, 
public domain software to perform all the steps, but unless you are a computer 
scientist or bioinformatician the choices may seem bewildering to you. It is 
for that reason that we have ventured into the field of automated analysis. Is it 
possible to define a standard procedure for analysis, with a reasonable choice 
of methods, that will work on a majority of datasets? We believe so. While 
this is not necessarily the optimal way to analyse your data, it is a very fast 
and efficient first pass. Figure 8.1 shows the flow diagram of such a software 
system, Genepublisher (Knudsen, 2003). You will see that it looks much 
like the overview of analysis shown in Figure 2.1. It performs the analysis 
described in this book, but it does so completely automatically, without user 
intervention. It makes choices based on the data that you submit to it. Then 
it summarizes the results of all the analysis methods with the I4T@ report 
generation tool, and produces a PDF report in the form of a manuscript. 
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Guide to Analysis of DNA Microarray Data, 2nd Edition. Steen Knudsen 
Copyright 0 2004 John Wiley & Sons, Inc. 
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f ig .  8.7 The Genepublisher automated analysis system. 

The output of Genepublisher is a good starting point for further anal- 
ysis, for example verification of some of the predicted genes by another 
method such as RT-PCR. Genepublisher is available as a web server at 
www.cbs.dtu.dk/services/GenePublisher. 



INTEGRATED ANALYSIS 85 

8.1 INTEGRATED ANALYSIS 

Genepublisher also links the results to a number of biological databases. You 
want to know as much as possible about the significant genes: What is their 
exact biological function (Gene Ontology database)? Do they participate in 
some characterized signal transduction pathway (TRANSPATH database)? 
Are they enzymes in a characterized metabolic pathway (KEGG database)? 
Do they have any known transcription factor binding sites in their upstream 
regions that can account for the observed changes in expression (TRANSFAC 
database)? This is an integrated analysis where information from as many 
domains as possible are taken into account. You could also include informa- 
tion about known interactions between genes, either known protein-protein 
interactions from yeast two-hybrid experiments or known transcription factor 
binding to its known recognition site upstream of a gene (shown, e.g., via 
chromatin immunoprecipitation; Shannon, 2002). 

This integrated analysis may help you in determining what goes on at a 
molecular level in your experiment. But it is rare that it results in one unifying 
hypothesis that can account for all the observed changes in gene expression. 
That is because most of our knowledge of molecular biology comes from 
the reductionistic approach that was common before the massively parallel 
methods such as arrays became available. Genes were studied one gene, one 
pathway, one protein at a time. It was assumed that everything else was held 
constant during the experiment. With the massively parallel approaches we 
see that this is not the case. Any change in expression of a gene results in 
changes in many other genes. And we rarely have the molecular knowledge 
to explain why all these changes occur - we lack knowledge of the system. 
For this, we need a systems approach to biology. 

8.2 SYSTEMS BIOLOGY 

Cells contain a large system of proteins and RNAs that interact with each 
other and control the transcription of genes. We know rather little of this 
system, but our knowledge is increasing rapidly as a results of the massive 
data gathering using parallel methods such as gene expression profiling, 
chromatin immunoprecipitation arrays, yeast two-hybrid assays, and so on. 
Many groups work at integrating these data into comprehensive models or 
maps of the underlying regulatory systems. As these models improve, they 
will improve our interpretation of microarray experiments. They will allow 
us to come up with models that explain more of the observed changes in 
expression than we are able to explain today. 

It will also allow us to interpret microarray data in an entirely different way. 
In the statistical analysis we perform today to identify differentially regulated 
genes we assume that all genes are independent. That assumption is based 
on ignorance. We know they are dependent, but we do not know which genes 
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Fig. 8.2 Mapping of all genes on a human HuGeneFL chip to the signal tranduction pathways 
in the TRANSPATH database. For each pathway, the genes associated with it are plotted 
according to their P-value from the statistical analysis. That allows a view of whether more 
than one gene in a pathway is affected in the experiment you are studying. 

depend on each other. Once we know more about the dependency of the 
genes we will use different statistical tests, not performed on individual genes 
in isolation but performed on networks of associated genes. It is evident from 
Figure 8.2 that merely looking at pathways captures very little, if any, of this 
association between genes. The genes in a pathway do not seem associated 
in their expression from this figure. We usually find significant differential 
expression for only a single gene in a pathway. 
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Reverse Engineering of 
Regulatory Networks 

Cloning and studying individual genes is not enough. The sequence of the entire genome 
is not enough. Large-scale expression measurements and protein measurements are not 
enough. None of these sources of data will lead to a predictive understanding of the 
response of a living organisms to a stimulus unless they are integrated into a dynamical 
framework that can faithfully simulate the molecular interactions underlying life. 

-Periwal, 2002 

One gene can affect the expression of another gene by binding of the gene 
product of one gene to the promoter region of another gene. Looking at 
more than two genes, we refer to the regulatory network as the regulatory 
interactions between the genes. 

If we have a large number of measurements of the expression level of 
a number of genes, we should be able to model or reverse engineer the 
regulatory network that controls their expression level. The problem can be 
attacked in two fundamentally different ways: using time-series data and 
using steady-state data of gene knockouts. 
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9.1 THE TIME-SERIES APPROACH 

The expression level of a certain gene at a certain time point can be modeled 
as some function of the expression levels of all other genes at all previous 
time points. 

The problem is that you usually have many more genes than you have 
time points! That means that you have a dimensionality problem: there are 
too many parameters and too few equations to estimate them. If you have y 
genes, there are y2 possible connections between them and you would need 
at least g2 linearly independent equations to determine all of them. 

Different solutions to this problem have been developed. One is the lin- 
ear modeling approach by van Someren et al. (2000). They reduce the 
dimensionality of the problem by first removing all genes that do not show 
a significant change in expression through the experiment. Then they cluster 
the genes to group those that behave the same way. There is no reason math- 
ematically to distinguish between two genes if you cannot distinguish their 
transcription response. Then they try to build a linear model of the remaining 
gene clusters. The basic linear model follows the assumption that the activity 
of a gene z equals the weighted sum of the activities of all N genes at the 
previous time point ( t  - 1): 

N 

i= 1 

where rt,j is a weight factor representing how gene i affects gene j ,  positively 
or negatively. Preliminary data indicate that they still need a few more 
experimental data points to solve the models exactly for the yeast cell cycle 
experiments than those that were available at the time. 

Another solution to the dimensionality problem was developed by Holter 
et al. (2000), who used singular value decomposition (similar to principal 
component analysis, see Section 5.1) to reduce the dimensionality before 
solving the interaction matrix. That leaves fewer independent genes and 
makes it easier to find their interactions. 

An entirely different approach is Bayesian networks, where the problem 
is simplified to one of genes that are up-regulated and genes that are down- 
regulated (Friedman et al., 2000). That still leaves a dimensionality problem, 
but they try to estimate probabilistic networks that fit the data and look for 
results that are common in different models that fit the same data. They have 
shown some success in extracting central regulatory pathways in yeast. 
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9.2 THE STEADY-STATE APPROACH 

A particularly attractive approach is the steady-state model, where the effect 
of deleting a gene on the expression of other genes is measured. If the 
expression of gene b increases after deletion of gene a, it can be inferred that 
gene a repressed, either directly or indirectly, the expression of gene b. If 
the expression of gene b decreases after deletion of gene a, it can be inferred 
that gene a enhanced, either directly or indirectly, the expression of gene b. 
With a large DNA microarray, it is possible to determine all consequences of 
deletion of gene a. 

Such results will give valuable information about the regulatory network 
in which the deleted gene is involved (Ideker et al., 2000, Kyoda et al., 2000). 
As compendiums of expression profiles of gene deletions become available 
(Hughes et al., 2000) the steady-state model is a very promising tool for 
extracting regulatory networks. 

9.3 LIMITATIONS OF NETWORK MODELING 

It must never be forgotten, however, that the genetic network approaches so far 
all ignore those regulatory interactions that take place at the protein-protein 
level. A lot of cellular regulation, for example of the cell cycle, takes place 
through phosphorylation and dephosphorylation of proteins. In the future, 
regulatory network models must include such information, for example, by 
inclusion of protein-protein interaction maps (Rain et al., 200 1) determined 
by using the yeast two-hybrid assay. What is also needed is a way to combine 
prior biological knowledge of regulatory networks (Tanay and Shamir, 200 l ) ,  
information deduced from time-series experiments, and information deduced 
from steady-state experiments. If information from each can be represented as 
a matrix of interactions between genes, then the three matrices can be summed 
and the regulatory network deduced from that. The disadvantage of running 
the three methods independently, however, is that the solid information from 
prior knowledge and direct deletion in steady-state experiments can be useful 
in determining which time-series models best fit data from all three domains. 
Optimally, the information from prior knowledge and steady state models 
should be used when deriving time-series models. 

The regulatory network can be visualized by drawing a box for each gene 
that has interactions above a cutoff threshold with other genes. Next all the 
interactions (above threshold) are drawn as lines between the boxes (line 
width can be scaled by interaction strength; positive and negative interactions 
can be distinguished by lines ending in an arrow and in a bar, respectively). 
For more than 100 interactions or so, this visualization quickly becomes 
unwieldy, and subnetworks have to be extracted and drawn. 
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Fig- 9.7 
Arrows mean positive regulation; bars mean negative regulation. 

Regulatory networks deduced from experimentally produced interaction matrix. 

9.4 EXAMPLE 1: STEADY-STATE MODEL 

Let us take an example of four genes, a, b, c, and d. When we delete gene a ,  
we find that the expression of gene b and d decreases. We conclude that 
gene a has a stimulatory effect, directly or indirectly, on genes b and d. We 
can represent this information in an interaction matrix (Table 9.1). Note that 
there is a direction to each interaction. Rows represent genes that are deleted; 
columns represent genes whose expression is changed as a result. In the 
matrix we have included the results from two other deletion experiments: 
gene b, which led to a decrease in d, and gene c, which led to an increase in 
a, b, and d. 

From this matrix we can now draw up a redundant genetic network that 
represents all the interactions between genes as arrows (positive regulation) 
or bars (negative regulation) (Figure 9.1). 

This regulatory network is redundant in that it contains both direct and 
indirect regulations. There are several paths between two genes. What we 
now wish to deduce is the parsimonious network-the smallest and simplest 
network that is able to explain the experimental observations. If there is 

Table 9.7 Interaction matrix between four genes. 

Gene 
Gene a b c d 

a + + 
b + 
d 

- -  c ~ 
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more than one path between two genes, we want to delete those that are not 
necessary to explain the results. That is achieved by eliminating for each pair 
of genes all but the longest path (involving most genes) if that path is still 
able to explain the regulatory effect observed. 

Between genes c and b there are two possible paths that both have the 
same effect, so we remove the shortest path, the direct path between c and b. 
Between genes a and d there are two paths that both have the same effect, so 
we remove the shortest one, the direct path between a and d. Finally, between 
genes c and d, we remove the direct path between c and d. The resulting 
network is the simplest network that explains the data. 

9.5 EXAMPLE 2: STEADY-STATE MODEL ON BACILLUS DATA 

gltAB SahP __  glnR glnA 

GlnA - 

5. 
ykzB-ykoL 
vur-genes m- Glutarnine 

tnrA 

Fig. 9.2 Known regulatory network in Bacillus subtilis. Each line ending in a bar represents 
a negative regulatory effect. Each line ending in an arrow represents a positive regulatory 
effect. (Hanne Jarmer and Carsten Friis. See color plate.) 

The approach described above was applied to knockout mutants in the 
regulation of nitrogen metabolism in Bacillus subtilis (Figure 9.2, Jarmer, 
et. al., (2002)). Expression data was filtered for significance through a t- 
test. Genes were clustered into groups that show the same response in all 
experiments. From the interaction matrix a redundant network was generated 
and reduced to a parsimonious network. Figure 9.3 shows the resulting 
network as output by a computer program. The per1 program used is available 
upon request' 

' See web companion site http://www.cbs.dtu.dk/steen/book.htrnl 



94 REVERSE ENGINEERING OF REGULATORY NETWORKS 

tnrA ureB 
yurB 

Fig. 9.3 Regulatory network reverse engineered from real steady-state data. Each line 
ending in a bar represents a deduced negative regulatory effect. Each line ending in an arrow 
represents a deduced positive regulatory effect. (Hanne Jarmer and Carsten Friis. See color 
plate.) 

When compared to the known biological system shown in Figure 9.2, it is 
evident that the computer only missed the protein-protein interactions. But 
the computer discovered novel gene regulations in this system. 

9.6 EXAMPLE 3: LINEAR TIME-SERIES MODEL 

Let us try to deduce a network from time-series data as well. This is a 
little more complicated and involves some matrix algebra. Suppose we have 
conducted the experiment shown in Figure 9.4. At time zero we induce gene 
c with a substrate or other induction of its promoter. At times 1,  2, 3, and 4 
we follow the expression level of gene c and three other genes, a,  F, and d, 
and see how they change in response to the induction of gene c. We represent 
the expression of each gene at each time point as the logarithm (base 10) of 
the fold change relative to time zero. So gene a at time 0 is expressed at level 
log,o(lOOO/lOOO) = 0, at time I is expressedat level loglo(lOOO/lOOO) = 0, 
at time 2, 3, and 4 is expressed at level loglo(lOO/lOOO) = -1. Gene c has 
expression levels 0, 1, 1, I ,  1 at time points 0, 1, 2, 3, and 4. We can put 
these logfold change numbers in an expression matrix (Table 9.2). To solve 
the regulatory network we plug into the formula mentioned above: 

N 

q ( t )  = c ?-Z,,jX& - l),  
I= 1 
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Fig. 9.4 Time-series experiment with four genes. 

where j = a ,  b, c, d, and i = a ,  b, c, d, and t = 1,2,3,4.  This system of 
linear equations can be solved with standard techniques such as Gaussian 
elimination or singular value decomposition. 

But we can illustrate the method by solving just the system of equations 
governing the regulation of gene a. At time t = 4, we have: 

~ ( t  = 4) = ~ b , ~ b ( t  = 3) + T, , ,c (~  = 3 )  + Td ,ad ( t  = 3). 

Inserting the logfold values from our experiment time points 4 and 3, we get: 

-1 = Tb,a - 1 + T c , , ~  + Td,aO. 

Likewise, we get for time points 3, 2, and 1: 

Table 9.2 Expression matrix for four genes. 

Time 
Gene 0 1 2 3 4 

a 0 0 -1 -1 -1 
b 0 0 0 -1 -1 
c 0 1  1 1  1 
d 0 0  0 0 - 1  
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Table 9.3 Directional interaction matrix between four genes 

Gene 
Gene a b c d 

a + 
b + 
d 

- C 

-1 = + TcJ + q a O ;  

0 = T'b,,O + T,,,0 + 
Here we have four equations (two are identical) with three unknowns, and 

they can be solved with standard methods. It turns out that there is only one 
solution, = -1 and ~ b , ~  = ?-d,a = 0. You can test this by inserting 
the solution into the four equations. So we have deduced from this set of 
equations that gene a is negatively regulated by gene c. 

Likewise, we find that gene b is positively regulated by gene a, and gene 
d is positively regulated by gene b. We can summarize these findings in a 
directional interaction matrix (Table 9.3). The interactions are non-redundant, 
so it is easy to draw up the simplest network that satisfies the interaction matrix 
(Figure 9.5). This network is identical to the one deduced in Example 9.4. 

It is rare, however, that the data are as well-behaved as in this hypothetical 
example. First, the time points must be sufficient to resolve unambiguously 
the order of events. So the separation between time points must be smaller 
than the time it takes to reach steady-state after induction of a gene. Second, 
the number of time points must be at least as large as the number of interactions 
between the genes studied. 

a-b 

T l  
C d 

Fig. 9.5 Regulatory network deduced from time-series interaction matrix. Arrows mean 
positive regulation; bars mean negative regulation. 
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10 
Molecular ClassiJiers 

Perhaps the most promising application of DNA microarrays for expression 
profiling is towards classification. In particular in medicine, where DNA 
microarrays may define profiles that characterise specific phenotypes (di- 
agnosis), predict a patient’s clinical outcome (prognosis), or predict which 
treatment is most likely to benefit the patient (tailored treatment). 

The only limitation seems to be the fact that a sample of the diseased tissue 
is required for the chip. That limits the application to diseases that affect cells 
that can easily be obtained: blood disease where a blood sample can easily be 
obtained, or tumors where a biopsy is routinely obtained or the entire tumor 
is removed during surgery. Consequently, DNA microarrays have in the past 
few years been applied to almost any cancer type known to man, and in most 
cases it has been possible to distinguish clinical phenotypes based on the 
array alone. Where data on long-term outcome has been available, it has also 
been possible to predict that outcome to a certain extent using DNA arrays. 

The key to the success of DNA microarrays in this field is that it is not nec- 
essary to understand the underlying molecular biology of the disease. Rather, 
it is a purely statistical exercise in linking a certain pattern of expression to a 
certain diagnosis or prognosis. This is called classification and it is a well es- 
tablished field in statistics from where we can draw upon a wealth of methods 
suitable for the purpose. This chapter will briefly explain some of the more 
common methods that have been applied to DNA microarray classification 
with good results. 
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10.1 FEATURE SELECTION 

Feature selection is a very critical issue where it is easy to make mistakes. 
You can build your classifier using the expression of all genes on a chip 
as input or you can select the features (genes) that seem important for the 
classification problem at hand. As described below, it is easy to overfit the 
selected genes to the samples that you are basing the selection on. Therefore 
it is crucial to validate the classifier on a set of samples that were not used 
for feature selection. 

There a many ways in which to select genes for your classifier - the 
simplest is to use the t-test or ANOVA described in this book to select genes 
differing significantly in expression between the different diagnosis categories 
or prognosis categories you wish to predict. 

10.2 VALIDATION 

If you have two cancer subtypes and you run one chip on each of them, can 
you then use the chip to classify the cancers into the two subtypes? With 
6000 genes or more, easily. You can pick any gene that is expressed in one 
subtype and not in the other and use that to classify the two subtypes. 

What if you have several cancer tissue specimens from one subtype and sev- 
eral specimens from the other subtype? The problem becomes only slightly 
more difficult. You now need to look for genes that all the specimens from 
one subtype have in common and are absent in all the specimens from the 
other subtype. 

The problem with this method is that you have just selected genes to fit 
your data-you have not extracted a general method that will classiJL any 
specimen of one of the subtypes that you are presented with after building 
your classijer. 

In order to build a general method, you have to observe several basic rules: 

0 Avoid overfitting data. Use fewer estimated parameters than the number 
of specimens that you are building your model on. 

0 Validate your method by testing it on an independent data set that was 
not used for building the model. (If your data set is very small, you can 
use cross-validation where you subdivide your data set into test and 
training several times. If you have ten examples, there are ten ways 
in which to split the data into a training set of nine and a test set of 
one. That is called a tenfold cross-validation. That is also called a 
leave-one-out cross validation or LOOCV.) 
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100. 

10.3 CLASSIFICATION SCHEMES 

Most classification methods take as input points in space where each point 
corresponds to one patient or sample and each dimension in space corresponds 
to the expression of a single gene. The goal then becomes to classify a sample 
based on its position in space relative to the other samples and their known 
classes. As such, this method is related to the principal component analysis 
and clustering described elsewhere in this book. A key difference is that 
those methods are unsupervised, they do not use the information of the class 
relationship of each sample. Classification is supervised, the class relationship 
of each sample is used to build the classifier. 
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fig. 70.7 Illustration of KNN (left) and nearest centroid classifier (right). The majority of 
the 3 nearest neighbors (left) belong to class 1, therefore we classify the test case as belonging 
to class 1. The nearest centroid (right) is that of class 1, therefore we classify the test case as 
belonging to class 1. 

10.3.1 Nearest Neighbor 

The simplest form of classifier is called a nearest neighbor classifier (Sec- 
tion 14.5.1.6) (Dudoit et al., 2000; Fix and Hodges, 19.51). The general form 
uses Ic nearest neighbors and proceeds as follows: (1) plot each patient in 
space according to the expression of the genes; (2) for each patient, find the 
Ic nearest neighbors according to the distance metric you choose; (3) predict 
the class by majority vote, that is, the class that is most common among the 
k neighbors. If you use only odd values of Ic you avoid the situation of a vote 
tie. Otherwise, vote ties can be broken by a random generator. The value 
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of k can be chosen by cross-validation to minimize the prediction error on a 
labeled test set. 

If the classes are well separated in an initial principal component analysis 
(Section 5.4) or clustering, nearest neighbor classification will work well. 
If the classes are not separable by principal component analysis, it may 
be necessary to use more advanced classification methods, such as neural 
networks or support vector machines. The k nearest neighbor classifier will 
work both with and without feature selection. You can use either all genes on 
the chip or you can select informative genes with feature selection. 

10.3.2 Nearest Centroid 

Related to the nearest neighbor classifier is the nearest centroid classifier. 
Instead of looking at only the nearest neighbors is uses the centroids (center 
points) of all members of a certain class. The patient to be classified is 
assigned the class of the nearest centroid. 

10.3.3 Neural Networks 

If the number of examples is sufficiently high (between 50 and loo), it 
is possible to use a more advanced form of classification. Neural networks 
(Section 14.5.1.7) simulate some of the logic that lies beneath the way in which 
brain neurons communicate with each other to process information. Neural 
networks learn by adjusting the strengths of connections between them. In 
computer-simulated artificial neural networks, an algorithm is available for 
learning based on a learning set that is presented to the software. The neural 
network consists of an input layer where examples are presented, and an 
output layer where the answer, or classification category, is output. There can 
be one or more hidden layers between the input and output layer. 

To keep the number of adjustable parameters in the neural network as small 
as possible, it is necessary to reduce the dimensionality of array data before 
presenting it to the network. Khan et al., (2001) used principal component 
analysis and presented only the most important principal components to the 
neural network input layer. They then used an ensemble of cross-validated 
neural networks to predict the cancer class of patients. 

10.3.4 Support Vector Machine 

Another type of classifier is the support vector machine (Brown et al., 2000; 
Dudoit et al., 2003), a machine learning approach. It is well suited to the 
dimensionality of array data. R code for implementing support vector ma- 
chines can be found in the el071 package at the R project web site (www.r- 
project. org ). 
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Fig. 10.2 Illustration of Support Vector Machine (left) and Neural Network classifier (right). 
Both define a separating hyperplane that can be defined in higher dimensions and can be more 
complex than what is shown here. 

10.4 PERFORMANCE EVALUATION 

There are a number of different measures for evaluating the performance of 
your classifier on an independent test set. First, if you have a binary classifier 
that results in only two classes (e.g., cancer or normal), you can use Matthews’ 
correlation coefficient (Matthews, 1975) to measure its performance: 

(TP x TN) - (FP x FN) cc = 
J(TP + FN)(TP + FP)(TN + FP)(TN + FN) ’ 

where TP is the number of true positive predictions, FP is the number of false 
positive predictions, TN is the number of true negative predictions and FN 
is the number of false negative predictions. A correlation coefficient of 1 
means perfect prediction, whereas a correlation coefficient of zero means no 
correlation at all (that could be obtained from a random prediction). 

When the output of your classifier is continuous, such as that from a neural 
network, the numbers TP, FP, TN, and FN depend on the threshold applied to 
the classification. In that case you can map out the correlation coefficient as a 
function of the threshold in order to select the threshold that gives the highest 
correlation coefficient. A more common way to show how the threshold 
affects performance is, however, to produce a ROC curve (receiver operating 
characteristics). In a ROC curve you plot the sensitivity (TP/(TP+FN)) versus 
the false positive rate (FP/(FP+TN)). One way of comparing the performance 
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Fig. 70.3 Classitier of bladder cancers based on expression array. Left: Vector angle 
between patient and reference pool. Each three-digit number on the bottom refers to a patient. 
The angle between that patient and the two reference pools (squares, Ta pool; circles T2 
pool) is indicated. The angle is always smallest (the similarity is greatest) to the pool with 
the same type of cancer. The intermediate type, T1, for which there is no reference pool, is 
sometimes more similar to one reference, sometimes more similar to another reference. Error 
bars have been added to show variation due to choice of reference pool, of which several were 
available. Right: the performance of the classifier as a function of the number of genes used 
for classification. Top curve: genes chosen among those 400 genes maximally covarying with 
the disease. Bottom curve: genes chosen at random from all 4000 genes detected as present 
in at least one patient. (Christopher Workman based on data from Thykjaer et al., (2001). See 
color plate.) 

of two different classifiers is then to compare the area under the ROC curve. 
The larger the area, the better the classifier. 

10.5 EXAMPLE I: CLASSIFICATION OF BLADDER CANCER 
SUBTYPES 

As an example, our lab was faced with the problem of building a classifier 
that could categorize a bladder cancer as superficial or invasive based on 
a DNA chip test of a biopsy from the patient (Thykjaer et al., 2001). We 
only had biopsies from 10 patients. We decided to use a model without any 
estimated parameters at all. We simply measured the angle between the vector 
of all gene expression levels for each patient and the vectors of two reference 
samples of pools of superficial and invasive cancer. The angle was always 
smallest to the correct pool, because the vector angle distance was smallest 
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First Principal Component 

Fig. 10.4 Principal component analysis of 63 small, round blue cell tumors. Different 
symbols are used for each of the four categories as determined by classical diagnostics tests. 
(See color plate.) 

between samples from the same subtype (Figure 10.3). This approach was 
identical to the k nearest neighbor method with k = 1 and vector angle as 
distance measure. Since we had used no parameters to estimate this classifier, 
we expected it to be general. It was. When we received four new patient 
samples from our collaborators, they were correctly classified as well. The 
method was validated, although on a very small number of patients. 

10.6 EXAMPLE II: CLASSIFICATION OF SRBCT CANCER SUBTYPES 

Khan et al. (2001) have classified small, round blue cell tumors (SRBCT) into 
four classes using expression profiling and kindly made their data available 
on the World Wide Web'. We can test some of the classifiers mentioned in 
this chapter on their data. 

First, we can try a k nearest neighbor classifier (see Section 14.5.1.6 for 
details). Using the full data set of 2000 genes, and defining the nearest 
neighbors in the space of 63 tumors by Euclidean distance, a k = 3 nearest 
neighbor classifier classifies 61 of the 63 tumors correctly in a leave-one- 
out cross-validation (each of the 63 tumors is classified in turn, using the 
remaining 62 tumors as a reference set). 

' http://www.thep.lu.se/pub/Preprints/O IAu-tp-0 1 -06supp.html 
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We can also train a neural network (see Section 14.5.1.7 for details) to 
classify tumors into four classes based on principal components. Twenty 
feed-forward neural network are trained on 62 tumors, and used to predict 
the class of the 63rd tumor based on a committee vote among the twenty 
networks (this is a leave-one-out cross-validation). Figure 10.4 shows the 
first two principal components from a principal component analysis. The 
first ten principal components from a principal component analysis are used 
as the input for the neural network for each tumor, and four neurons are used 
for output, one for each category. Interestingly, two of the classes are best 
predicted with no hidden neurons, and the other two classes are best predicted 
with a hidden layer of two neurons. Using this setup, the neural networks 
classify 62 of the 63 tumors correctly. But of course, these numbers have to 
be validated on an independent, blind set as done by Khan et al. (2001). 

10.7 SUMMARY 

The most important points in building a classifier are these: 

0 Collect as many examples as possible and divide them into a training 
set and a test set. 

0 Use as simple a classification method as possible with as few ad- 
justable (learnable) parameters as possible. Advanced methods (neural 
networks and support vector machines) require more examples for 
training than nearest-neighbor methods. 

0 Test the performance of your classifier on the independent test set. This 
independent test set must not have been used for selection of features 
(genes). 

A more detailed mathematical description of the classification methods 
mentioned in this chapter can be found in Dudoit (2000). 
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11 
The Design of Probes 

for  Arrays 

11.1 SELECTION OF GENES FOR AN ARRAY 

You may have so much knowledge of the molecular biology in a particular 
field that you already know the genes that you wish to include in a custom 
array. Say you are interested in a family of proteins, such as a particular class 
of receptors. If you are not sure that you know all the genes that are part of 
this family you can do a homology search or a Medline search. Both can be 
performed at the National Center for Biotechnology Information website'. 
The homology search is best performed starting with the amino acid sequence 
of one of the core family members and then using Psi-Blast (Altschul et al., 
1997) to iteratively expand the family. The Medline search is done using 
PubMed by formulating keywords that are specific to your query and then 
seeing how well the resulting papers that are retrieved match those in which 
you are interested. By iterative reformulation of keywords you should be 
able to get a reasonable overview of the literature within a selected field- 
particularly when you look at the literature that has been cited by the relevant 
papers. 

Another way of selecting genes for a spotted array is to use a commercial 
Affymetrix array to identify genes that are of interest to a particular problem. 
In that case the t-test or ANOVA (Section 4.6) are reliable tools to select 
relevant genes that differ significantly between conditions. 

' http://www.ncbi.nlm.nih.gov 
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11.2 GENE FINDING 

No matter what organism you are working with, there is a large fraction of 
genes that is not yet functionally characterized. They have been predicted 
either by the existence of a cDNA or EST clone with matching sequence, 
by a match to a homologous gene in another organism, or by genejnding 
in the genomic sequence. Gene finding uses computer software to predict 
the structure of genes based on DNA sequence alone (Guigo et al., 1992). 
Hopefully, they are marked as hypothetical genes by the annotator. 

For certain purposes, for example, when designing a chip to measure all 
genes of a new microorganism, you may not be able to rely exclusively on 
functionally characterized genes and genes identified by homology. To get 
a better coverage of genes in the organism you may have to include those 
predicted by gene finding. Then it is important to judge the quality of the 
gene finding methods and approaches that have been used. While expression 
analysis may be considered a good method for experimental verification of 
predicted genes (if you find expression of the predicted gene it confirms 
the prediction), this method can become a costly verification if there are 
hundreds of false positive predictions that all have to be tested by synthesis of 
complementary oligonucleotides. A recent study showed that for Escherichiu 
coli the predicted number of 4300 genes probably contains about 500 false 
positive predictions (Skovgaard et al., 2001). The most extreme case is the 
Archaea Aeropyrum pernix, where all open reading frames longer than 100 
triplets were annotated as genes. Half of these predictions are probably false 
(Skovgaard et al., 2001). 

Whether you are working with a prokaryote or a eukaryote, you can assess 
the quality of the gene finding by looking at which methods were used. If the 
only method used is looking for open reading frames as in the A .  pernix case 
cited above, the worst prediction accuracy will result. Better performance 
is achieved when including codon usage (triplet) statistics or higher-order 
statistics (6th-order statistics, e.g., measure frequencies of hexamers). These 
frequencies are to some degree specific to the organism (Cole et al., 1998). 
Even better performance is obtained when including models for specific 
signals like splice sites (Brunak et al., 1990-1991), promoters (Knudsen, 
1999; Scherf et al., 2000), and start codons (Guigo et al., 1992). Such signals 
are best combined within hidden Markov models which seem particularly well 
suited to the sequential nature of gene structure (Borodovski and McIninch, 
1993; Krogh, 1997; Burge and Karlin, 1997). 

11.3 SELECTION OF REGIONS WITHIN GENES 

Once you have the list of genes you wish to spot on the array, the next ques- 
tion is one of cross-hybridization. How can you prevent spotting probes that 
are complementary to more than one gene? This question is of particular 
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importance if you are working with a gene family with similarities in se- 
quence. There is software available to help search for regions that have least 
similarity (determined by Blast; Altschul et al., 1990) to other genes. At our 
lab we have developed ProbeWiz’ (Nielsen and Knudsen, 2002), which takes 
a list of gene identifiers and uses Blast to find regions in those genes that 
are the least homologous to other genes. It uses a database of the genome 
from the organism you are working with. Current databases available in- 
clude: Homo sapiens, Caenorhabditis elegans, Drosophila melanogaster; 
Arabidopsis thaliana, Saccharomyces cerevisae, and Escherichia coli. 

11.4 SELECTION OF PRIMERS FOR PCR 

Once those unique regions have been identified, the probe needs to be designed 
from this region. It has been customary to design primers that can be used for 
polymerase chain reaction (PCR) amplification of a probe of desired length. 
ProbeWiz will suggest such primers if you tell it what length of the probe 
you prefer and whether you prefer to have the probe as close to the 3’ end 
of your mRNA as possible. It will attempt to select primers whose melting 
temperature match as much as possible. 

11.4.1 

GenBank accession number AF10.5374 (Homo sapiens heparan sulfate D- 
glucosaminyl3-O-sulfotransferase-2) has been submitted to the web version 
of ProbeWiz, and the output generated if standard settings are used is given 
inFigure 11.1. 

In addition to suggesting two primers for the PCR amplification, ProbeWiz 
gives detailed information on each of these primers and their properties, as 
well as a number of scoring results from the internal weighting process that 
went into selection of these two primers over others. The latter information 
may be useful only if you ask for more than one suggestion per gene and if 
you are comparing different suggestions. 

Example: Finding PCR Primers for Gene AF105374 

11.5 SELECTION OF UNIQUE OLIGOMER PROBES 

There is a trend in spotted arrays to improve the array production step by 
using long oligonucleotides ( S O  to 70 basepairs) instead of PCR products. It 
is also possible to use multiple 25 basepair probes for each gene as done by 
Affymetrix. Li and Stormo (2001) have run their DNA oligo (50-70 bases) 

’Available in a web version at http://www.cbs.dtu.dklservices/DNAarray/probewiz.html 
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EST ID AF105374 
Left primer sequence TGATGATAGATATTATAAGCGACGATG 
Right primer sequence AAGTTGTTTTCAGAGACAGTGTTTTTC 
PCR product size 327 
Primer pair penalty 0.6575 (Primer3) 

left primer right primer 

Posit ion 1484 1810 
Length 27 27 
TM 59.8 60.4 
GC % 33.3 33.3 
Self annealing 6.00 5.00 
End stability 8.60 7.30 

Penalties: Weighted Unweighted 

Homo1 ogy 0 0 
Primer quality 65.75 0.657 
3 ' endness 158 158 

Fig- 11.1 
supirrzs heparan sulfate D-glucosaminyl 3-0-sulfotransferase-2). 

Output of ProbeWiz server upon submission of the human gene AF105374 (Homo 

prediction software on a number of complete genomes and made the resulting 
lists available ~ n l i n e . ~  

We have developed a tool, OligoWiz4, that will allow you to design a set of 
optimal probes (long or short oligos) for any organism for which you know 
the genome (Nielsen et al., 2003). In addition to selecting oligos that are 
unique to each gene, it also tries to assure that the melting temperature of the 
oligos selected for an array are as close to each other as possible (AT, score) 
- if necessary by varying the length of the oligo. 

In addition, OligoWiz assesses other properties of probes such as their 
position in the gene (distance to the 3' end, Position score) and the quality 
of the DNA sequence in the region where the probe is selected (GATC-only 
score). The user can assign a weight to the individual parameter scores 
associated with each probe that will affect the ranking of the probes that 
OligoWiz suggests for each gene. 

'Available at http://ural.wustl.edu/~li~/probe.pl 
' http://www.cbs.dtu.dWservices/OligoWiz 
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Fig, 7 7.2 Screenshot of part of the OligoWiz client program for designing oligonucleotide 
probes for a DNA microarray. The top window shows the distribution of the individual scores 
(defined in bottom window) over the entire gene. 

11.6 REMAPPING OF PROBES 

The assignment of probes to a gene is only as good as the bioinformatics 
used to design the probes. And the bioinformatics methods, as well as the 
annotation of the genomes based on which the probes are designed, improve 
all the time. For that reason a given probe-to-gene mapping can become 
outdated. For example, Affymetrix chips for human genes can be remapped 
using current human genome/transcriptome databases. We are in the process 
of submitting such a remapping of probes-to-genes to Biocond~ctor~. 

11.7 FURTHER READING 

Primer and Oligo Probe Selection Tools 

Li, F., and Stormo, G. D. (2001). Selection of optimal DNA oligos for gene 
expression arrays. Bioinformatics 17: 1067-1076. 
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Nielsen, H. B., and Knudsen, S. (2002). Avoiding cross hybridization 
by choosing nonredundant targets on cDNA arrays. Bioinformatics 

Nielsen, H. B., Wernersson, R., and Knudsen, S. (2003). Design of 
oligonucleotides for microarrays and perspectives for design of multi- 
transcriptome arrays. Nucleic Acids Research 3 1 :349 1-3496. 

Varotto, C., Richly, E., Salamini, F., and Leister, D. (2001). GST-PRIME: 
A genome-wide primer design software for the generation of gene 
sequence tags. Nucleic Acids Research 29:4373-4377. 

Rouillard, J. M., Herbert, C. J., and Zuker, M. (2002). OligoArray: 
genome-scale oligonucleotide design for microarrays. Bioinformat- 
ics 18(3):486-487. 

1 8 : 32 1-322. 

Gene Finding 

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). 
Basic local alignment search tool. J. Mol. Biol. 215:403410.6 

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, 
W., and Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A 
new generation of protein database search programs. Nucleic Acids 
Res. 25 : 33 89-3402? 

Borodovsky, M., and McIninch, J. (1993). GeneMark: Parallel gene recog- 

Brunak, S., Engelbrecht, J., and Knudsen, S.  (1990). Cleaning up gene 

Brunak, S., Engelbrecht, J., and Knudsen, S. (1990). Neural network detects 
errors in the assignment of mRNA splice sites. Nucleic Acids Research 
18:4797480 1. 

Brunak, S., Engelbrecht, J., and Knudsen, S. (1991). Prediction of human 
mRNA donor and acceptor sites from the DNA sequence. Journal of 
Molecular Biology 220:49-65. 

Burge C., and Karlin, S. (1997). Prediction of complete gene structures in 
human genomic DNA. Journal of Molecular Biology 268:78-94. 

Cole, S. T. et al. (1998). Deciphering the biology of Mycobacterium 
tuberculosis from the complete genome sequence. Nature 393537- 
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nition for both DNA Strands. Computers & Chemistry 17:123-133. 

databases. Nature 343: 123. 

6Available at http://www.ncbi.nlm.nih.gov/BLAST/ 
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structure. Journal of Molecular Biology 226: 141-157. 

Knudsen, S. (1999). Promoter2.0: For the recognition of Pol11 promoter 
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Krogh, A. (1997). Two methods for improving performance of an HMM and 
their application for gene finding. Proc. Fifth Int. Con5 on Intelligent 
Systems for Molecular Biology (ISMB) Menlo Park, CA: AAAI Press, 

Scherf, M., Klingenhoff, A., and Werner, T. (2000). Highly specific lo- 
calization of promoter regions in large genomic sequences by Promo- 
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'Available as a web server at http://www.cbs.dtu.dWservices/F'romoter/ 
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12 
Genotyping and 

Resequencing Chips 

Up to this point this text has covered analysis of expression data. Chips for 
genotyping are also available. Instead of measuring mRNA, they measure 
DNA. Genotyping chips can detect mutations in genes. If you wish to screen 
each position in a gene for potential mutations, you are actually resequencing 
the gene. For example, a p53 chip is available from Affymetrix for detecting 
mutations in the DNA of human p53 tumor supressor gene. It does so with 
overlapping oligos that each are complementary to 20 base pairs of the TP53 
gene (Figure 12.1). Each oligo is present in 5 versions: the central nucleotide 
is either an A, C ,  G, T or is absent (a 1 bp deletion). Only one of these five 
oligos corresponds to the wild type (nonmutant) version of the TP53 gene. 

The PCR amplified, fragmented, fluorescently labeled DNA from a patient 
sample will hybridize to the complementary oligo for each position in the gene 
and it is then possible to read the sequence of the entire gene and determine 
whether it is equal to the wild type or not. There are still limitations of the 
accuracy of this determinination (Ahrendt et al., 1999; Wikman et al., 2000). 
Our lab has been working on neural network-based software that will improve 
the determination. 

12.1 EXAMPLE: NEURAL NETWORKS FOR GENECHIP PREDICTION 

Neural networks can be trained to predict DNA sequence based on the hy- 
bridization intensities measured on a chip designed for a specific gene (Spicker 
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Fig. 72.7 p53 gene mutation analysis chip. Shown is a small area of the chip surface 
containing 25 different oligos designed to read the sequence of 5 nucleotides in the gene. The 
oligo probes (reduced to length 1 1 for clarity) for each position differ in their middle nucleotide 
(?) to account for the four possible bases as well the possibility of a one nucleotide deletion 
(right). By reading the intensity of the fluorescence at each oligo it is possible to read the DNA 
sequence. (Experiment by Jeppe Spicker.) 

et al., 2002). It requires a large training set of DNA with accurately deter- 
mined sequence. 

Neural networks simulate some of the logic that lies beneath the way in 
which brain neurons communicate with each other to process information. 
Neural networks learn by adjusting the strengths of connections between 
them. In computer-simulated artificial neural networks, algorithms are avail- 
able for learning based on a learning set that is presented to the software. In 
our case (Figure 12.2), the neural network consisted of an input layer which 
was presented with the measured fluorescence intensities for each of the ten 
probes used to detect each position: five with a central nucleotide of A, C, G, 
T, or deletion on the sense strand, and five with a central nucleotide of A, C, G, 
T, or deletion on the antisense strand. The output layer is then used to predict 
which nucleotide is present at the given position in the TP53 gene. Between 
the input and output layers is a hidden layer which performs data processing. 
Such a neural network can then be trained by presenting examples matching 
input and output - TP53 genes where the sequence has been determined 
by alternative means. When trained, it can predict the sequence based on a 
chip. This method is, however, sensitive to inhomogeneous samples where 
the sequence is ambiguous (Wikman, 2000), because it is a mixture of two 
alleles. 
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Input Layer 
sense strand antisense strand 

Output Layer 

Fig. 72.2 Neural network for processing data from p53 chip shown in Figure 12.1. Shown 
are the units in the input layer, hidden layer, and output layer. The input for each position in 
the gene are the intensities of oligos whose central nucleotide is an A, C, G, T or deletion (!) 
for both the sense and the antisense strand. All units in one layer are connected with adjustable 
strengths to all units in the adjacent layer. (Figure by Jeppe Spicker.) 

As an interesting aside, our neural network discovered an error in the 
labeling of input data during training. There were a few positions in the 
patient material that the neural network could not learn. Closer inspection 
revealed that it had detected known sites of polymorphisms that we had failed 
to label correctly in the training data (Spicker et al., 2002). 

12.2 FURTHER READING 

Ahrendt, S. A., Halachmi, S., Chow, J. T., Wu, L., Halachmi, N., Yang, S. 
C., Wehage, S., Jen, J., and Sidransky, D. (1999). Rapid p53 sequence 
analysis in primary lung cancer using an oligonucleotide probe array. 
Proc. Natl. Acad. Sci. USA 96:7382-7387. 

Hacia, J. G. (1999). Resequencing and mutational analysis using oligonu- 
cleotide microarrays (Review). Nut. Genet. 21 (1 Suppl):42-47. 

Spicker, J. S., Wikman, F, Lu M. L., Cordon-Cardo C., 0mtoft, T. F., Brunak, 
S., and Knudsen, S. (2002). Neural network predicts sequence of TP53 
gene based on DNA chip. Bioinformatics 18: 1133-1 134. 

Wikman, F. P., Lu, M. L., Thykjaer, T., Olesen, S.  H., Andersen, L. D., 
Cordon-Cardo, C., and 0mtoft, T. F. (2000). Evaluation of the per- 
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formance of a p53 sequencing microarray chip using 140 previously 
sequenced bladder tumor samples. Clin. Chem. 46: 1555-156 I .  



13 

Design your experiment with the subsequent analysis and the inherent limita- 
tions of the technology in mind. The subsequent analysis usually consists of 
performing statistical tests on the genes on the array. If there are many genes 
on the the array you have the inherent problem of multiple testing which 
limits your ability to make inferences. Thus you need many replicates, and 
on a limited budget you get the most replicates for your money if you focus 
on comparing just two conditions. So try to identify the single comparison 
of conditions that answers most of what you want to know, and then replicate 
each of those conditions as many times as you can afford (three replicates at 
the very least). But because of the multiple testing problem, there will be 
both false positive and false negative conclusions from your experiment. You 
will need to verify the findings with an alternative experimental method such 
as RT-PCR. 

13.1 FACTORIAL DESIGNS 

It is also possible to investigate several factors simultaneously. In fact, this can 
be the only way to determine whether there is an interaction between factors. 
The two factors could be two different mutants. The 2 by 2 factorial design 
would then include an experiment with the wild type, an experiment with 
mutant 1, and experiment with mutant 2, and an experiment with the double 
mutant. You have to perform replicates of each of the four experiments, and 
an analysis of variance (ANOVA) then allows you to determine the effect 
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of each of the factors. It also allows you to determine whether there is any 
interference between the two mutants. But you will need many more chips to 
investigate two factors than you need to investigate a single factor as described 
above. To aid in interpretation of the ANOVA results, it may be a good idea 
to use a parametrization designed for microarray experiments. See Diaz et 
al., (2001) for an example. 

13.2 DESIGNS FOR TWO-CHANNEL ARRAYS 

In the early days of spotted two-channel (Cy3 and Cy5) arrays investigators 
limited themselves to comparing channels only within arrays. That made 
experiment design complicated, because you needed a common reference to 
compare between arrays (Speed and Yang, 2002). We have taken a different 
approach. After observing that the fold changes resulting from comparisons 
between arrays were comparable to fold changes resulting from comparisons 
within arrays, and after observing that the two fold changes have similar 
standard deviations, we decided to treat the two channels as if they were 
separate arrays. That leaves no constraints on the design of the experiment 
beyond what is already mentioned above. 

A condition for this approach is that the arrays are spotted in the same batch 
so the array to array variation is as small as possible. It is also important to use 
signal-dependent normalization before comparing between slides (arrays). 
Figure 13.1 shows a comparison of within-slide fold changes to between- 
slide fold changes for an experiment comparing a TnrA mutant in Bacillus 
subtilis to its wild type using spotted cDNA arrays with 12 replicates and 
41 11 genes (unpublished data). There are only a few genes out of the 41 1 I 
where there is a significant difference between the two ratios. 

Another approach is to build an ANOVA model that takes into account all 
sources of variability and in the process treats the channels of two-channel 
arrays separately (Kerr et al., 2001; Wolfinger et al., 2001). 

13.3 HYPOTHESIS DRIVEN EXPERIMENTS 

Often DNA microarray experiments are performed without a hypothesis to be 
tested. We blindly search for genes that are differentially regulated and this 
blind search limits the usefulness of the experiment because of the multiple 
testing problem. If we instead had a hypothesis on one or more genes that 
we wish to test whether or not they are differentially expressed, the multiple 
testing problem suddenly disappears and we make substantial gains in power 
in the statistical tests. In fact, you would need much fewer replicates to 
test such a hypothesis, and you wouldn’t need to verify the results with an 
independent method. But I guess the problem is that we know so little 
about molecular biology that we usually have no clue as to what to expect. 
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slides. Both are averages of 12 replicate slides. 

Comparison of log ratios calculated within slides to log ratios calculated between 
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Hopefully this will change in the future as our knowledge of systems biology 
increases. 

13.4 INDEPENDENT VERIFICATION 

As we have seen in Section 4.6.3, there is a risk of making a false positive 
conclusion based on correct data. Furthermore, there are possibilities of 
making errors in the probe selection and probe design. For these reasons 
it usually required to verify important findings of differentially expressed 
genes with an independent method. Traditionally the choice of method 
has been quantitative PCR. This method is time-consuming, especially for 
a large number of genes. Fluorescent in situ hybridization (FISH) is even 
more attractive when dealing with heterogeneous tissue, because it shows the 
spatial and temporal expression pattern of the gene. 

But if you need high-throughput verification of a number of genes, a 
high-throughput method is more attractive. If you have performed the first 
screening with Affymetrix GeneChips, you could use spotted arrays or de 
novo synthesized Febit Geniom arrays (Chapter 1.3) to verify a selected set 
of genes. If you design the probes de now,  and repeat the experiment from 
which your samples were extracted, the risk of making the same mistake twice 
is almost non-existent. Thus, you can consider the finding(s) independently 
verfified. 

13.5 INTERPRETATION OF RESULTS 

A good place to start interpreting results is to look for possible outliers that 
may affect the entire analysis. Look at the MVA plots and their calculated 
variance. Are there any chips that deviate substantially from the rest? Is this 
confirmed by PCA and clustering of the chips? Is it confirmed by the lab 
notebook (low RNA yield, dubious electrophoresis results, poor amplification, 
image artifacts such as bubbles or scratches)? In that case try to remove that 
chip and see if the results of the statistical analysis improve. 

If your chip includes an assessment of mRNA degradation by comparing 
the 5' and 3' ends of a gene, then that can also give you an indication of the 
quality of a particular sample. 

After having removed outlying chips, if any, a good place to start the 
interpretation is to look at the most significant gene - the gene that shows 
differential regulation with the lowest P-value. This is the most certain 
conclusion from your experiment, so what is the function of this gene? Try 
to find out as much as possible from online databases such as LocusLink', 

' http:llwww.ncbi.nlrn.nih.gov/LocusLinW 
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Genecards*, PubMed3, and so on. Then you continue to go down the list of 
genes ranked according to P-value. Is there anything in their function that 
relates to the condition that you are studying or relates to the function of other 
high ranking genes? Again, PubMed is a good place to answer this question, 
for example by searching for combinations of keywords. 

How far should you go down the list of genes ranked according to sig- 
nificance? The estimated False Discovery Rate tells you how many false 
positives you expect after including the next gene on the list (by multiplying 
its P-value by the total number of genes on the chip). When the number of 
expected false positives becomes large compared to the number of genes you 
have accepted so far, you are venturing onto thin ice and any conclusions 
will be very weak. Proceed only if you are willing to test all genes with an 
alternative experimental method to sort out the true positives from the false 
positives. 

Once you have settled for a list of genes there is one thing that is very 
important to remember. There will be false positives and false negatives on 
that list. You already have an estimate of the false positives, but calculating 
an estimate of the false negatives is more difficult. So the list of genes you 
see is far from the whole truth about your experiment. You see only a small 
window of the truth, and that window is spotted with false positives. It is for 
that reason you should be very careful about comparing your list of genes to 
lists of genes obtained in other experiments. Differences in the lists cannot 
be used to infer differences in the experiments, they can just as well reflect 
different samplings of false positives and false negatives. If you want to 
compare experiments, do so directly by comparing them in a t-test or other 
statistical test. 

To get the whole truth you have to increase the power of the statistical test 
by increasing the number of replicates. As the number of replicates increases, 
you are asymptotically approaching the truth - the full list of differentially 
regulated genes without false positives. How many replicates it takes to come 
within a certain distance from the truth is difficult to say, for one thing it 
depends on your definition of differential regulation. But you certainly need 
more than 10 replicates. 

13.6 LIMITATIONS OF EXPRESSION ANALYSIS 

For all its strengths, it is important to keep in mind the limitations of expres- 
sion analysis. First, expression analysis measures only the transcriptome. 
Important regulation takes place at the level of translation and enzyme activ- 
ity. Those regulation effects are, at least for now, ignored in any analysis. In 

2http://bioinfo.weizmann.ac.il/cards/ 
'http://www.ncbi.nlrn.nih.gov 



128 EXPERIMENT DESIGN AND INTERPRETATION OF RESULTS 

fact, significant signal transduction takes place at a protein to protein level. 
The only effect of such a signal transduction that you can observe in a gene 
expression experiment is any effect on gene expression that may be at the end 
of the signal transduction pathway. 

Another issue that is largely ignored in current expression analysis is the 
effect of alternative splicing. To what extent are changes in observed signal 
from a particular messenger due to alternative splicing rather than due to a 
change in abundance? Current DNA microarrays for expression analysis have 
not been designed to distinguish between these two effects, largely because 
current knowledge of alternative splicing in the transcriptome is so limited. 

In theory, the approach of using multiple probes per gene should be able to 
reveal alternative splicing if probes span an alternative splice junction. Thus, 
looking for changes in relative probe intensity within a gene might reveal 
alternative splicing (Hu et al., 2001) but it does not exclude the possibility of 
changes in cross-hybridisation for some of the probes within a gene. 

Finally, keep in mind that mRNA is an unstable molecule. Messengers 
are programmed for enzymatic degradation and half-lives of messengers vary 
considerably. Messengers with very short half-lives may be difficult to extract 
in reproducible quantity. Thus, any regulation in expression of a gene with a 
very short half-life may be impossible to detect with statistical significance 
in a method that relies on reproducibility. Those unstable messengers will 
simply never pass a t-test. 

In fact, unless the enzymatic degradation of messengers is stopped im- 
mediately after extraction of the sample (for example, by cooling in liquid 
nitrogen), there is not likely to be any unstable messengers left in the mRNA 
extraction. Those messengers will never be detected as present in your hy- 
bridization even though they may have been present inside the living cell. 

For mRNA that has been extracted without proper care to immediately 
stop all degradation of messengers, all that is left is to analyze any changes 
in expression of stable messengers. 

13.6.1 

Most of this book has focused on relative changes in the abundance of a 
messenger RNA. Absolute quantification of copy number of mRNAs is a much 
harder task. You need to know how well each probe hybridizes to its target 
before you can use it to deduce anything about the absolute concentration of 
mRNA in the cell. One approach is to calibrate each probe set using known 
concentrations of their corresponding mRNA. That is labor intensive if you 
are working with many different mRNAs. 

It is for that reason that most absolute analysis of mRNA has limited it- 
self to the determination of whether a particular mRNA was present or not. 
Affymetrix in early version of their software made such a call based on empir- 
ically determined rules that take into account the number of PMMM probe 
pairs which have a positive difference above a certain threshold, the number 

Relative Versus Absolute RNA Quantification 
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of PM/MM probe pairs which have a negative difference above a certain 
threshold, and the average log-ratio of all probe pairs, log(PMh4M). Schadt 
et al., (2000) have developed a statistical approach to the presence/absence 
determination. 

Still, all you can say is whether a certain messenger RNA is above detection 
threshold or not. If it is significantly above, you may be able to say with high 
confidence that it is present. But if you do not detect a messenger, you cannot 
rule out that it is expressed below detection limit. 

13.7 FURTHER READING 
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Kerr, M. K., Martin, M., and Churchill, G. A. (2000). Analysis of variance 
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Speed, T. P., and Yang, Y. H. (2002) Direct versus indirect designs for 
cDNA microarray experiments Technical report #616, Department of 
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Wolfinger, R. D., Gibson, G., Wolfinger, E. D., Bennett, L., Hamadeh, H., 
Bushel, P., Afshari, C., Paules, R. S.  (2001). Assessing gene sig- 
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Detection of Alternative Splicing with Afimetrix Chips 
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14 
Software Issues and Data 

J 

Formats 

In the future, sophisticated statistical, computational, and database methods may be as 
commonplace in Molecular Biology and Genetics as recombinant DNA is today. 

-Pearson, 2001 

Software for array data analysis is a difficult issue. There are commercial 
software solutions and there are noncommercial, public domain software so- 
lutions. In general, the commercial software lacks flexibility or sophistication 
and the non-commercial software lacks user-friendliness or stability. 

Take Microsoft’s Excel spreadsheet, for example. Many biologists use 
it for their array data processing, and indeed it can perform many of the 
statistical and numerical analysis methods described in this book. But there 
are pitfalls. First of all, commercial software packages can make assumptions 
about your data without asking you. As a scientist, you do not like to lose 
control over your calculations in that way. Second, large spreadsheets can 
become unwieldy and time-consuming to process and software stability can 
become an issue. Third, complicated operations require macro programming, 
and there are other, more flexible environments for programming. 

You can perform the same types of analysis using non-commercial soft- 
ware. The best choice for microarray data analysis is the R statistics program- 
ming environment (www.r-project.org), where the Bioconductor consortium 
(www.bioconductor.org) has implemented most of the microarray analysis 
methods mentioned in this book. Numerous examples will be given later 
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in this chapter. Extensive documentation on how to perform the analyses 
mentioned in this book are available from the Bioconductor web site. 

There is, however, a steep learning curve. R is a very powerful language 
but to use it you must know about its objects and their structure. If this is 
not your cup of tea, there are other alternatives. You can use an automated, 
web-based approach such as GenePublisher', which is free and is based on 
Bioconductor. Or you can invest in a commercial software solution that 
integrates all analysis methods into one application. 

14.1 STANDARDIZATION EFFORTS 

There are several efforts underway to standardize file formats as well as the 
description of array data and underlying experiments. Such a standard would 
be useful for the construction of databases and for the exchange of data 
between databases and between software packages. 

The Microarray Gene Expression Database Group2 has proposed Minimum 
Information About a Microarray Experiment (MIAME) for use in databases 
and in publishing results from microarray experiments. 

MGED is also behind the MACE-ML standard for exchanging microarray 
data. MACE-ML is based on the XML standard used on the World Wide 
Web. It uses tags, known from HTML, to describe array data and information. 

14.2 DATABASES 

A number of public repositories of microarray data have emerged. Among 
the larger ones are 

0 ArrayExpress 
European Bioinformatics Institute. 

http://www.ebi.ac .uk/arrayexpress/ 

0 Gene Expression Omnibus 
National Institutes of Health. 
http://www.ncbi.nlm.nih.gov/geo/ 

0 GenePublisher 
Technical University of Denmark. 

http://ww w.cbs.dtu.dWservices/GenePublisher/ 

' http://www.cbs.dtu.dWservices/GenePublisher 
' www.mged.org 
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0 Stanford Microarray Database 
Stanford University. 
http:llgenome-www5.stanford.edul 

14.3 STANDARD FILE FORMAT 

The following standard file format is convenient for handling and analyzing 
expression data and will work with most software (including the web-based 
Genepublisher). Information about the experiment, the array technology, 
and the chip layout is not included in this format, and should be supplied in 
separate files. The file should be one line of tab-delimited fields for each gene 
(probe set): 

Field 1 : Gene ID or GenBank accession number 

Field 2: (Optional) text describing function of gene 

Fields 3 and up: Intensity values for each experiment including control, 
or logfold change for each experiment relative to the control 

The file should be in text format, and not in proprietary, inaccessible 
formats that some commercial software houses are fond of using. 

14.4 SOFTWARE FOR CLUSTERING 

Once you have your data in a tab-delimited text format of Absolute expression 
values or Logfold values (see file format specification listed above), you can 
input it to the ClustArray software3, which can do further data analysis for 
you: 

0 Rank genes based on vector length, covariance to disease progression, 
etc. 

0 Perform normalizations 

0 Cluster using a selection of different clustering algorithms and distance 

0 Produce tree files to be visualized with drawtree or similar program 

0 Produce a distance matrix 

0 Visualize gene clusters with graphic Postscript file 

metrics 

'See web companion to this book http://www.cbs.dtu.dk/steen/book.html 
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Table 74.7 Expression readings of four genes in six patients. 

Patient 
Gene N1 N2 A1 A2 B1 B2 

a 90 I10 190 210 290 3 10 
b 190 210 390 410 590 610 
c 90 I10 110 90 120 80 
d 200 100 400 90 600 200 

If ClustArray is installed on your system, type ClustArray -h to get a full 
list of all the options. 

ClustArray is sensitive to the format of the input data, which must be tab 
separated and start with a line beginning with COLUMNLABELS. ClustAr- 
ray is available for UnixLinux  platform^.^ 

Other available software for clustering: 

0 Cluster. A widely used and user friendly software by Michael E i ~ e n . ~  
It is for Microsoft Windows only. 

0 Genecluster. From the WhiteheadMIT Genome Center. Available for 
PC, Mac, and Unix.' 

0 Expression Profiler. A set of tools from the European Bioinformatics 
Institute that perform clustering, pattern discovery, and gene ontology 
browsing. Runs in a web server version and is also available for 
download in a Linux version.6 

14.4.1 Example: Clustering with ClustArray 

We will use a small standard example for clarity (Table 14.1). This can be 
converted into the format required by ClustArray with the following awk 
script: 

awk 'BEGIN{printf "COLUMNLABELS\t"} \ 
{ f o i ( z  = I;? < NF;i++) printf"%s\t",$i; printf"%s\n",$NF}' \ 
example >exampleCE 

Now we can use ClustArray to hierarchically cluster genes based on vector 
angle distance: 

ClustArray - f  exampleCE -m exampleCE.mtx \ 
-t exampleCE.new -Ci 1 -Ca 0 -Cd 2 -Cm 2 -Cc 1 

4http://rana.lbl.gov 

hhttp://ep.ebi.ac.uk 
http://www-genome.wi.mit.edu/MPlU 
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Table 14.2 Expression readings of four genes in six patients. 

Patient 
Gene N1 N2 A1 A2 B1 B2 

a 90 110 190 210 290 3 10 
b 190 210 390 410 590 610 
C 90 110 110 90 120 80 
d 200 100 400 90 600 200 

The software has produced two files: exampleCE.mtx contains the distance 
matrix and exampleCE.new contains a Newick description of the resulting 
tree. Most tree viewers (Phylip's drawgram, Treeview, etc.) can read this 
tree format and draw the tree for you. The resulting drawing is shown in 
Figure 6.6. 

14.5 SOFTWARE FOR STATISTICAL ANALYSIS 

Microsoft Excel has several statistics functions built in, but an even better 
choice is the free, public-domain R package which can be downloaded for 
UnixLinux, Mac, and Windows  system^.^ This software can be used for t- 
test, ANOVA, principal component analysis, clustering, classification, neural 
networks, and much more. The Bioconductor' consortium has implemented 
most of the array specific normalization and statistics methods described in 
this book. 

14.5.1 

In this section we will use a small standard example for clarity (Table 14.2). 
There are four genes, each measured in six patients, which fall into three 
categories: normal ( N ) ,  disease stage A, and disease stage B. That means 
that each category has been replicated once. The data follow the standard 
format except that there is no function description. 

Next you boot up R (by typing the letter R at the prompt) and read in the 
file: 

Example: Statistical Analysis with R 

dataf <- read.table("example") 

In the web companion to this book you can find the example and code for 
copy-paste to your own computer9 

' http://www.r-project.org 
8http://www.bioconductor.org 
9http://www.cbs.dtu.dk/steen/book.html 
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74.5.7.7 
differ significantly between patient category A and patient category B: 

Thet-test Here is how you would perform a t-test to see if genes 

# load library for t-test: 

# t-test function: 
library (c tes t ) 

get.pval.ttest <-  function(dataf,indexl,index2, 
datafilter=as.numeric){ 
f <- function(i) { 
return(t.test(datafilter(dataf[i,indexll), 
datafilter(dataf[i,index2]) )$p.value) 

1 
return (sapply( 1: length (dataf 1 , l I  ) , f) ) 

} 
# call function with our data: 

# print results on screen (only for a small dataset like this) 
pVal.ttest <-  get.pval.ttest(dataf,3:4,5:6) 

print(cbind(dataf,pVal.ttest)) 
V1 V2 V3 V4 V5 V6 V7 pVal.ttest 

1 gene-a 90 110 190 210 290 310 0.01941932 
2 geneb 190 210 390 410 590 610 0.00496281 
3 gene-c 90 110 110 90 120 80 1.00000000 
4 gene-d 200 100 400 90 600 200 0.60590011 

orders <-  order(pVal.ttest) 
ordered.data <-  cbind(dataf[orders,l,pVal.ttest[ordersl) 
write(t(as.matrix(ordered.data)), 

# sort on P-value and write to file: 

ncolumns=length(dataf)+l, 
f i le = " t tes t . out " ) 

q(save="no") 

The default call to the t.test function assumes unequal variance between 
the two populations (Welch's t-test). 

74.5.7.2 Wilcoxon You can perform the Wilcoxon test instead of the t- 
test by replacing the call to the t.test function above with a call to the wilcox.test 
function. 

14.5.7.3 ANOVA Here is how you would perform an ANOVA on the 
example to test for genes that differ significantly in at least one of the three 
categories N ,  A, and B: 

# Specify categories and columns holding AvgDiff data: 
Categories < -  as.factor(c("0". "O","A", "A","B","B")) 
indexAvgDiff <- 1:6 

get.pval.anova < -  
function(dataf,indexAll,Categories, 

# ANOVA function: 

datafilter=as.numeric){ 
Categories <-  as.factor(Categories) 
f <- function(i) { 
return (summary ( 

) 

[ I 1 1  1 [4:51 [ [21 1[11) 

aov(datafilter(dataf[i,indexAlll) - Categories) 
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} 
return(sapply(l:length(dataf[,ll),f)) 

I 
# call the function with our data: 

pVal.anova <- get.pval.anova(dataf,indexAvgDiff,Categories) 
# print results on screen (only for a small dataset like this) 

print(cbind(dataf,pVal.anova) 
V1 V2 V3 V4 V5 V6 V7 pVal.anova 

1 gene-a 90 110 190 210 290 310 0.0017965439 
2 gened 190 210 390 410 590 610 0.0002283540 
3 gene-c 90 110 110 90 120 80 1.0000000000 
4 gene-d 200 100 400 90 600 200 0.5560965577 

orders <- order(pVal.anova) 
ordered.data <-  cbind(dataf[orders,l,pVal.anova[ordersl) 
write(t(as.matrix(ordered.data)), 

# sort on P-value and write results to file: 

ncolumns=length(dataf) +1, 
file = "ANOVA. out " ) 
q(save="no") 

In general, it is best to perform statistical tests on the raw expression values 
instead of fold change. If you are working with spotted arrays where there 
is much variation between slides it may be better to perform the statistical 
test on the fold change derived from the red and green channels of each slide. 
Try to perform the statistical test on both absolute values and fold change and 
compare the results. Baldi and Long (200 1) advocate log-transformation of 
data before statistical analysis. 

14.5.1.4 PCA You can perform a principal component analysis of the 
same data as follows (note that the first row of the data must contain labels of 
all patients, but no label for the gene identifier): 

library (mva) 
dataf <- read.table("example") 
pca <-  princomp(dataf) 
summary(pca) 
plot (pea) 
biplot (pca) 

This will produce the plot shown in Figure 5.2 in Section 5.1. The plot 
shown in Figure 5.3 was produced by transposing the data matrix with the 
command t(dataf), but PCA may not work for large transposed matrices. 

74.5.1.5 Correspondence Analysis You can perform a correspondence 
analysis much the same way as you perform a principal component analysis: 

library(MASS) 
library(mva) 
dataf <-  read. table ( "example", header=T) 
cs <- corresp(dataf,nf=2) 
plot (cs) 
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14.5.1.6 CIassification You can perform k nearest neighbor classification 
with cross-validation using builtin functions in the standard distribution of R. 
This is the calculation that was performed for the classifier in Section 10.6: 

iibrary(c1ass) 
1 ibrary (mva) 
dataf <-  read.table("datafile",header=T) 
tposed <- t(dataf) 
knn.targets <- factor( c(rep("E", 23), rep("B", 8 1 ,  

knn.cv(tposed, knn.targets, k=3, prob=TRUE) 
E E E E E E E E E E E E E E E E E E E E E E E E  
B B B B B B B B N N N N N N N N N N N N R R R N  
R R R R R E R R R R R R R R R R  

rep("N", 12), rep("R", 20)) ) 

The predicted classes (last two lines) differ from those assigned (kmtargets) 
for two tumors. so this classification is 97% correct. 

14.5.1.7 Neural Networks The R package has a function for training a 
feed-forward neural network and using the trained network to predict the 
class of unlabeled samples. These calculations were performed for the neural 
network results shown in Section 10.6 with leave-one-out cross-validation: 

library(ciass) 
library (nnet) 
pca <- princomp(tposed,cor=TRUE,scores=TRUE) 
canc <-  pca$scores[,l:lO] 
targets <- class.ind( c(rep("E", 23), rep("B", 8), 

f <- function(samp) { 
rep("N", 121, rep("R", 20)) ) 

b <- ~(0,0,0,0) 
for(i in 1:20) { 

trainednet i- nnet(canc[-samp,], targets[-samp,], 
size=2,skip=FALSE,trace=FALSE, maxit=300) 

a <-  max.col(predict.nnet(trainednet, canc[samp,l)) 
bra] <-  bra] + 1 

print (b) 

1 
iapply ( 1 : 63, f ) 

14.5.2 The affy Package of Bioconductor 

We have contributed to the affy package (Gautier et al., 2003) at Bioconductor 
which, in addition to the above-mentioned statistical analyses, can replace 
Affymetrix GeneChip software by reading CEL files directly and calculating 
expression values using the Li-Wong method as well as other methods. It can 
normalize the data using a range of signal-dependent normalization methods. 
Here is an example of how the functions in the affy package can be called to 
read and analyse a batch of Affymetrix CEL files (start by loading R version 
1.7.1 or higher): 
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# use version 1.2.30 or higher of the affy package: 

# read CEL files: 
library(affy) 

data <- read.affybatch("day_r/a_amp.CEL", "day_7b_amp.CEL", 
" day-7 camp . CEL '' , 
"day-7b-HIV-amp .CEL" , 

'' day-7aHIV-amp. CEL I' , 
"day-7cHIV-amp .CEL" ) 

affy.es <-  expresso(data, bgcorrect,method="rma2", 
normalize.method = "qspline" , 
pmcorrect .method= "pmonly" , 
summary.method ="liwong" ) 

# background correct, normalize, and condense: 

Matrix <-  exprs(affy.es) 
# t-test function: 
get.pval.ttest <-  function(dataf,indexl,index2, 

datafilter=as.numeric) 
f <-  function(i) 
return(t.test(datafilter(dataf[i,indexll), 
datafilter(dataf[i,index21) )$p.value) 

return (sapply(1: length (dataf [ , 11 ) , f) ) 

# perform t-test: 

# write ranked results to file: 
pValues <- get.pval.ttest(Matrix,l:3,4:6) 

orders <-  order(pVa1ues) 
ordered.data i- cbind(rownames(Matrix) [ordersl,Matrix[orders,l, 

pValues [orders I 
write(t(as.matrix(ordered.data)), ncolumns=l+ncol(Matrix)+l, 

file = "Pvalues.abs") 

The input data files are available in the web companion for this book". 
The affy package can, counterintuitively, be used to analyse data from 

spotted arrays and other platforms as well. Here is an example using an input 
file in the standard tab-delimited text file format described above with no 
annotation field and no header (start by loading R version 1.7.1 or higher): 

library(affy) 

dataf <- read.table("input.file", row.names=l, sep="" 
# read file: 

header=F, comment. char = " " 

normdata i- normalize.qspline(dataf, na.rm=TRUE) 

get.pval.ttest <-  function(dataf,indexl,index2, 

# normalize using qspline: 

# t-test function: 

datafilter=as.numeric) 
f <- function(i) 
return(t.test(datafilter(dataf[i,indexll), 
datafilter(dataf[i,index21 ))$p.value) 

return(sapply(l:length(dataf[,l]),f)) 

# perform t-test: 
pValues <- get.pval.ttest(normdata,l:12,13:24) 

'"http://www.cbs.dtu.dWsteen/book.htrnl 
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# write ranked results to file: 
orders <-  order(pVa1ue.s) 
ordered.data <-  cbind(rownames(dataf) [orders],normdata[orders,l 

write(t(as.matrix(ordered.data) ) ,  ncolumns=l+ncol(normdata)+l, 
pValues[ordersl) 

f i l e  = "Pvalues.abs") 

14.5.3 Commercial Statistics Packages 

The commercial statistics packages SAS, SPSS, and S-PLUS include the 
statistical functions described in this section as well. 

14.6 SUMMARY 

The R programming language with the Bioconductor packages offer the best 
solution for data analysis. They run on any PC, Mac or Unix system. With 
such a setup your possibilities for data mining and discovery are limited only 
by your imagination (and, perhaps, by your programming skills). 

14.7 FURTHER READING 
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Gautier, L., Cope, L., Bolstad B.M., and Irizarry R. A. (2003) affy - Analysis 
of Affymetrix GeneChip data at the probe level. Bioinformatics, in 
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Appendix A 
Web resources: 

Commercial Software 
Packages 

The previous chapter introduced the R and Bioconductor environments that 
can perform all the analyses described in this book. Such an environment is 
most suited for bioinformatics work because it has unlimited flexibility. No 
DNA array analysis tasks are identical and you need to tailor each analysis to 
the problem at hand. 

However, not every biologist wants to deal with R programming. There are 
alternatives. Complete software packages for performing analysis of DNA 
microarray data are available for Microsoft Windows platforms and other 
platforms. I will briefly mention some of them and describe the functionality 
that they currently include. 

0 Affymetrix Data Mining Tool 
This software offers statistical analysis as well as clustering and visual- 
ization of Affymetrix GeneChip data. It is integrated with a laboratory 
information management system to offer data management of large 
volumes of chip data. The price is targeted at large pharmaceutical 
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companies. 
http://www.affymetrix.com 

0 Affymetrix NetAffx 
An online resource freely accessible to Affymetrix customers, it links 

probes on Affymetrix Genechips to public and proprietary databases, 
allowing users to integrate data analysis from their expression experi- 
ments. 
http://www.netaffx.com 

0 Biomax Gene Expression Analysis Suite 
Clusters genes and links genes in selected clusters to metabolic path- 

ways. Protein interaction networks of co-expressed genes are identified 
from a database of protein interactions for the respective organism. 
http://www. biomax.de 

0 GeneData Expressionist 
A software system for organizationwide analysis of expression data 

from a variety of platforms including Affymetrix and spotted cDNA 
arrays and filters. Expressionist performs background subtraction, scal- 
ing, statistical tests, clustering, data visualization, and promoter search- 
ing. The software is targeted at biotech industries. 
http://w ww.genedata.com/ 

0 GeneSifter.Net 

croarray data. 
http://w ww.genesifter.net/ 

A web-based software system for management and analysis of mi- 

0 Informax Xpression NTI 
Imports expression data in a variety of formats, performs normaliza- 

tion, clustering, and graphical representation of data. Informax also 
offer Array Pro Analyzer to process spotted array images to expression 
values. 
http://www.informaxinc.com 

0 Invitrogen Corporation ResGen Pathways 
A comprehensive set of tools for the analysis of differential gene 

expression using microarray data. Image analysis, statistical analysis, 
clustering, pathway analysis and linking to databases. 
http://pathways.resgen.com/ 

0 Lion Bioscience arraySCOUT 
Enterprisewide expression data analysis designed to handle large vol- 
umes of expression data. The software includes statistical analysis, 
clustering, and visualization tools. Includes database of gene annota- 
tion. 
http://www.lion-bioscience.com/ 
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0 GeneLinker 
GeneLinker is shrink-wrap software from Predictive Patterns Software 
Inc. It performs standard microarray data analysis. 
http://www.predictivepatterns.coml 

0 Rosetta Resolver Gene Expression Data Analysis System 
The Rosetta Resolver is an enterprisewide gene expression data anal- 

ysis system that combines analysis software, a high capacity database, 
and high-performance server hardware to enable users to store, retrieve, 
and analyze large volumes of gene expression data. It is accessed from 
PC clients. The software includes statistical analysis, five different 
clustering algorithms, and numerous visualization tools. The price is 
targeted at very large pharmaceutical companies. 
http://www.rosettabio.coml/ 

0 Silicon Genetics GeneSpring 
Performs clustering, multiple visualizations, and annotation of expres- 
sion data from multiple sources. It includes a regulatory sequence 
search algorithm. The price is targeted at smaller research groups. 
http://www.sigenetics.com 

0 Spotfire 
A multipurpose tool for analyzing and visualizing data. 

http://www.spotfire.com/ 

Most of these software packages use Microsoft Windows. Genespring is 
available in a Macintosh version as well. 
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