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Preface 

This book introduces a body of recent discoveries regarding the mechanism of 
thought. These discoveries together constitute the first concrete, detailed, and 
comprehensible scientific theory of how thought works: confabulation theory. 
Experiments with computer-simulated versions of the theory’s proposed neuro-
physiological components are presented. These demonstrate information-
processing characteristics and capabilities that support the theory’s scientific 
viability.  

This book is designed to serve both the neuroscience and computational in-
telligence communities in assimilating confabulation theory. The book is inher-
ently interdisciplinary – with all readers expected to absorb all of the material. 
This is predicated on the assumption that the futures of both communities will 
be significantly dependent upon cross-community inspiration.  

In organizing this book, an explicit attempt has been made to make it suitable 
for use in three modes: 

1. As courseware for an introductory one-quarter or one-semester graduate or 
advanced undergraduate course on confabulation theory 

2. As a vehicle for efficient professional self-study 
3. For use in connection with a concentrated introductory short course on 

confabulation theory and confabulation architectures 

In all modes, it is recommended that the first step be reading Chap. 1. Chap-
ter 1 introduces confabulation theory and explains the organization of the book. 

Next, the video presentation on the book’s two DVDs should be viewed1. For  
a course, this will require four or five class sessions. For self-study or a concen-
trated course, this video presentation should be viewed in two sessions; with  
a brief intermission between Disk 1 and Disk 2 (i.e., after the end of the Confabu-
lation Neuroscience section of the presentation). As the video is viewed, the rele-
vant viewcell of Chap. 2 should be referred to at the same time. Glancing at  
a printed version of each viewcell while viewing its video presentation can signifi-
cantly enhance the understanding and retention of the material being discussed.  

Following the initial viewing of the DVD video in a university course, the re-
mainder of the class sessions of the semester or quarter can be used to go into 

                                                                 
1
 The video presentation, which is provided on the two DVDs attached to the cover of this book, 

can be played on a standard home DVD machine, or using a computer. The two PDF files on the 
DVDs (both files are included on both DVDs) can only be accessed using a computer. 
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the material of the presentation in more depth. A suggested approach is to pro-
ceed through the viewcells of the presentation again in sequence – a few in each 
subsequent class period. For example, for a course with a total of 24 class ses-
sions, each class session would cover an average of four or five viewcells. At the 
outset of each class period, the portion of the video covering the target viewcells 
is played on the classroom screen. Then the notes for those viewcells (from the 
Presentation Notes PDF file on the book’s DVDs) are projected onto the class-
room screen and discussed, one at a time, in sequence. During discussion of 
each viewcell, course participants are directed by the instructor to specific pas-
sages in the chapters of the book for more in-depth material that the instructor 
then explains on the classroom blackboard. For convenience in instructor 
preparation, many references to pertinent chapters are provided in the Presenta-
tion Notes. This same approach can be used for self-study, but with a larger 
number of viewcells covered during each study session. 

Instructors who wish to include an experimental assignment for course par-
ticipants can assign replication of the “add-one-word-to-a-text-string” confabu-
lation experiment of presentation viewcells 32 through 36 (see Chap. 2). This will 
require access to a large (tens of millions of words), clean, text corpus (or a word 
list and one-thru-five-grams). One source for such a corpus (and for English  
n-grams) is the Linguistic Data Consortium (http://www.ldc.upenn.edu/). Chap-
ters 4 and 7 explain the details of the “add-one-word-to-a-text-string” confabula-
tion experiment. There is quite a bit of work involved in this experiment, so it 
should be assigned before class meeting 10. Experience has shown that course 
participants get more out of the assignment if they must do the whole thing 
themselves. However, it is also possible to divide up the work among different 
groups of students (some create the four knowledge bases, others build the ex-
periment GUI, and others build the confabulation system). Experience has 
shown that students get the most out of the assignment if they are required to 
present the background, the experiment definition, the experiment implementa-
tion, and the experimental results in a formal “conference-presentation style” 
PowerPoint presentation to the class (the author does not agree with the cur-
rently fashionable objections to PowerPoint). Each participant presents the en-
tire story, from scratch. This high redundancy might seem unacceptable; how-
ever, experience has shown that this actually works very well. The participants 
acutely sense, and benefit from, the differences in presentation effectiveness. 

Other possible course assignments might involve course participants giving 
formal presentations to the class on expanded course topics. For example, stu-
dents might research and then present on: 

The formal proofs of Theorem 4.1 or 4.2 from Chap. 4 
The benefits of the bandgap formalism of input intensity calculation used in 
Chap. 6 and described in detail in Chap. 7 
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A survey of existing attractor neural networks for carrying out confabulation 
based upon references in Chaps. 5 and 8 – with comments explaining the sig-
nificant deficiencies of each approach (all known approaches have major de-
ficiencies that make them incapable of carrying out confabulation) 
A discussion of direct experimental exploration of the function of different 
portions of human cerebral cortex based upon references in Chaps. 5 and 8 

Alternatively, such assignments might be made optional; allowing the more 
capable participants to be fully challenged by the course. 

Neuroscience-oriented courses can augment the book’s material with instruc-
tor discussions of how radically confabulation theory challenges some strongly 
embedded traditional views such as:  

Continuous, rather then categorical (i.e., symbolic), cortical “feature detec-
tor” neuron response 
Persistent qualitative notions that cortical information-processing involves 
ongoing, intrinsic analog “dynamical processes” and not discrete, repeatable, 
externally directed convergence to “attractor states” 
Related ideas that cortical processing “just happens naturally” (what might be 
termed a data flow viewpoint) whenever the necessary inputs to a local por-
tion of cortex happen to arrive 

Class participants are then invited to research, and present to the class, hard 
experimental neuroscience facts that challenge traditional views. For example: 

The reliable and repeatable nature of a host of stimulus–response experi-
ments in which both movements and thoughts must be executed at precise 
stimulus-specified times (e.g., music and dance) 
Reaction-time experiments (wherein human subjects often carry out complex 
decision-making and reaction-generation processes in time intervals only 
slightly longer than the involved axonal propagation delay) 
The ubiquity of “gestalt switching” (winning symbol changing) in both per-
ceptual and behavioral realms 
The clear EEG, MEG, and fMRI correlates of the activation of cortically local-
ized thought processes 

Replication of the multiconfabulation experiments of Chap. 6 would involve 
more effort than a one-semester or one-quarter course could reasonably ac-
commodate. Such a project would require a number of capable researchers and 
take a year or more to complete. This might be an appropriate first project for  
a research team that wishes to inaugurate work on confabulation theory-based 
neuroscience or neurotechnology. Research sponsors might be willing to sup-
port such work as a sensible lead-in to original research. 

This book marks the end of the initial discovery process of confabulation the-
ory, which began in 1968. There are many people who have contributed signifi-
cantly to this quest: my wife Judi and our son Marcus, domestic cat Zeus Hecht-
Nielsen, other family members, friends, collaborators, TAs, students, colleagues, 
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UCSD, advisors, supporters, research sponsors, opponents, and the millions of 
scholars whose accumulated research I have benefited from. Special thanks to 
my current research collaborators Robert W. Means, Kate Mark, Syrus C. Ne-
mat-Nasser, and Andrew Smith; and to those key figures who helped make the 
last 20 years of this research possible, especially: Todd Gutschow, Robert L. 
North, Paul Glenn, A. T. La Prade, Gordon Davidson, Ken Linhares, Simon Ra-
mo, James Martin, Carol Bonomo, Tom Grudnowski, Larry Rosenberger, Eric 
Educate, and Andrea Fike. Finally, thanks to Doug Ramsey and Alexander Mat-
thews of UCSD Jacobs School of Engineering and Calit2 for filming and editing 
the presentation and creating the DVDs. Research support from Fair Isaac Cor-
poration and ONR is gratefully acknowledged. 

San Diego, May 2007 Robert Hecht-Nielsen 
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1  Introduction 

The books, papers, and lectures which I appreciate most start by giving the 
punch lines of the presentation in a simplified and immediately understandable 
form. The first four sections of this chapter are intended to provide a summary 
of this type for confabulation theory. Section 1.1 provides background perspec-
tive and a nutshell description of confabulation theory. The following three 
sections then provide a progressively more detailed overview of the human case 
(with deliberate repetition to aid learning these new concepts). Section 1.5 dis-
cusses some of confabulation theory’s implications. Finally, Sect. 1.6 provides  
a brief overview of the book’s content. 

1.1  In the Beginning 

There is strong neuroscience evidence of many kinds suggesting that the initial 
phase of the story of life on Earth ended about 580 million years ago with a large, 
rapid, and sustained (to the present) increase in atmospheric oxygen concentra-
tion (Canfield et al. 2007, Fike et al. 2006, Kerr 2006). Immediately thereafter,  
a profusion of macroscopic moving animals emerged (the “Cambrian explo-
sion” of species). The fitness advantages of complex, purposeful movement 
rapidly drove the evolutionary development of articulated bodies, muscle com-
plements, and the brains and sensory systems needed to purposefully run them. 

Movement involves smooth, coordinated control of ensembles of discrete 
muscles by the animal’s brain. Each muscle is supplied with a single neuronal 
input signal controlling its “analog,” continuously variable, level of contraction. 
Shortly after the emergence of animals capable of sophisticated movement,  
a new design possibility arose: The extensive neuronal machinery developed to 
control animal movement could easily be expanded and these additions could 
be used to control brain modules: discrete bodies of neuronal tissue specifically 
evolved to exploit the pre-existing neuronal muscle-control mechanisms. In-
stead of conferring motility, these new brain module “movement” processes 
would carry out a type of information processing called cognition or thinking. 
The enormous success of this evolutionary adaptational “redeployment” of 
movement control led to today’s ubiquity of cognition in macroscopic animals 
(trout, bees, ravens, humans, octopi, et al.). Further, the neuronal mechanisms 
of cognition were subsequently further adopted as the starting basis for addi-
tional brain functions that subsequently evolved, such as the cognitive learning 
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control system (entorhinal cortex, hippocampus, amygdala, etc.) of mammals. 
This book concerns itself with explaining the mechanism of thought in detail – 
with primary focus on the human example. 

The purpose of each cognitive module (of which humans have about 4,000 – 
in contrast with our 700 individual muscles) is to describe one attribute that an 
object of the animal’s mental universe may possess. This description usually 
takes the form of activating one of a large number of symbols (each represented 
by a small collection of specialized neurons) that are contained within the mod-
ule. The vast majority of symbols within each module develop during childhood 
and then remain stable throughout life. Symbols are the fundamental, fixed 
terms of reference that must exist if knowledge is to be accumulated and used 
over long periods of time. 

An individual axonal knowledge link (of which the average human adult pos-
sesses billions) unidirectionally connects one source symbol in one module with 
one target symbol in a second module. These links arise as a result of meaningful 
causal co-occurrence of the involved pair of symbols (a la Donald Hebb). 
[NOTE: Besides symbol co-occurrence, most animals also impose (e.g., via  
a centralized cognitive learning control system; as in mammals) the requirement 
that a new knowledge link also be associated with a reduction in a drive or goal 
state. Imposition of this requirement has many important advantages – not least 
of which is the avoidance of a vast buildup of low-value knowledge. Because it is 
tangential to understanding the mechanism of thought, this “knowledge rele-
vance” requirement and its formidable implementation machinery (it needs to 
be formidable; because hours often elapse between the temporary establishment 
of a knowledge link – which the neurons directly involved in implementing the 
link carry out via instantaneous temporary synapse strengthening – and the 
realization that this candidate link was involved in a drive or goal reduction) will 
be ignored in this book. When we need to actually construct knowledge links 
(e.g., for conducting computer experiments with confabulation), we simply re-
quire that all of the knowledge links that are allowed are “of significant value” 
using some simple criterion. This approach works well for a number of applica-
tions – further reinforcing the decision to skip detailed discussion of animal 
cognitive learning control systems.] 

The set of all knowledge links connecting the symbols of one module with 
the symbols of a second module are collectively termed a knowledge base or 
cortical knowledge fascicle. In humans, the set of all cortical knowledge fasci-
cles is, by far, the most massive single brain structure. The capacity for accu-
mulating a vast number of knowledge links is the single most important attrib-
ute of the human brain (at an average rate, for most people, exceeding one new 
knowledge link per second of life); followed by the large symbol capacities of 
human modules. 

Besides implementing symbols, modules also carry out one, and only one, cog-
nitive information processing operation: confabulation. Confabulation is the 
analog of contraction in a skeletal muscle. It occurs only upon receipt of a deliber-
ate thought command input to the module. Thought command signals originate 



 1.1 In the Beginning 3 

in subcortical structures. Both because not much is known, and to keep the story 
of confabulation theory focused on cognition, the exact origin of thought com-
mands, and the details of the neuronal processes involved (which involve many 
subcortical brain nuclei – mostly exactly the same ones as in movement) will be 
ignored in this book. The origin of the action commands that ultimately launch all 
movement and thought processes (i.e., behaviors) will be briefly discussed, be-
cause they arise as a direct product of cognition (see below). 

Strangely, as with a motorneuron signal to a muscle, a thought command is  
a graded, analog, signal. This is one of several aspects of cognitive information 
processing that make it starkly alien in comparison with existing concepts such 
as algorithmic and rule-based computing. 

In the milliseconds leading up to a particular target module being com-
manded to begin (or intensify) a confabulation “contraction,” axonal knowledge 
links from source symbols which are currently excited on other selected source 
modules deliver input excitation to neurons representing each knowledge link’s 
target symbol. [The ensemble of modules transmitting excitation are deliber-
ately selected by the overall thought process being executed (thought processes 
are learned, stored, and recalled in the same manner as movement processes).] 

Confabulation is the process of selecting that one symbol (termed the conclu-
sion of the confabulation) whose representing neurons happen to be receiving 
the highest level of excitation. In the case of a single target module undergoing 
confabulation, this is a simple “winner takes all” competition among the sym-
bols of the target module. At the end of a confabulation all of the neurons which 
represent the winning symbol are transmitting at high efficacy through any 
knowledge links that have the conclusion symbol as their source. Through the 
use of a neuronal attractor network circuit contained within the module, a sim-
ple confabulation can often be completed in under 100 ms, even if the module 
implements hundreds of thousands of symbols. Conclusions reached by con-
fabulations in the recent past can be used as the sources of knowledge link input 
to subsequent confabulations. Conclusion symbols subsequently selected to 
supply such input are often referred to as assumed facts of those subsequent 
confabulations. 

In cognition, single confabulations are rare (much as movements involving 
contraction of only a single muscle are rare). Usually, thought processes involve 
an ensemble of tens to hundreds of modules being confabulated contemporane-
ously during overlapping time intervals – with intercommunication between the 
symbols of the modules at various points during the gradual, expertly con-
trolled, “contraction” to a single “winning” symbol on each module. This is 
multiconfabulation. A multiconfabulation is typically much more powerful than  
a single confabulation because it facilitates a process of gradual convergence to  
a set of “mutually consistent” conclusions; reached by means of mutual commu-
nication between the ever-shrinking intermediate sets of candidate conclusions. 
Multiconfabulation facilitates the application of massive numbers of relevant 
knowledge links (each emanating from a symbol which, at least at that stage of 
the contraction process, is a viable candidate to be the final conclusion of that 
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module). Properly executed, a multiconfabulation allows multiple opportunities 
to “cross-check” the lists of not-yet-eliminated candidate symbol conclusions to 
ensure that the final conclusions reached (collectively termed the confabulation 
consensus) are mutually consistent with respect to the available knowledge. 
Thus, the slowed convergence process of multiconfabulation (with the rising 
“contraction” thought command signal corresponding to the gradual shrinking 
of the list of remaining candidate conclusions from which the final single win-
ning symbol will be selected) is an essential aspect of cognition. An information 
processing system employing carefully and skillfully coordinated smooth infor-
mation processing (thought) commands to the involved processors (modules) is 
starkly alien in comparison with all existing concepts of information processing. 

How can confabulation – a simple competition process between the symbols 
of a module on the basis of which symbols are receiving the most axonal excita-
tion – be the complete and final explanation for all aspects of cognition? This 
would seem to imply that, in some sense, confabulation is a powerful, general 
purpose, universal decision-making procedure. Surely there must be some new 
and powerful mathematics underlying it. And there is. Describing and charac-
terizing this surprising and strange cognitive mathematics is a main focus of  
this book. 

Finally, a key unanswered neuroscience question is the origin of behavior 
(thought processes and movement processes). Obviously, animals launch many 
behaviors every minute – often many per second. There must be a unified source 
of these actions. The shockingly simple answer is that every time a confabulation 
is completed, action commands, uniquely associated with the winning conclu-
sion, are instantly launched and sent to subcortical structures (e.g., the basal 
ganglia) for evaluation and, perhaps, execution. All non-reflexive and non-
autonomic behavior originates in this manner. 

The axonal associations between each symbol in a module and its fixed set of 
action commands are termed skill knowledge. While skill knowledge is stored in 
cerebral cortex, it is established and modified by subcortical brain nuclei. Skill 
knowledge is very different from cognitive knowledge – e.g., far from being very 
long lasting like cognitive knowledge, skill knowledge, if unused, fades rapidly – 
often within a few weeks. Skill knowledge is “use it or lose it.” Also, skill know-
ledge is inherently “overwritable,” allowing more recent skill practice session 
performances to “overwrite” older, presumably less competent, skill knowledge. 
In order to remain focused on cognition, very little is said in this book about 
skill knowledge. 

A major advantage of cognition is that all cognitive knowledge is interoper-
able. The knowledge links delivering excitation to a particular thought process 
might emanate from symbols representing auditory, visual, linguistic, or even 
movement process attributes of mental world objects. The type of attribute that 
their source symbols encode makes no difference: the knowledge link excitation 
input to the symbols of the involved target modules are simply approximately 
summed up. To appreciate the power of this capability, consider the difficult 
challenge faced by an algorithmic information processing researcher who is 
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attempting to combine image and sound data from a theatrical motion picture 
to accurately recognize specific movie actors. 

Cognition is a “core competence” of macroscopic multicellular Earth animals. 
In each taxonomic category, species with particularly high cognitive skill stand 
out: bees among insects, humans among primates, jays and ravens among birds, 
cetaceans among aquatic mammals, etc. Anthropocentrism puts humans on the 
highest pedestal; but all cognitive “champions” have their distinctive relative 
superiorities. I leave it to philosophers, SETI researchers, future interstellar 
explorers and theologians to incorporate the insights of confabulation theory 
into larger points of view and to address sweeping universal questions (such as: 
Is confabulation the unique extant approach to natural intelligence in our uni-
verse, or are there others?). This book concentrates on the confabulation theory 
explanation for human cognitive function and on the use of confabulation the-
ory as the basis for building intelligent machines. 

1.2  Cerebral Cortex and Thalamus: 
The Seat of Cognition 

There is strong neuroscience evidence of many kinds suggesting that the “in-
formation-processing” involved in all aspects of cognition (seeing, hearing, 
planning, language, reasoning, control of movement and thought, etc.) is carried 
out by the cerebral cortex and thalamus. There is also strong evidence that the 
“cognitive knowledge” used in this processing is stored in the cerebral cortex. 
Beyond vague statements of this sort, at present essentially nothing is known 
about how cognition (which will also be referred to in this book as thinking) 
works, or about what cognitive knowledge is. 

This book presents the first concrete and detailed (and thus falsifiable) scien-
tific theory of how thinking works. This confabulation theory proposes the spe-
cific neuroanatomical structures, and their functions, that are involved in human 
cognition. 

The two main human neuroanatomical structures postulated by confabula-
tion theory to be involved in the implementation of thought are thalamocortical 
modules (Fig. 1.1) and knowledge bases (Fig. 1.2). These structures, which consti-
tute the “information-processing hardware” used to carry out thought, exist 
within the cerebral cortex and thalamus. The human brain possesses roughly 
4,000 thalamocortical modules and roughly 40,000 knowledge bases2. All verte-
brates (and even invertebrates such as bees and octopi) are postulated to possess 
functionally analogous structures, albeit in smaller quantities. 

                                                                 
2 For concreteness, confabulation theory specifies many numeric values quantifying aspects of the 

theory’s postulated human neuroanatomical structures. These can be thought of as crude, rough 
order of magnitude, estimates of means; with most quantities also having significant variance. 
For simplicity, value accuracy and variability are not discussed. 
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The cortical neural tissue encompassed by each thalamocortical module bears 
resemblance to that of the “cortical columns” proposed decades ago (Mountcas-
tle 1988; Paxinos and Mai 2004), except that the cortical component of a module 
is roughly 200 times larger in volume than a cortical column. The postulated 
functions of thalamocortical modules are also completely different from those 
envisioned for columns. 

Knowledge bases are related to the axonal links between pairs of cortical 
“neuron populations,” as postulated vaguely by Hebb 57 years ago (Hebb 1949) 
and more concretely and recently by Abeles (Abeles 1991). 

The level of description of function offered by confabulation theory is one 
level up from that of the individual neurons. The study of how these functions 
are implemented at the neuron and molecular levels is termed confabulation 
neuroscience. Since very little is known, the discussion of confabulation neuro-
science in this book (principally Chaps. 2, 3, 5, and 8) is mostly speculation, and 
will likely require significant revision as more is learned.  

As noted in bibliographic citations throughout the book, and discussed ex-
plicitly in Chaps. 3, 5, and 8, confabulation theory is strongly related to many 
bodies of past research. 

 

Fig. 1.1. A thalamocortical module (one of roughly 4,000 in the human brain). Each tha-
lamocortical module is comprised of a small patch of cerebral cortex and a uniquely 
paired small zone of thalamus. The cortical patch of each module is reciprocally axonally 
connected with the thalamic zone of the module. The cortical patches of different mo-
dules are largely disjoint (partial overlaps do likely occur). Similarly for their thalamic 
zones. The union of the cortical patches of all thalamocortical modules comprise the 
entire area of cerebral cortex. However, the union of the thalamic zones of all modules 
do not comprise all of the thalamus 
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Fig. 1.2. A cognitive knowledge base (one of roughly 40,000 in the human brain). Roughly 
40,000 ordered pairs of thalamocortical modules (source and target modules) are se-
lected (by genetically specified developmental processes carried out in childhood) to 
each have their cortical patches unidirectionally linked by a knowledge base. Each know-
ledge base is comprised of a large number (often millions) of individual knowledge links. 
Much like a thalamocortical module, each knowledge base is postulated to be paired 
with a unique, dedicated zone of thalamus which is postulated to be involved in that 
knowledge base’s functional enablement. The combination of the thalamic zones of the 
modules and knowledge bases make up the vast majority of the thalamus 

1.3  The Four Key Elements of Confabulation Theory 

Today, the cognitive information-processing and cognitive knowledge acquisi-
tion, storage, and use functions of cerebral cortex and thalamus are completely 
unknown. Confabulation theory specifies them completely. In particular, con-
fabulation theory postulates four key functional elements (#s 1, 3, and 4 im-
plemented by thalamocortical modules and #2 implemented by knowledge 
bases) which together comprise the neuronal information-processing “hard-
ware” of thought. These four key elements, and the manner in which thalamo-
cortical modules and knowledge bases implement them, are each individually 
sketched in the four sub-sections of this section. The manner in which these 
functional hardware elements are used to implement thought is explored in 
detail in the book’s video presentation (and the associated presentation notes) 
and in Chaps. 3, 4, 6, and 7. 
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1.3.1  Confabulation Theory Key Element #1: 
Each Thalamocortical Module Describes One Mental 
Object Attribute 

Each thalamocortical module (Fig. 1.3) is used for describing one attribute which 
an object (sensory, language, abstract, movement process, thought process, plan, 
etc.) of the mental universe may possess. To describe its attribute, the module is 
equipped with a large collection of symbols. When utilized for describing an ob-
ject, a module typically expresses one symbol chosen from its collection. The 

 

Fig. 1.3. A primary function of each thalamocortical module is to describe exactly one 
attribute that an object of the mental universe (a sensory object, a motor process object, 
a thought process object, a plan object, a language object, etc.) may possess. To carry 
out this object – attribute – description function, each module implements a large col-
lection of symbols. When utilized for describing an object, a module typically expresses 
one symbol chosen from its collection (primary sensory and motor modules usually 
express multiple symbols). Each symbol is represented by roughly 60 neurons selected 
(approximately uniformly at random) from a special population of symbol-representing 
neurons (shown as colored dots within the enlarged depiction of the module’s cortical 
patch) that reside within the cortical patch of the module. Here, a module with 126,008 
symbols is depicted. Each symbol’s subset of 60 neurons is shown schematically. Sym-
bols are mostly formed in childhood and then remain stable throughout life – they are 
the stable terms of reference that must exist if knowledge is to be accumulated across 
decades. The famous binding problem (von der Malsburg 1981) does not apply to con-
fabulation theory because each of the attribute description symbols of an object is typi-
cally linked to many of the others pairwise by knowledge links (see Sect. 1.2.2). In effect, 
a mental world object is any reasonably large subset of its pairwise-linked attribute 
description symbols. Thalamocortical module symbol sets (the collection of different 
descriptive terms for representing the object attribute that the module is responsible for 
encoding) are the first of the four key functional elements of confabulation theory 
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symbols of a module are mostly created in childhood and are stable over decades. 
Symbols are the stable terms of reference which must exist if knowledge is to be 
accumulated over long periods of time. For example, in a human a particular 
thalamocortical module might be responsible for representing the name of an 
object. This module might possess 128,008 symbols, representing words, phrases, 
and punctuations such as: mother, father, President Kennedy, Bunsen 
burner, lunar regolith, candy, and Candy. 

1.3.2  Confabulation Theory Key Element #2:  
Knowledge Links Connect Pairs of Co-occurring Symbols 

Although the concept of cognitive human knowledge – something which is ac-
quired, stored, and then used – has been in widespread use for millennia, even 
today there is no understanding of the mechanisms involved (other than the 
persistent suspicion that Hebbian synaptic modification might somehow be 
involved) or of the nature of knowledge. Confabulation theory (see Figs. 1.4 and 
1.5) specifies precisely what cognitive knowledge is, how it is acquired, how it is 
stored, and how it is used in thinking (Sect. 1.3.3).  

 

Fig. 1.4. A cognitive knowledge link. Here, a human subject is viewing and considering  
a red apple. A visual thalamocortical module is expressing a symbol for the color of the 
apple. At the same time, a language thalamocortical module is expressing a symbol for 
the name of the apple. Pairs of symbols which meaningfully co-occur in this manner have 
unidirectional axonal links, termed knowledge links (each considered a single item of 
knowledge), established between them via synaptic strengthening (assuming that the 
required axons are actually present – this is determined by genetics). The average adult 
human has billions of knowledge links, most of which are established in childhood. The 
rate of human knowledge acquisition often exceeds one link per second of life 
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Fig. 1.5. Billions of pairs of symbols are connected via knowledge links. The set of all 
knowledge links joining symbols belonging to one specific source module to symbols 
belonging to one specific target module is termed a knowledge base. In the human brain, 
knowledge bases take the form of huge bundles of axons termed fascicles, which to-
gether make up a large portion of each cerebral hemisphere’s ipsilateral white matter. 
Each module also typically has a knowledge base to its contralateral “twin” module (and 
perhaps to a few others near its twin) – which together constitute the corpus callosum 
fascicle linking the two cerebral hemispheres. Here, reciprocal knowledge links (red 
arrows), only some of which are shown, connect each expressed symbol representing an 
attribute of an apple pairwise with other such symbols. When an apple is currently pre-
sent in the mental world, it is its collection of knowledge-link-connected symbols which 
are currently being expressed. There is no binding problem because all of these symbols 
are mutually “bound” by their previously established pairwise knowledge links. Shock-
ingly, confabulation theory contends that such knowledge links – formed exclusively on 
the basis of meaningful symbol pair co-occurrence – are the only type of knowledge 
used (or needed) in cognition! Knowledge links are the second of the four key elements 
of confabulation theory 

1.3.3  Confabulation Theory Key Element #3:  
Confabulation – The Information-Processing Operation 
of Thought 

The vague notion that cognition employs some sort of “information-processing” 
has been around for millennia. Today, the understanding of the exact nature of 
this “cognitive information-processing” is roughly the same as it was in 350 B.C. 
– the time of Aristotle (arguably the first neuroscientist). Confabulation theory 
states explicitly and exactly that cognition involves only one information-
processing operation – confabulation (see Fig. 1.6): a simple winners-take-all 
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competition between symbols on the basis of the total input excitation they are 
receiving from knowledge links. 

As seen in Fig. 1.6, the four modules on the left are each describing the at-
tributes of one or more mental world objects by each expressing a single sym-
bol: , , , and . Each of these four expressed symbols has a large number of 
knowledge links connecting it with symbols of the fifth module (of which four 
knowledge links, linking each expressed symbol to symbol  of the fifth module, 
are shown). The situation within this fifth module, which is about to undergo 
confabulation, is shown enlarged on the right. For illustration, symbol 4 of this 
module is receiving two knowledge links (one from symbol , and one from 
symbol ), whereas symbols 9 and 126,007 are receiving knowledge links from 
all of , , , and . Each knowledge link is delivering a certain quantity of input 
excitation to the neurons of its target symbol. 

The input excitations arriving at symbol k from different knowledge links are 
summed to yield the total input excitation for symbol k: I(k) (this summation is 
noted by the plus signs between the knowledge links in the enlarged illustration 
of module five). [As discussed extensively in this book, this additive knowledge 
combination property is one of the paramount reasons for the enormous infor-
mation-processing power and flexibility of thought.]. 

Upon being commanded to do so (by a deliberate externally supplied thought-
command signal – analogous to the motorneuron input to a muscle – illustrated 
by a blue arrow in Fig. 1.6), the symbols of the fifth module compete with one 
another (via a highly parallel, fast, neuronal attractor network function), yielding 
a final state in which all of the neurons representing the symbol with the largest 

 

Fig. 1.6. Confabulation – the only information-processing operation used in cognition. 
Here, a concrete example involving five thalamocortical modules is shown (for simplic-
ity, each module is illustrated as a dashed green oval with a list of that module’s symbols 
inside it). See text for details. Confabulation is the third of the four key elements of con-
fabulation theory 
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input intensity I (in this example, symbol 9) are highly activated and all other 
symbol-representing neurons are not. This “winners-take-all” information-
processing operation is called confabulation, and the winning symbol is termed 
the conclusion. 

Confabulation is hypothesized to be the only information-processing opera-
tion involved in thought. In the Fig. 1.6 example, there is only one confabulation 
taking place. Ordinarily, confabulations on multiple modules take place to-
gether, with convergence to the winning symbol slowed somewhat to allow mu-
tual interaction during convergence (“comparing notes” in order to arrive at  
a confabulation consensus of final conclusions). In such a multiconfabulation, 
often millions of items of knowledge, each emanating from a viable candidate 
conclusion, are employed in parallel in a “swirling” convergence process. (As 
discussed extensively in this book, this is another paramount reason for the 
enormous information-processing power and flexibility of thought.) Confabula-
tion is the third of the four key elements of confabulation theory. 

Confabulation is starkly alien in comparison with existing concepts in neuro-
science, computational intelligence, neural networks, computer science, AI, and 
philosophy in general. For example, computer CPUs all follow the Turing para-
digm: when commanded via a specific, digital, instruction code they execute  
a pre-defined logical or arithmetic instruction on specified variables. Thalamo-
cortical modules, on the other hand, have only one information-processing “in-
struction” – confabulation. Further, the command to confabulate (termed the 
thought-control command – which is delivered to the confabulating module 
from outside cerebral cortex and thalamus) is not digital; rather, it is analog. Yet 
the result of a completed confabulation is digital: a single symbol. Very weird. 

The ultimate challenge is to show that it is possible to explain Newton, Mo-
zart, Einstein, and Crick using confabulation. That will probably take a while. 
Yet, the evidence presented in this book is intended to build confidence that this 
challenge will someday be met. 

1.3.4  Confabulation Theory Key Element #4: The Conclusion  
Action Principle – The Origin of Behavior 

One of the most obvious aspects of brain function (and therefore one of the 
most consistently ignored) is that animals typically launch many behaviors 
every second they are awake. Most of these are microbehaviors (small correc-
tive modifications to ongoing behaviors), but, typically, many times per hour 
major new behaviors are launched, predicated on newly emerged events.  
Beyond simple reflexes (e.g., knee jerk) and autonomic reactions (e.g., diges-
tion), no understanding of how and why behaviors originate currently exists. 

Confabulation theory proposes the conclusion  action principle (Fig. 1.7), 
which states that every time a confabulation operation on a thalamocortical mod-
ule reaches a conclusion, an associated set of action commands are launched from 
the cortical patch of the module via axons which proceed towards sub-cortical 
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structures. Often, these action commands lead to the initiation of behaviors  
(either immediately or after further evaluation). All non-reflexive and non-
autonomic behavior arises in this manner. 

Action commands can be regarded as suggested behaviors – which sub-
cortical structures either immediately execute, consider further for future execu-
tion, or (e.g., if the suggested behavior is not consistent with past successful 
reductions in currently elevated goal or drive states) discard. 

The associations between each symbol of a module and the specific action 
commands which are to be issued when that symbol wins a confabulation com-
petition are termed skill knowledge. Skill knowledge is formed via selective 
strengthening of special synapses within cerebral cortex; but the involved skill-
learning process is controlled by sub-cortical structures. 

Skill knowledge, although implemented by synapses in cortex, differs greatly in 
neuroanatomical location and physiological properties from cognitive knowledge 
links. For example, unlike a cognitive knowledge link (which, if solidified over the 
100 hours following the initial symbol pair co-occurrence, is extremely durable), 
skill knowledge is often fragile and short-lived (this is important for rehearsal 

 

Fig. 1.7. The conclusion  action principle: hypothesized to be the origin of all non-
reflexive and non-autonomic behavior. Here, a thalamocortical module (illustrated, in 
consonance with Fig. 1.6, as an abstract “oval” structure containing a list of the module’s 
symbols) has successfully completed a confabulation operation (under control of its 
externally supplied thought-command signal) and reached a conclusion (symbol num-
ber 9 as in Fig. 1.6). Whenever a module completes a confabulation and reaches a con-
clusion it immediately causes a set of action command outputs to be launched (these 
outputs proceeding to sub-cortical nuclei). The specific action command outputs that 
are launched are those which have been previously associated from this specific conclu-
sion symbol via a completely separate, sub-cortically managed, skill-learning process. 
These action command outputs can cause behaviors to occur. The conclusion action 
principle is the fourth and last of the key elements of confabulation theory 
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learning of skills, where later, more competent skill knowledge needs to “super-
sede” and supplant earlier, less perfected skill knowledge). 

Behavioral triggering, skill knowledge, and skill learning are not parts of 
thinking (they come into play only after thinking has completed its job of 
reaching conclusions) and so they are not discussed much in this book. Of 
course, this decision is subject to the criticism that thinking itself is utterly 
dependent upon the thought-command sequences which control the operation 
of the thalamocortical modules involved in a particular thought process. These 
thought-command sequences are learned, stored, and recalled in exactly the 
same manner (using knowledge links) as the movement command sequences 
(actually, postural goal sequences) employed in movement. So, thought begets 
movement and thought (both termed actions) in an endless action – thought – 
action – thought – action – thought – … sequence during wakefulness (thereby 
exorcising the homunculus hiding behind a curtain pulling the control levers of 
the brain and body). Actually there is quite a bit that could be said about all 
this; but this topic is deferred to a future edition. In this book, the focus is on 
the basic mechanism of thought. 

1.4  Cognitive Brain “Hardware” and “Software” 

The four key functional elements of confabulation theory described in Sect. 1.3 
constitute the “information-processing hardware” upon which confabulation 
theory contends thinking is implemented. But what about the “software” of 
thought (the procedures, called thought processes, for using the hardware)? 

A central hypothesis of confabulation theory is that thinking is a phylogenetic 
outgrowth of movement. Animals began moving over a billion years ago. The 
mechanisms for flexible, adaptive control of movement emerged early and ex-
panded rapidly. As animal movement complexity and capability grew, a new 
design possibility emerged: the elaborate machinery already developed for con-
trolling movement could be applied to brain tissue. In particular, discrete brain 
structures, modules, emerged that could be controlled exactly like individual 
muscles. By manipulating these modules in properly coordinated “movements” 
(thought processes), information-processing could be carried out – thereby 
further enhancing competitive success. 

As discussed in Sect. 1.3.3, each human thalamocortical module has a single 
thought-command input signal that tells it when to “contract.” This is analogous 
to the roughly 700 muscles of the human body, each of which has a single input 
signal (motorneuron input) that commands it to contract. Just as with a muscle, 
the thought-command input to a module is an analog signal: it can range from  
a low level (“contract a little”) to a highest level (“contract with maximum 
force”); where “contraction” corresponds roughly to the rate of convergence, 
from multiple candidate conclusions to a single conclusion, of a module’s con-
fabulation competition. 
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In effect, the human brain thinks by maneuvering subsets of 4,000 digital 
processors (the thalamocortical modules) through smooth, graceful, thought 
maneuvers. These thought processes are learned, stored, and recalled just as 
movement processes are learned, stored, and recalled. At higher hierarchical 
levels, closely related movement processes and thought processes are often 
stored mixed together in the same knowledge links. 

Just as the repertoire of human movement can be vast (walking, writing, run-
ning, cartwheels, uneven parallel bar routines, pole vaulting, etc.), so the reper-
toire of thought can contain a vast variety of different ways of using thalamocor-
tical modules. However, at the present time, confabulation theory has only 
identified a few of these ways. And only two of these, a single isolated confabula-
tion (crudely analogous to flexing of a single muscle) and multiconfabulation 
swirling (crudely analogous to walking – the most basic and useful of human 
movements), have received significant study. All of the remaining chapters of 
this book discuss these two types of basic thought process. 

As is discussed in detail in the video presentation, brains carry out a multi-
tude of functions in addition to cognition. Quite a few of these interact inti-
mately with, and are required to implement, thought processes. However, these 
other brain functions are poorly understood and are only briefly mentioned in 
this book. The thought processes considered here (single confabulations and 
multiconfabulations) are implemented using an external thought controller 
executing a crude, contrived thought process. The only feedback that a thought 
controller gets from the thought process being executed on the involved collec-
tion of modules is knowledge of when a module has reached a conclusion (in 
effect, an action command output, as in Sect. 1.3.4). This feedback can be used 
to trigger recall and playback of a different “canned” thought process. While 
this approach only implements a tiny subset of the capabilities of real brain 
thought and movement control, as the reader will see, it is still possible to 
achieve interesting results. 

1.5  Implications of Confabulation Theory 

Confabulation theory has a variety of implications. A few examples are dis-
cussed here. 

Since all of cognition is “categorical” (i.e., based upon the symbol sets of the 
thalamocortical modules), the total number of modules, and the number of sym-
bols in each of those modules, provides a reasonable estimate for the “descriptive 
power” of a brain. A trout may have only a few tens of modules, each with a few 
hundred symbols. A raven might have hundreds of modules, each with many 
hundreds of symbols. A human probably has thousands of modules, each with 
thousands to hundreds of thousands of symbols. Similarly, the total number of 
knowledge links that an animal possesses gives a crude quantification of how 
“smart” that animal is (although, clearly, the distribution of those knowledge 
links also matters: idiot savants may have huge numbers of knowledge links). 
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The experiments of Chap. 6 imply that the average human possesses billions 
of items of knowledge, of which the majority are often obtained in childhood. 
Some humans may possess tens, or perhaps even hundreds, of billions of items 
of knowledge. Clearly, since there are only about 32 million seconds in a year, 
the average rate of knowledge acquisition often exceeds one item per second 
and might sometimes exceed 100 items per second. It is thus not surprising that 
we need to sleep a third of the time in order to catch up with evaluating and 
selectively solidifying each day’s new cognitive knowledge links (i.e., implement 
cognitive learning control decision-making for recently established, and intrin-
sically rapidly fading, temporary knowledge links – which is probably the main 
activity of sleep). 

Humans (and animals in general) are almost certainly much “smarter” than 
has been generally appreciated. Assuming such findings are confirmed, fields as 
diverse as psychology, education, philosophy, psychiatry, medicine (both hu-
man and veterinary), law, and theology will need to be extensively overhauled. 

With one relatively small exception, the axonal connectivity between the tha-
lamocortical modules in the human brain seems to roughly resemble that of 
other great apes. That one exception is the modules of the human language fac-
ulty – which seem to connect widely to modules in many other faculties. In this 
sense, language is the hub of human cognition. It seems likely that this (along 
with having a brain which is, overall, over three times larger) can explain some 
of the commanding power of human thought in comparison with that of other 
apes. As we learn more about cetaceans, it may well be that some of them (and 
perhaps other species as well, such as jays, ravens, and parrots) also have this 
language hub cognitive architecture characteristic to some degree. 

The near-term implications of confabulation theory for neuroscience are 
uncertain. Neuroscience is dominated by bottom-up thinking and by “meth-
ods.” To succeed, neuroscientists must often spend the decade after completing 
their Ph.D. developing their own effective experimental methods. The subset of 
aspirants who successfully complete this process must then, in general, inaugu-
rate and manage a large lab that quickly acquires enormous built-in inertia. 
After completing this arduous initiation at about age 40, few of these newly 
established neuroscientists are going to be interested in abandoning, or signifi-
cantly altering, their research direction in order to begin to follow up on the 
hypotheses of confabulation theory. Thus, integration of confabulation theory 
into neuroscience is likely to be largely confined to new investigators who de-
cide to pursue experimental exploration of confabulation theory’s neuroscience 
implications (probably mainly using human subjects carrying out controlled 
thought processes while being monitored by brain activity scanners with 
greatly improved spatial and temporal resolution). Assuming this established 
social pattern continues to hold, it seems unlikely that confabulation neuro-
science can join the mainstream of the subject until the next decade. 

Notwithstanding the above, members of the small community of mathemati-
cal neuroscientists may soon realize that, given the hard constraints provided by 
confabulation theory, it may be possible to tackle large-scale understanding of 
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brain function. For example, it may be possible within a few years to build an 
integrated functional mathematical model of cerebral cortex, thalamus, basal 
ganglia, subthalamus, red nucleus, substantia nigra, hippocampus, amygdala, 
hypothalamus, spinal cord, locus coeruleus, pons, and cerebellum. This model 
may well answer most of the large questions of neuroscience that remain after 
confabulation theory. 

A large-scale human brain modeling project of this sort will surely require  
a widely knowledgeable and exceptionally well educated team of hundreds of 
mathematical neurobiologists and computer scientists operating as willing and 
compliant subordinates under the hierarchical command of a master genius. 
The usual “herd of cats” sort of scientific research program would probably not 
work effectively in this instance. I personally know at least five people who could 
each probably successfully lead such an effort. Such an integrated brain model-
ing project is, in my opinion, one of the most important tasks that the human 
species should now carry out. It will be expensive (probably exceeding 
$200,000,000 per year for a decade; along with another $400,000,000 for a proper 
building to house the project and the budget for the required equipment).  
A single, open, international project of this type would seem ideal. However, 
given the potential economic and national security implications, multiple pro-
jects of this type seem more likely. With respect to these practical implications 
of confabulation theory, I leave it to you, the reader, to form your own opinion 
as you absorb the book’s content. 

1.6  Content of the Book 

The content of the eight chapters and two DVDs of this book is briefly surveyed 
below: 

Chapter 1: Introduction 
An introductory overview of confabulation theory: comments on some of the 
theory’s possible implications and presentation of this overview of the book’s 
contents. 

Chapter 2: Video Presentation Viewcells 
The viewcells used in the book’s DVD video presentation are presented. To 
help with understanding and retention of the material, each of these should 
be referred to while it is being presented during the video. 

Chapter 3: The Mathematics of Cognition 
An introduction to the mathematics of confabulation theory. Comments on 
the relationship between cogency maximization and Bayesian analysis. An 
extensive discussion of the status of confabulation neuroscience. Comments 
on the origins of confabulation theory. 
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This chapter is based on the original publication 

Hecht-Nielsen R (2006) The mathematics of thought. In: Yen GY, Fogel 
DB (eds) Computational intelligence: Principles and practice. IEEE 
Computational Intelligence Society, Piscataway, NJ, pp 1–16 

and is adapted here in accordance with IEEE copyrights. 

Chapter 4: Cogent Confabulation 
Mathematical foundations of confabulation theory are presented, including 
statement and proof of the Fundamental Theorem of Cognition and the theo-
rem showing that cogent confabulation within a logical information envi-
ronment yields Aristotelian logic. Computer experiments with a single con-
fabulation are presented, with all details provided. Replication of these single 
confabulation experiments is the logical starting point for those wanting to 
gain hands-on experience with confabulation architectures. 
This chapter is a reformatted reprint of the original publication 

Hecht-Nielsen R (2005) Cogent confabulation. Neural Networks 18:111–
115, Copyright (2005) 

used with permission from Elsevier. 

Chapter 5: Confabulation Neuroscience I 
A concise overview of confabulation neuroscience. This material is prerequi-
site for Chap. 6. 
This chapter is based on the original publication 

Hecht-Nielsen R (2006) The mechanism of thought. In: Proceedings of 
the World Congress on Computational Intelligence. 16–21 July, Van-
couver, BC, Canada. IEEE Press, Piscataway, NJ 

and is adapted here in accordance with IEEE copyrights. 

Chapter 6: The Mechanism of Thought 
Computer experiments with multiconfabulation are presented, with all de-
tails. These sentence continuation experiments illustrate that thinking is ex-
actly like moving. Replication of these multiconfabulation experiments is the 
second logical step for those wishing to gain hands-on experience with con-
fabulation architectures. 

Chapter 7: Mechanization of Confabulation 
Further details of confabulation architecture design and implementation are 
presented. Approaches for application of confabulation architectures to lan-
guage, vision, and hearing are discussed in some detail. 
This chapter is based on the original publication 

Hecht-Nielsen R (2006) The mechanization of cognition. In: Bar-Cohen 
Y (ed) Biomimetics. CRC Press, Boca Raton, FL, pp 57–128 

and is adapted here from the original with kind permission of the publisher. 
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Chapter 8: Confabulation Neuroscience II 
An expanded discussion of confabulation neuroscience. 
This chapter is based on the Appendix of the original publication 

Hecht-Nielsen R (2006) The mechanization of cognition. In: Bar-Cohen 
Y (ed.) Biomimetics. CRC Press, Boca Raton, FL, pp 57–128 

and is adapted here from the original with kind permission of the publisher. 

DVDs 
The book’s two DVDs (attached to this book) contain the following material: 

 1. The Mechanism of Thought video presentation (Part I on DVD Disk 1 and 
Part II on DVD Disk 2). 

 2. PDF file of the Viewcells used in The Mechanism of Thought video presen-
tation. This computer-readable file is included on both Disk 1 and Disk 2. 

 3. PDF file of the Presentation Notes for The Mechanism of Thought video 
presentation. This computer-readable file is included on both Disk 1 and 
Disk 2. [Note: These Presentation Notes, intended for use as courseware, 
are probably the most important component of the book.] 

 



 

2  Video Presentation Viewcells 

The viewcells used in the book’s DVD video presentation are presented. To 
help with understanding and retention of the material, each of these should 
be referred to while it is being presented during the video. In this chapter we 
start with viewcell 9, while viewcells 1 through 110 are shown in the DVD 
presentation. 
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3  The Mathematics of Thought3 

3.1  The Constructs of Confabulation Mathematics 

Confabulation theory (with which the reader is assumed to be somewhat familiar 
from Chaps. 1 and 2 and the video presentation) is based upon four mathemati-
cal constructs: 

1. A collection of N finite sets of symbols (each such set is termed a thalamo-
cortical module). 

2. A directed R +  weighted graph having all of the symbols of all of the mod-
ules as its nodes. Each edge of the graph is termed a knowledge link or item 
of knowledge. 

3. A “winners-take-all” intersymbol competition operation (termed confabula-
tion) which is carried out within a module over a finite time span – in ac-
cordance with an externally supplied thought-command signal. 

4. A mapping (termed skill knowledge) between each symbol of a module and  
a subset of the set of action commands associated with that module. 

Since the fourth of these constructs is not strictly a part of animal cognition, 
i.e., thought (the focus of this exposition), skill knowledge and action commands 
will not be discussed further here. 

The next section provides a look at the basic essence of confabulation ma-
thematics by considering the case of a single, isolated, confabulation operation. 
However, as with almost any aspect of biology, there are many refinements, 
embellishments, and improvements that have been added onto this basic fra-
mework since its initial evolutionary emergence hundreds of millions of years 
ago. Sections 3.3 through 3.7 consider a few of these. For expositional simplicity, 
and because the author believes them to be roughly correct, the tenets, positions, 
and views of confabulation theory will be presented as if they were facts. 

                                                                 
3 This chapter is based on the original publication Hecht-Nielsen R (2006) The mathematics of 

thought. In: Yen GY, Fogel DB (eds) Computational intelligence: Principles and practice. IEEE 
Computational Intelligence Society, Piscataway, NJ, pp 1–16, and is adapted here in accordance 
with IEEE copyrights. 
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3.2  A Single Confabulation 

The most basic cognitive information-processing operation (thought process) 
consists of a single “pure” confabulation. This section describes the mathematics 
of this simplest case. 

During wakefulness, the cognitive brain is constantly functioning. When  
a single symbol is made active as the result of winning a completed confabula-
tion competition (details to follow below), that symbol often then serves, briefly, 
as an input to subsequent confabulations, via knowledge links emanating from it 
(see Fig. 3.1). A winning symbol which has faded can be briefly restored by 
means of a confabulation with no inputs, and then used as an assumed fact in-
put to subsequent confabulations (as long as the module has not been used since 
the symbol faded). This ability to briefly restore a module’s last-active symbol 
with a confabulation is called short-term (or working) memory. 

Figure 3.1 considers four modules (on the left) that have recently been con-
fabulated, each now expressing one active symbol (the generalization to an arbi-
trary number of modules is obvious). Label these symbols , , , and . A fifth 
module (on the right) is about to undergo confabulation, based upon knowledge 
link inputs to its symbols from these four assumed fact symbols , , , and . 

 

Fig. 3.1. Five thalamocortical modules. Four items of knowledge are shown, connecting, 
respectively, symbols , , , and  (each belonging to one of the modules on the left) to 
symbol ε of the module on the right (which is about to undergo confabulation). Knowl-
edge link inputs from source symbols , , , and  (also referred to as assumed facts) to 
symbols of this fifth module (each assumed fact symbol often sources hundreds of 
knowledge links) cause these target symbols on the fifth module to become excited 
(knowledge link input excitations are additive). The target symbol with the highest input 
excitation – here symbol  – will win the confabulation competition and be made active. 

 can then serve as an assumed fact for subsequent confabulations on other modules 
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If an item of knowledge connects assumed fact symbol  to symbol  of the 
fifth module, its weight is 

logc(p( | )/p0) + B, (3.1) 

where p( | ) is the antecedent support probability (see Chaps. 4 and 7 for details) 
that the link’s source symbol  will be active, given the assumption that the link’s 
target symbol  is active, and c, p0 and B are positive constants. As discussed fur-
ther in Sect. 3.5, this link weight form was chosen by evolution because: 

1. These weights can be implemented by neuronal synapses. 
2. Summation of excitations delivered by knowledge links is a surrogate com-

putation which approximates the general-purpose “conclusion quality mea-
sure” cogency (explained below). 

As discussed further in Sect. 3.5, knowledge links form on the basis that the 
involved ordered pair of symbols are observed to meaningfully co-occur as the 
brain responds to the information environment in which it lives. Only certain 
externally specified ordered pairs of modules can develop knowledge links be-
tween their symbols (in the brain these ordered pairs are determined by the 
genetically controlled axonal “wiring pattern”). The set of all knowledge links 
proceeding from symbols of one module to symbols of another is termed  
a knowledge base. 

The input excitation I( ) received by symbol  of the fifth module of Fig. 3.1 
from knowledge links from the four assumed fact symbols , , , and  is given 
by the sum of the weights of the involved knowledge links (the four terms in 
brackets): 

I( )  [logc(p( | )/p0) + B] 
 + [logc(p( | )/p0) + B] 
 + [logc(p( | )/p0) + B] 
 + [logc(p( | )/p0) + B] (3.2) 

(with the convention that if a knowledge link does not exist from one or more of 
the assumed facts to , the nonexistent “knowledge link” has weight zero). 

Confabulation of the fifth, or answer, module of Fig. 3.1 then consists of sim-
ply selecting that symbol  having the highest input excitation. This symbol  is 
termed the conclusion of the confabulation. 

Since the logarithm is a strictly monotonically increasing function, maximiz-
ing I( ) yields the same conclusion as maximizing the confabulation product 
p( | ) · p( | ) · p( | ) · p( | ). The significance of this fact is elucidated by: 

Theorem 3.1: The Fundamental Theorem of Cognition (see Chap. 4): Given non-
exceptional assumed facts , , , and , and viable answer module symbol , 
then the following exact relationship holds between cogency p( | ) (where 
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juxtaposition of symbols means AND) and the confabulation product 
p( | ) · p( | ) · p( | ) · p( | ): 

[p( | )]4 = [p( )/p( )] 
 · [p( )/p( )] 
 · [p( )/p( )] 
 · [p( )/p( )] 
 · [p( | ) · p( | ) · p( | ) · p( | )].  

Confabulation theory postulates that animal neurological evolution has found 
ways to ensure that the product of the first four bracketed quantities of the 
right-hand side of this equation is approximately constant for all viable conclu-
sions  (conclusions receiving non-zero-weighted knowledge links from all four 
of the assumed facts , , , and ). Given this assumption, confabulation (i.e., 
maximizing the confabulation product p( | ) · p( | ) · p( | ) · p( | )) is clearly 
approximately equivalent to maximizing cogency p( | ). 

Maximization of cogency (a quantity often referred to in other mathematical 
contexts as likelihood [Duda et al. 2000]) is postulated by confabulation theory 
to be the central underlying mathematical foundation of all aspects of cognition 
(seeing, hearing, language, reasoning, planning, control of movement and 
thought, etc.). 

One example of the value of cogency maximization can be seen in: 

Theorem 3.2 (see Chap. 4): If    uniquely, then  =  uniquely maximizes 
cogency p( | ).  

Thus, when considering a set of assumed facts which imply a unique conclu-
sion (an event that would occur commonly when playing chess or doing mathe-
matical proofs), cogency maximization yields Aristotelian logic. Thus, when 
logic pertains, animals behave logically. Of course, logical reasoning does not 
apply to many real-world situations (such as parking your car). In these in-
stances, animals simply maximize cogency and go with the conclusions derived 
there from. As shown by the examples presented in Chaps. 4 and 6, the conclu-
sions reached in this manner are, in general, quite serviceable. 

Since the mathematics of confabulation is simple, an obvious question is: 
“Why wasn’t confabulation theory discovered long ago?” A key reason is a dec-
ades-long intellectual constipation brought about by what might be called the 
“Bayesian religion.” 

The Bayesian religion is a dogmatic belief structure (often mistakenly viewed 
as a set of incontrovertible facts), currently held by perhaps 100,000 researchers 
and practitioners worldwide, underpinned by roughly the following seductive, 
compelling line of argument: 
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1. The “Bayes” pattern classifier (i.e., the classifier that maximizes a posteriori 
probability p( | )) is known to be mathematically optimal (lowest pos-
sible average error rate) (Duda et al. 2000). Note that the Bayes classifier 
chooses that class  which has the highest probability of being correct, given 
the pattern measurements . 

2. Animals are excellent pattern classifiers; so, in light of the proven mathe-
matical fact 1, it seems obvious that animals must function as Bayesian pat-
tern classifiers. 

3. Given article of faith 2, animals are almost certainly also going to be “Bayes-
ian” in other cognitive realms, meaning that the “best” conclusion  to select 
in any situation will be the one which has the highest probability of being 
correct, given the available facts (i.e., cognition maximizes p( | )). 

Since direct maximization of p( | ) is, in general, not practically feasible, 
Bayesians often use the naïve Bayes formula: 

  argmax( ) p( | ) 
  argmax( ) p( ) · p( | ) · p( | ) · p( | ) · p( | )  (3.3) 

as a surrogate. Note that the right-hand side of this formula is exactly the same 
as the confabulation product, but with an additional factor: the prior p( ) – the  
a priori probability of conclusion . An enormous number of practical applica-
tions of the naïve Bayes formula (see Wikipedia entries and literature cited  
therein) – a non-rigorous ad hoc mathematical relationship – have yielded ex-
cellent results, bolstering devoted belief in the Bayesian religion. 

For some things, such as classical statistical pattern classification (Duda et al. 
2000) and causal relationship analysis (Pearl 2000), the Bayesian approach may 
be the correct mathematical method to apply. 

However, for explaining cognition, the Bayesian approach leads to architec-
tural designs that seem irreconcilable with the facts of neuroscience. In effect, 
tenets 2 and 3 of the Bayesian religion (both of which are false – see Chap. 4) 
steered thousands of able researchers down the wrong trail (which yielded 
“E = mc3”). Discovery of confabulation theory required a maverick mathemati-
cian following a decades-long circuitous research route (see Sect. 3.8) through 
the lands of cortical and thalamic neuroscience, neuronal symbol representa-
tion, synfire chain knowledge links, and neuronal attractor networks. 

The fact that the naïve Bayes formula has been so successful is probably due 
to the fact that, in many practical “cognitive-type” problems, the prior values 
p( ) of the conclusions with the highest confabulation product values (many of 
which are often “reasonably high quality” answers) do not vary enough from 
one another to affect the quality of final choice much. Also, many times, heuris-
tic kludges – such as excluding high-frequency and low-frequency words in 
linguistic processing – are used to eliminate unusually high or low value priors 
that would cause substantial damage. In effect, a great deal of “Bayesian analy-
sis,” as it is actually practiced, is cogency maximization. 
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3.3  Multiconfabulation 

One of the most important discoveries within confabulation theory is of multi-
confabulation (see Chaps. 6 and 7). A multiconfabulation is an ensemble of  
contemporaneous, mutually interacting, converging confabulations. The vast 
majority of human thought processes involve multiconfabulations. The mutual 
interactions which occur between the individual confabulations within a multi-
confabulation often involve the simultaneous, parallel application of millions of 
items of relevant knowledge (only knowledge links emanating from viable con-
clusions are involved). In effect, the individual confabulations involved in the 
multiconfabulation constantly “compare notes” via knowledge link interactions 
as they continue to converge – ensuring mutual consistency between their final 
consensus of conclusions. This ensures that all known constraints and all avail-
able relevant knowledge are applied in crafting the final consensus. This mas-
sively parallel application of relevant knowledge during multiconfabulations is 
proposed as a primary explanation for the extreme information-processing 
effectiveness of thought. 

The key to convergence of the individual confabulations during a multicon-
fabulation is twofold. First, the pattern in which knowledge links are applied in 
succession at first causes the excitation of large numbers of potential conclu-
sion symbols. However, these knowledge link application patterns then “loop 
back,” causing newly excited candidate conclusions to send knowledge link 
excitation to already-excited candidate conclusions (such a cyclic pattern of 
thought is termed swirling). The first crucial fact is that, on many occasions, 
many of the already-excited candidate conclusion symbols DO NOT receive 
significant “confirmatory” excitation from this subsequent knowledge link 
input (while some other candidate conclusion symbols DO receive “confirma-
tory” excitation). The list of candidate conclusion symbols is then shortened to 
eliminate those which did not receive confirmation (this list shortening is akin 
to “tightening” a muscle). [A brief aside: Fuzzy logic theorists might interpret 
some aspects of the initial brief “reordering” phase of swirling as meaning 
fuzzification. They might interpret the subsequent rapid convergence to the 
final “hard” consensus of conclusions as defuzzification. See the Video Presen-
tation Notes for more details.] 

As multiconfabulation proceeds, certain modules have their thought control 
input signals tightened more than others – causing their lists to shrink faster 
and, eventually, to converge to a single conclusion first. This order is part of the 
stored thought process. As convergences occur among the set of modules being 
confabulated; these converged modules have their final conclusion symbols 
locked. These locked symbols cause action commands to be launched, which, 
among other things, often cause other modules to be locked with no symbol 
expressed. For example, a language phrase module expressing the symbol for 
New York would cause the next phrase module to be locked in a null state (be-
cause it is not needed since York is already represented on the previous module 
– see Chap. 7 for details). 
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Multiconfabulation clearly illustrates the alien nature of thought. Thinking 
involves digital symbolic processors (modules) with different symbols having 
different graded excitation levels communicating via analog knowledge links 
being controlled by graded spatiotemporal thought maneuvers. This is about as 
far as one can imagine getting from Turing-style computation. The good news is 
that there will not be any need to agonize over Gödel paradoxes and exotic com-
putability questions, because the “current state of the world-dependent,” and 
therefore intrinsically unrepeatable, nature of thought processes means that 
thinking is inherently non-deterministic. Animal life is thereby endowed with 
exquisite unpredictability and spontaneity. 

As technologists now proceed to develop artificial brains, the alien nature of 
cognition will introduce a variety of roadblocks. For one thing, much of what 
today’s technologists know will be obsolete and largely inapplicable. Nonethe-
less, futile attempts to hybridize computer science-based algorithms with artifi-
cial cognition (akin to trying to build a hybrid of a Cessna and an eagle) will 
surely be irresistible to many. The large-scale transition from computers to arti-
ficial brains will, as with the transition from vacuum tubes to transistors, proba-
bly have to wait until a fresh new generation of technologists – people who grow 
up on confabulation theory and who possess extensive knowledge of neurosci-
ence – can be produced. At UCSD the cadres who will train this new generation 
are being prepared today. 

The path forward to ubiquitous artificial brains is not likely to be easy, fast, or 
inexpensive. But it will surely be exciting and fun, with many unexpected twists 
and turns. 

3.4  Symbols: The Universal Language of Cognition 

The roughly 4,000 thalamocortical modules which comprise human cerebral 
cortex and first-order thalamus are each equipped with a set of symbols (with 
each symbol represented by roughly 60 neurons of a special pyramidal symbol-
representing neuronal population, probably located in layers II/III of the corti-
cal patch of the module – see Chaps. 5 and 8). Each module typically possesses 
thousands of symbols, mostly formed in childhood. Symbols are highly stable: 
once formed, they typically remain unchanged for life (likely with the help of 
some, as yet unknown, active repair and maintenance processes). 

Each module is responsible for describing one attribute that an object of the 
mental world may possess. Its symbols are the descriptors of that attribute. For 
example, a module in a language area might represent the name of an object. Its 
symbols would then be name words (Mary, John, airplane, etc.). A module in  
a visual area might represent the color of an object. Its symbols would include: 
red, green, blue, etc. 

Symbols are the stable terms of reference that must exist if knowledge is going 
to be accumulated over decades. Any theory of thought clearly must have such 
an element. Further, our personal experience teaches us that in mental arenas as 
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varied as language, dance and exercise, driving, visual objects, taste and smell, 
and texture, the average human possesses thousands to hundreds of thousands 
of categorical descriptors of each attribute of objects in these realms. Fixed sets 
of stable symbolic descriptors, one such set for each object attribute, is clearly 
the simplest explanation for these firm facts. 

It might be assumed that if an object is “present in the mental universe” at  
a particular point in time, that each module describing an attribute pertaining to 
that object will have a single symbol expressed on it describing the object. This is 
wrong. Symbols become expressed on modules only as a result of a deliberately 
commanded, recently completed, confabulation. 

If a confabulation has been completed, then at most one symbol will be active 
on that module (if all of the symbol excitation levels are too low a confabulation 
can yield no symbol – which means “I don’t know”). If a confabulation is still in 
progress, then an expectation consisting of multiple highly excited (a signaling 
state lower than the active state) symbols may be expressed on that module –  
a common occurrence during multiconfabulation. 

In summary, usually, only a subset of the attributes which pertain to a par-
ticular object are being described by symbols at any particular point in time. 
The set of involved modules is determined by the confabulations which have 
recently been commanded. It is likely that no two experiences of a rose will ever 
be the same. 

A key observation is that all symbols are, roughly, equivalent from a neuro-
physiological viewpoint. They are each a collection of about 60 excited or active 
symbol-representing neurons within layers II/III of the cortical patch of their 
module. This suggests that they form the universal language of the cognitive 
brain, i.e., the interactions between symbols are the same no matter what object 
attribute they represent (visual, auditory, motor process, thought process, plan 
element, odor, tactile texture, etc.). As will be seen below, this is a huge advan-
tage over past forms of algorithmic and rule-based information-processing be-
cause, in the brain, all object attribute representations (i.e., symbols) are freely  
interoperable. 

Modules are organized into hierarchies, one symbol in a higher-level module 
often representing multiple sets of particular symbols in collections of lower-
level modules. 

In humans, the modules used to describe language object attributes form the 
core hub of cognition. These are connected via knowledge links to and from 
modules belonging to almost every other functional category. 

Modules which interface directly with extracortical structures (primary visual 
cortex, primary motor cortex, primary auditory cortex, etc.) rarely express single 
symbols. Almost every moment they are in use, these modules are expressing 
graded blends of multiple symbols. This is because such blends are more accurate 
representations of the extracortical data. Thus, primary motor cortex might be 
expressing a graded blend of five symbols in order to accurately define a postural 
goal that, by its expression, initiates a movement (cerebellum – the autopilot of 
the brain – then smoothly and competently carries out this movement, adapting 
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its commands to reach the cortically commanded postural goal in the specified 
transit time independent of limb load or drag resistance). [Note: Transit time is 
specified by the rate at which the graded symbol blend expression is carried out: 
a faster onset of the postural goal symbol blend yields a faster transit time.]  
A primary auditory module might be expressing eight symbols at different 
graded levels of excitation at one time – in order to represent sounds coming 
from the attended source (see Chap. 7 for more details). 

3.5  Knowledge Links 

Functionally and anatomically, brains are dominated by synapses (roughly 1014 
in human cortex, in contrast with roughly 1010 neurons). So it is natural that 
cognition is based upon vast numbers of knowledge links, which are used mas-
sively in parallel (with confabulation, a simple, fast, winners-take-all competi-
tion among symbols, the only “information-processing operation” required). 

The average human adult probably possesses billions of knowledge links.  
Isaac Newton, Albert Einstein, and Francis Crick might have each had over  
100 billion. In our experiments (DVD video presentation, Chaps. 4 7) (which 
have employed up to billions of knowledge links) the average symbol that is 
expressed on a module as a conclusion has an average of about 200 knowledge 
links emanating from it in each knowledge base that its module sources. So, 
during a multiconfabulation it is not unusual for many millions of relevant (i.e., 
emanating from symbols that are viable conclusions) knowledge links to be 
used. This automatic, massively parallel application of relevant knowledge dur-
ing thought surely accounts for some of its effectiveness. No previously studied 
approach to information-processing has ever had this characteristic. 

Humans accumulate knowledge links (and symbols) at a prodigious rate dur-
ing childhood (probably an average of many links per second) and often con-
tinue accumulating them throughout life. If true, this will have profound impli-
cations for our views of human nature, education, etc. For example, a child 
returning home after a day at school might report that she “learned nothing” 
that day. In reality, she probably began the process of establishing over a hun-
dred thousand new knowledge links. Humans (and other animals) are extremely 
“smart.” 

As noted in Sect. 3.2, each knowledge link has a weight of the form 

logc(p( | )/p0) + B . (3.4) 

A key strength of confabulation theory is that this mathematical form fits well 
with the facts of neuroscience. 

Knowledge link synapses are all strong. The weakest have weight B, which 
might be a value of 30. The strongest have weight logc(1/p0) + B, which might be  
a value of 50 (e.g., if the logarithm base c = 1.5849). As always, the biological 
details are more complicated than this because only a fraction of the neurons of 
a symbol actually receive knowledge link synapses – see Sect. 3.6 below and 
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Chaps. 5 and 8 – but the introductory discussion in this section can safely ignore 
these further complications. 

The constant B is the bandgap (a term coined by Dr. Robert W. Means of my 
Fair Isaac research team), in analogy with solid-state physics. What B implies is 
that there are no moderately strengthened synapses – only weak vestigial syn-
apses (which are necessary – see below – but unused) and strong knowledge link 
synapses (which have already been massively strengthened) of minimum 
strength B. 

The dependency of the synapse strength on a logarithmic function of 
p( | ) = p( , )/p( ) is highly consistent with the neuroscience facts. Hebbian 
learning is a saturable pre-synaptic (axonal terminal process) strengthening 
varying directly with the joint firing probability p( , ) of the pre- and post-
synaptic neurons (which code  and , respectively). 

The recently discovered Marder–Turrigiano variable post-synaptic receptivity 
learning (Marder and Prinz 2003, 2002; Turrigiano and Nelson 2004, 2000; Tur-
rigiano et al. 1998) is a saturable efficacy factor, varying directly with 1/p( ), 
implemented in the neurotransmitter transduction zone of the post-synaptic 
neuron, which multiplies the Hebb pre-synaptic output. Thus, overall synaptic 
efficacy is directly related to the product p( , ) · [1/p( )] = p( | ). 

When combined with their saturable character, the combination of Hebb and 
Marder–Turrigiano learning yields roughly the above knowledge link weight 
formula (Eq. 3.4). 

The vast majority of excitatory cortico-cortical synapses situated in the proper 
places to implement knowledge links seem vestigial (see also Chaps. 5 and 8). 
When tested in brain slices using patch clamps (Cowan et al. 2001) these syn-
apses rarely cause any depolarization of the target neuron. This has been inter-
preted as meaning that the vast majority of synapses are “unreliable.” Even when 
they do function, their depolarization impact on their target cell is small. 

This seeming paradox – that a vast majority of cortical excitatory synapses of 
the type most likely used to implement knowledge links are weak and unreli-
able – has puzzled neuroscientists for years. A variety of schemes have been 
devised to explain how such synapses might function. But the evidence suggests 
that they do not function. 

Few neuroscientists are willing to accept the notion that brains deliberately 
create, and assiduously maintain, trillions of hardware elements (vestigial know-
ledge link final synapses) that are unused. Yet confabulation theory suggests 
exactly this design. 

Vast numbers of vestigial synapses must be present in order to support in-
stantaneous learning. Without this seeming “waste,” most cognitive learning, 
and therefore survival, would not be possible. 

When a symbol pair are first seen to co-occur “non-casually” (e.g., the target 
symbol is used shortly thereafter as an assumed fact), a new knowledge link is 
immediately created by temporary strengthening of the involved synapses. This 
might occur via the long-term potentiation (LTP) mechanism (Cowan et al. 
2001), but more likely occurs via another as-yet-unknown mechanism, acting 
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upon the (vestigial) transponder-neuron-to-target-symbol-neuron synapses (see 
Sect. 3.6). Permanent strengthening of these synapses, if warranted, then occurs 
over the following few sleep periods (Chaps. 1, 5, 7, 8; Sejnowski and Destexhe 
2000). Hippocampus and entorhinal cortex somehow “index” the involved sym-
bol pairs so that, if a particular knowledge link is deemed to be strongly associ-
ated with reductions of drive or goal states, it can be consolidated into perma-
nence over the following 100 hours or so. 

For any knowledge link to be used, its knowledge base must be deliberately 
enabled. Knowledge base enablement is hypothesized by the theory as a primary 
function of higher-order thalamus (Sherman and Guillery 2006; Casagrande et al. 
2005; Paxinos and Mai 2004). Enablement ensures that active symbols do not 
broadcast excitation through all the knowledge links they source – but only the 
ones that belong to deliberately enabled knowledge bases involved in a currently 
ongoing confabulation or multiconfabulation. As with the control of confabula-
tion, knowledge link enablement is thought to be controlled via thought-control 
inputs emanating from sub-cortical thought-control nuclei (roughly analogous 
to the motor nuclei involved in movement). 

Since knowledge links form within genetically dictated knowledge bases strict-
ly on the basis of meaningful symbol pair co-occurrence, it is common for pairs 
of symbols in modules with disparate attributes (e.g., visual and language) to be 
linked. Thought processes often involve expression of disparate assumed facts on 
multiple modules as inputs to an immediately subsequent confabulation. 

For example, selection of a next plan execution step might involve excitation 
of a planning module’s symbols by knowledge links arriving from visual, lan-
guage, auditory, and olfactory assumed facts. The conclusion symbol selected 
(the descriptor of the next plan execution step) is that symbol receiving the hig-
hest total excitation from these knowledge links. That this works is astounding. 
Yet it does (as shown in Chap. 6)! This universal interoperability of cognitive 
knowledge (empowered by the additive knowledge combination cogency maxi-
mization mathematics of confabulation) is one of the most powerful characteris-
tics of animal thought. 

3.6  Neuronal Implementation of Knowledge Links 

Over the past decade I have been investigating statistical models of how two-
stage synfire chain knowledge links might be implemented in a pre-wired cor-
tex. Model A, introduced in 2002 into the curriculum of my UCSD ECE-270 
year-long graduate sequence, models one knowledge link. Model B considers 
5,000 such links all emanating from the same symbol (this is a “worst case” 
analysis to show that this hypothesized neuronal implementation can support 
huge numbers of knowledge links without mutual interference). Model A is 
presented below. 

Model A is implemented as the Microsoft Excel spreadsheet shown in Fig. 3.2. 
It models the single knowledge link shown in Fig. 3.3. Both the source and target 
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symbol of Model A are assumed to be represented by a collection of 70 neurons 
(located in layers II/III of the cortical patches of their respective thalamocortical 
modules – row 12 in Fig. 3.2). 

Each source symbol neuron is assumed to send 30,000 axon collaterals, each 
ending in a synapse, to transponder neurons (row 9) located within a total of  
25 modules (row 10). Each transponder neuron is assumed to send 30,000 axon 
collaterals, each ending in a synapse (row 10), to symbol-representing neurons 

 

Fig. 3.2. Knowledge link Model A. See text for details 
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located within a total of 25 modules (row 10). Each transponder neuron and 
symbol-representing neuron within the involved modules is assumed to have  
a uniformly equal chance of receiving each of the synapses directed at its popu-
lation (rows 11, 14, 19, and 20). 

Model A assumes that a transponder neuron must receive inputs from four 
source symbol neuron synapses (row 13) in order to become highly excited and 
participate in the transponder re-representation of the symbol. 

The modules that the transponder neurons send axon collaterals to are not 
exactly the same ones that the source symbol neurons send to. However, it is 
assumed that 75% of them are the same (row 15). This is Model A’s way of deal-
ing realistically, but in a mathematically simple way, with the much more com-
plicated (global and local), genetically specified patterns of excitatory axon dis-
tribution in human cortical white matter. 

Model A examines a single knowledge link by first calculating the probability 
(row 11) that one of the 360,000 neurons which are candidate transponder neu-
rons (rows 2 through 8) in each of the 25 modules that receive the outputs from 
the 70 source symbol neurons (row 12) will receive a synapse from a source 
symbol neuron. This probability is denoted by p (row 11). 

Given p, Model A then calculates (using the binomial distribution – row 14) 
the expected number of transponder neurons which will receive at least the mi-
nimum required four inputs (row 13) from source symbol neuron synapses. This 

 

Fig. 3.3. Hypothesized neuronal implementation of a knowledge link. See text for details 
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calculation is predicated on the assumption that these synapses are uniformly 
and independently randomly distributed. This calculation shows that there will 
be about 922 transponder neurons. By this mechanism, the initial set of 70 active 
source-symbol-representing neurons is “amplified” to 922 highly excited trans-
ponder neurons. 

The synapses between the source symbol neurons and the transponder neu-
rons are assumed to be moderately strong and reliable. These synapses are as-
sumed to be moderately permanently strengthened, by a separate “non-Hebbian” 
process, on the basis that the transponder neurons must become a reliable mo-
mentary surrogate for the source symbol neurons for decades to come. This 
process must be “non-Hebbian” because the transponder neurons are not al-
ready excited before the inputs from the source neurons arrive. This is a neuro-
science prediction of confabulation theory. Because of this modest strengthen-
ing, it is assumed that only four synapses from source neurons are required to 
excite a successful transponder neuron. 

The excited state is less potent than the active state, and the outputs delivered 
by the transponder neurons are far less synchronized than those of the source 
symbol neurons – and for these reasons (and others not discussed here) the 
transponder neurons cannot go on to “ignite” an even larger set of “secondary” 
transponders. However – and this is the key to knowledge link implementation – 
the transponders are sufficiently numerous to make sufficiently strong connec-
tivity to a sufficiently large subset of the target symbol neurons a virtual cer-
tainty. This is the next issue addressed by Model A. 

The synapses which exist from transponder neurons to target symbol neu-
rons are all highly strengthened. It is assumed that only four such synapses are 
required to highly excite a target symbol neuron (row 17), even if that neuron is 
initially inactive. The expected number of target symbol neurons which receive 
this number of transponder neuron synapses is again based upon uniform inde-
pendent random distribution of these connections (row 19). Thus, Model A 
shows that 14 out of the 70 target symbol neurons will become highly excited by 
inputs from transponder neurons re-representing the source symbol. 

The final issue addressed by Model A is to quantify the expected number of 
symbol-representing neurons of the target module that will be erroneously ex-
cited by this knowledge link (i.e., symbol-representing neurons that do not par-
ticipate in representing the target symbol). Erroneous excitation is assumed to 
happen whenever a target module symbol neuron receives at least 10 un-
strengthened transponder neuron synaptic inputs (row 18). 

Erroneous symbol neurons are potentially a problem because, even though 
the probability of each symbol neuron being highly excited is low, there are  
a total of 360,000 symbol neurons in the target module. Row 20 calculates the 
expected number of erroneously highly excited target module symbol neurons 
using the binomial distribution. The result is 52 expected erroneous neurons. 
Since these are spread randomly across the symbols of the target module, no 
symbol’s excitation level will likely be significantly affected. Thus, spurious acti-
vations are not a problem. 
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In summary, Model A shows that human cortical implementation of billions 
of knowledge links by two-stage synfire chains (Abeles 1991) may be possible. 
This crude model now needs to be followed up by more detailed models that 
take detailed neuroanatomy and neuronal behavior into account. 

3.7  Neuronal Implementation of Confabulation 

This section describes a current simple mathematical model (Model 5) of how  
a module implements confabulation. Model 5 is simply awful, as are all existing 
models. This is an area of research that needs a lot of work. However, now that 
we know that cortical information-processing is based entirely upon attractor 
networks, it should be possible to garner the talent and resources to attack this 
problem more vigorously. 

The first mathematical model of an attractor network that explicitly con-
verges to one of L fixed collections of active neurons (symbols) is that developed 
by Karen Haines and myself in 1988 (Haines and Hecht-Nielsen 1988). This 
network is constructed out of two Willshaw non-holographic associative memo-
ries (Willshaw et al. 1969) connected reciprocally. 

Computer experiments with this network were first carried out during the 
mid-1990s by students in my UCSD ECE-270 graduate course Neurocomputing 
(a course which Haines helped develop during the period 1987–1992). These 
experiments yielded two conclusions: First, the network would converge to the 
symbol that was closest in Hamming distance to the starting state – as long as 
that Hamming distance was relatively small compared to the number of neurons 
in each symbol (all the symbols are represented by about the same number of, 
randomly selected, neurons). Second, under the above condition, the network 
would almost always converge in one cycle (Haines and I had proved conver-
gence in 1988, under certain conditions, but did not know how quickly it would 
happen). Another key attribute of these networks (which Haines and I had also 
shown mathematically) was that they have no “spurious attractors” – at least 
under the assumptions we employed. The only attractors are the symbols. 

During the 1990s, it became ever clearer to me that it would frequently be ne-
cessary for an initial mixture of tens, hundreds, or even thousands, of partially 
excited symbols to rapidly converge to the single most excited symbol. Our at-
tractor network could clearly not meet this requirement. 

By the early 2000s, Sommer and Palm (Sommer and Palm 1999), and Seung 
and his colleagues (Xie et al. 2001; Hahnloser et al. 2003) had also become inter-
ested in attractor networks with neuron collection attractors. For example, the 
Seung networks featured mutual excitation among the neurons of each symbol 
and mutual inhibition between neurons of different symbols. Both the Sommer 
and the Seung networks are superior to the Haines and Hecht-Nielsen network, 
in that they allow convergence with multiple competing partially excited sym-
bols (for example, a target symbol receiving four of the knowledge links of Mo-
del A of Sect. 3.6 would have roughly 56 – row 19 times four – of its 70 neurons 
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receiving high excitation). However, in all existing networks, the number of 
symbols which can successfully compete is still much too low, and convergence 
is much too slow (seconds or more, a time scale based upon a single neuron 
updating its state once per millisecond). Also, the amount of inhibitory interac-
tion required in the Seung network seems neuroanatomically unrealistic. 

In UCSD ECE-270 (as it is currently formulated) we study five attractor net-
work models (Models 1 5). Model 5 is an improved version of the early Seung 
models. In Model 5, each symbol-representing neuron excites all of the other 
neurons that represent that symbol. [A complication, which the Haines and 
Hecht-Nielsen, Sommer, and Seung models already admirably accommodate, is 
that each symbol-representing neuron actually participates in representing 
many symbols.] 

In Model 5, symbol-representing neurons (which are arranged in a regular 
2-D array) are assumed to inhibit a fraction of the nearby symbol-representing 
neurons which they do not excite. This inhibition is assumed to be implemented 
by local inhibitory interneurons possessing many gap junctions between them 
(Fukuda et al. 2006). This has the effect of essentially producing a level of local 
inhibition based upon the maximum excitation level of nearby symbol-repre-
senting neurons. 

Model 5 is successfully able to deal with starting mixtures of hundreds of par-
tially excited symbols, and its inhibitory elements fit within the confines of 
known cortical neuroanatomy and neurophysiology (e.g., the gap junctions used 
in the model are known to exist). However, Model 5’s convergence speed is still 
far too slow. 

Development of Models 6 and 7 (having formal neurons and spiking neurons, 
respectively) is now underway. These models incorporate the full known tha-
lamocortical loop from cortical layers II/III to layer V to layer VI to first-order 
NRT/thalamus, back to NRT/cortical layer IV, and thence back to layers II/III 
(Sherman and Guillery 2006; Casagrande et al. 2005). The goal of Model 6 is to 
understand the basic mechanism used to dramatically speed up the confabulati-
on competition process in thalamocortical modules. The goal of Model 7 is to 
implement Model 6 using spiking neurons [e.g., via the Izhikevich phenomeno-
logical spiking neuron model (Izhikevich 2006, 2007)]. 

The ultimate goal of this research is to produce accurate predictions of in vivo 
confabulating thalamocortical module neuronal behavior which can be extrac-
ted and tested. This research is underway in the UCSD Confabulation Neuro-
science Laboratory under sponsorship of ONR. 

3.8  The Origins of Confabulation Theory 

Any new scientific development has a key historical question attached to it: How 
did the discovery come about? In other words, upon whose shoulders did the 
final discoverer choose to stand? Since almost every scientific discovery (and 
certainly this one) is the product of centuries of largely unheralded toil by tens 
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of thousands of scientists, it may seem unfair to single out a few. But the actual 
process of doing science almost always involves selection of a fixed set of clues 
developed by specific previous research and then years of trying to discover how 
these selected clues fit together in nature [Albert Einstein termed this capability 
to spot key clues “good taste” and attributed his scientific success largely to 
possession of it (Einstein 1961).] The owners of these “penultimate shoulders” 
deserve rich praise and thanks from the world. But only the final discoverer 
definitively knows who they are. Unequivocal identification of these key con-
tributors to the confabulation theory discovery is the purpose of this section. 

Of the many thousands of items of past research of which I am aware, the  
overwhelmingly most important and influential relative to the confabulation 
theory discovery were those of Anderson (Anderson et al. 1977; Hecht-Nielsen 
1989), Willshaw (Willshaw 1969; Hecht-Nielsen 1989), Abeles (Abeles 1991), and 
Singer (Gray et al. 1989; Freiwald et al. 2001; Fries et al. 2002). 

If we were to separate the knowledge links and symbol sets, which are mashed 
together in Anderson’s 1977 “Brain State in a Box” construct, we would essen-
tially have a confabulation architecture. The BSB has, for almost 30 years, helped 
to strongly guide my research. The BSB’s fixed symbol sets for describing object 
attributes, Hebbian co-occurrence-based knowledge links between pairs of sym-
bols, and attractor network processing have, for all this time, been, for me, es-
sential elements of any acceptable theory of thought. 

Willshaw’s 1969 “non-holographic associative memory” construct has, for 
over 35 years, provided me with a mathematical and conceptual understanding 
that the fundamental components of cognition must, in some way, be neuron 
collections. When, in 1988, Karen Haines and I developed, and theoretically 
investigated the capabilities of, attractor networks constructed from a pair of 
reciprocally connected non-holographic associative memory structures (Haines 
and Hecht-Nielsen 1988), it quickly became clear to me that this sort of attractor 
network, robustly converging to fixed, sparse collections of neurons, each collec-
tion representing one symbol, was another essential element of an eventual  
theory of thought. 

Abeles’ 1991 “synfire chain” construct provided key insight into how billions 
of knowledge links, each connecting one symbol’s neuron collection to that of 
another, can be instantly formed, on demand, in a pre-wired brain. 

Singer’s 1989 discovery of pairs of precisely synchronized cortical “feature 
detector” neurons in vivo at distances of hundreds of microns from one another  
[a discovery related to earlier synchronization hypotheses of Hebb (Hebb 1949), 
von der Malsburg (von der Malsburg 1981), Crick (Crick 1984), and Kryukov – 
now Monk Fiofan, (Kryukov et al. 1990), of which I was aware] provided me 
strong encouragement that symbols are briefly simultaneously active neuron 
collections in which detailed spike timing plays some important role. 

The final realization – that a simple winners-take-all attractor network func-
tion in which symbols belonging to a single module compete on the basis of their 
additive excitation by incoming antecedent-support-probability-weighted know-
ledge links (i.e., confabulation) was all that was needed to explain thinking – took 
15 more years. 
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An indispensable contributor to the successful completion of this final re-
search phase was domestic cat Zeus Hecht-Nielsen (for photos see Chaps. 2 
and 8), who functioned over this period as co-investigator, behavioral observa-
tion subject, and muse. On the majority of mornings from his birth in May 1990 
to the present, Zeus and I have spent time together exploring the grounds of the 
family compound and then sharing breakfast. These thousands of hours of 
interaction and observation provided essential insights that led to the four main 
elements of confabulation theory. Without Zeus, there would be no confabula-
tion theory. 

My deepest thanks to James Anderson, David Willshaw, Moshe Abeles, Wolf 
Singer, and Zeus Hecht-Nielsen. 

3.9  Discussion 

The mathematics of thought, as sketched in this chapter, is probably close to its 
final form. The neuroscience of thought (e.g., as described here and in Chaps. 5 
and 8) is, at the gross level (modules, symbols, confabulation, and behavioral 
triggering), probably also close to finalized. However, as illustrated by the primi-
tive neuronal implementation models of knowledge links and confabulation 
sketched in Sects. 3.6 and 3.7, the neuroscience at more detailed levels has a long 
way to go. Hopefully, this chapter will help recruit more researchers to consider 
and investigate confabulation theory. 
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4  Cogent Confabulation4 

A new model of vertebrate cognition is introduced: maximization of cogency 
p( | ). This model is shown to be a direct generalization of Aristotelian 
logic, and to be rigorously related to a calculable quantity. A key aspect of this 
model is that in Aristotelian logic information environments it functions logi-
cally. However, in non-Aristotelian environments, instead of finding the conclu-
sion with the highest probability of being true (a popular past model of cogni-
tion), this model instead functions in the manner of the “duck test,” by finding 
that conclusion which is most supportive of the truth of the assumed facts. 

4.1  Introduction 

An appealing model of cognition (Bender 1996; Nilsson 1998; Pearl 2000 – see 
Chap. 3) is to generalize Aristotelian implication    by finding that sym-
bol  which maximizes a posteriori probability p( | ) (for concreteness, 
four assumed fact symbols , , , and , and a conclusion symbol , each 
drawn from its own separate module, with juxtaposition indicating Boolean 
AND, will be used in the discussion of this chapter; the generalization to arbi-
trary situations is obvious). However, as discussed in Sect. 4.3, this model of 
cognition is not correct. This chapter introduces a new model of vertebrate 
cognition: maximization of cogency p( | ) – and considers some related 
mathematical quantities. 

Some terminology: Assuming that the combined assumed facts  are 
true, the set of all symbols  (in the answer module from which conclusions are 
being sought) with p( | ) > 0 is called the expectation, the elements of 
which, in descending order of their cogencies, are termed candidate conclu-
sions or answers. 

                                                                 
4 This chapter is a reformatted reprint of the original publication Hecht-Nielsen R (2005) Cogent 

confabulation. Neural Networks 18:111–115, Copyright (2005), used with permission from El-
sevier. 
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4.2  Cogency and Confabulation 

Assume that    exclusively in the answer module. Then p( ) > 0 and 
p( ) = 0 for all such other answer module symbols . Thus, p( | ) = 
p( )/p( ) > 0 and p( | ) = p( )/p( ) = 0 for all other symbols . 

This establishes: 

Theorem 4.1: If    exclusively, then maximization of cogency produces 
one and only one answer: .   

Thus, surprisingly, in an Aristotelian logic information environment, maxi-
mizing cogency will produce logical answers. But what about more general envi-
ronments? Conceptually, cogency maximization works like the duck test: if  
a duck-sized creature quacks like a duck, walks like a duck, swims like a duck, 
and flies like a duck (assumed facts ), then we accept it as a duck (because 
duck, , is the symbol that, when it is seen, most strongly supports the probabil-
ity of these assumed facts being true; i.e.,  maximizes p( | )). There is no 
logical guarantee that this creature is a duck; but maximization of cogency 
makes the decision that it is and moves on. 

Of course, cogency p( | ) is a conceptual, notional quantity and can only 
be calculated in trivial situations. Consider the possibility of using confabulation 
(maximization of the product p( | ) · p( | ) · p( | ) · p( | ) or, equivalently, the 
sum of the logarithms of these probabilities) as a surrogate for maximizing co-
gency. [It is assumed that all required pairwise conditional probabilities p( | ) 
between symbols  and  are known. This assumption is termed exhaustive 
knowledge.] Each meaningful non-zero p( | ) is termed an individual item of 
knowledge. 

An exact mathematical relationship between the confabulation product  
and cogency is now derived. Applying the probabilistic chain rule identity 
p(abcde) = p(a|bcde) · p(b|cde) · p(c|de) · p(d|e) · p(e) to cogency, and using the 
fact that the AND operation commutes, we can write the quantity p( | ) 
in all four of the following ways: 

p( | )  = p( )/p( ) 
  = p( | ) · p( | ) · p( | ) · p( | ) 
p( | )  = p( )/p( ) 
  = p( | ) · p( | ) · p( | ) · p( | ) 
p( | )  = p( )/p( ) 
  = p( | ) · p( | ) · p( | ) · p( | ) 
p( | ) = p( )/p( ) 
  = p( | ) · p( | ) · p( | ) · p( | ).  (4.1) 

Multiplying these equations together gives: 

[p( | )]4 = [p( | ) · p( | ) · p( | )] · [p( | ) · p( | )  
 · p( | )] · [p( | ) · p( | ) · p( | )] · [p( | ) 
 · p( | ) · p( | )] · [p( | ) · p( | ) · p( | ) · p( | )]. (4.2) 
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Applying Bayes’ law to the conditional probabilities in the first four parenthe-
ses yields: 

[p( | )]4 = [p( )/p( ) · p( )/p( ) · p( )/p( )]   
 [p( )/p( ) · p( )/p( ) · p( )/p( )]   
 [p( )/p( ) · p( )/p( ) · p( )/p( )]   
 [p( )/p( ) · p( )/p( ) · p( )/p( )] · 
 [p( | ) · p( | ) · p( | ) · p( | )]. (4.3) 

If any of the probabilities within the first four bracketed quantities on the 
right side of this equation are zero, but the fifth bracketed quantity is not zero, 
then this is said to be an exceptional case. Noting that the first probability in 
each of the first four parentheses equals p( ) and rearranging and simplify-
ing yields: 

Theorem 4.2: Given non-exceptional assumed facts , , , and , and expecta-
tion element , then the following exact relationship holds between cogency 
p( | ) and the confabulation product p( | ) · p( | ) · p( | ) · p( | ): 

[p( | )]4 = [p( )/p( )] ·  
 [p( )/p( )] ·  
 [p( )/p( )] ·  
 [p( )/p( )] ·  
 [p( | ) · p( | ) · p(  | ) · p(  | )].   

To see a key implication of Theorem 4.2, consider the following concrete case: 
five distinct, but identical, modules. Each module possesses 10,000 symbols, 
each representing exactly one of the 10,000 most common words in a huge refer-
ence corpus of uncapitalized proper English text (novels, encyclopedias, news 
stories, etc.). Let assumed fact symbols , , , and  be drawn from modules 1, 
2, 3, and 4, respectively; representing a contiguous sequence of four words of 
text. Then let us consider which symbols , if any, from module 5 would make  
a suitable completion to this phrase . These ’s will be the symbols with the 
largest cogencies p( | ). To make the example even more concrete, let the 
assumed fact phrase be:  = the train was going and consider one pos-
sible expectation symbol , representing the word south. Then, 

p( )/p( ) = p(the train was going south)/ 
 p(the __ __ __ south) 
p( )/p( ) = p(the train was going south)/ 
 p(__ train __ __ south) 
p( )/p( ) = p(the train was going south)/ 
 p(__ __ was __ south) 
and 
p( )/p( ) = p(the train was going south)/ 
 p(__ __ __ going south) 
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where an underline indicates a word position that is not being considered in 
calculating the probability. 

Note that if  (south) were replaced by any other expectation element 
(north, east, west, fast, slow, etc.) these ratios would probably change 
very little. Thus, in non-exceptional cases, these first four terms might function 
approximately as a positive constant independent of , making the product 
p( | ) · p( | ) · p( | ) · p( | ) and the fourth power of cogency approximately 
proportional. Under these circumstances, confabulation and maximizing co-
gency will give the same answers. Theorem 4.2 is postulated to be the “funda-
mental theorem” of vertebrate cognition. 

While the above argument may be correct in the specific case of English phra-
se completion considered, how can we be sure that the first four terms of the 
fundamental theorem will, in general, be approximately constant for all expecta-
tion elements ? In general, we cannot. Besides the problem of exceptions 
(which, it turns out, can be handled by explicitly learning all of them), badly 
designed modules or ill-mannered information environments can almost cer-
tainly cause these first four terms to not be approximately constant for all expec-
tation elements. 

Biological systems find ways of exploiting a variety of scientific, technologi-
cal, and mathematical principles, but to do so, they must often improvise (by 
evolution) specific designs that conform to the requirements and limitations of 
the principle. Cellular biochemistry developed in the ocean and so we must car-
ry the ocean around with us in order to use these innovations. Cognition is pre-
sumably like this. With the proper modules and knowledge, developed in the 
proper sequence via exposure to the proper information environments (which 
are all things that, ultimately, genetics, and therefore evolution, can control), the 
fundamental theorem of cognition can be exploited and confabulation can be 
cogent. Without these restrictions, confabulation probably does not work. 

4.3  Confabulation Examples 

Here are some examples of confabulation applied to phrase completion. As in 
the discussion of Theorem 4.2, a sequence of four words, each from its own mo-
dule, is given as assumed facts , , , and  (in some examples only one, , two, 

, or three, , assumed facts are used). Confabulation is used to select the 
symbol  of the next word after the assumed fact phrase. Each module has 10,000 
symbols, representing the 10,000 most commonly encountered words in  
a 1.4  109-word proper English training corpus composed of books, news sto-
ries, encyclopedias, etc. For simplicity, capital letters are not used. The pairwise 
conditional probabilities were obtained by marching a five-contiguous-word 
window one word at a time from the beginning word of the training corpus to 
the end. Each time a contiguous sub-string of two to five words without internal 
punctuation appeared at the right-hand end of the window, counts were gath-
ered and stored for that substring in the corresponding selections of four 
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10,000  10,000 matrices (one for each of the first four symbol modules paired 
with the fifth). 

After the march through the training corpus, the probability p( | ) between 
symbols  and  was approximated by c( , )/c( ), where c( , ) is the count of 
the number of times the word represented by symbol  (belonging to one of the 
first four modules) and the word represented by symbol  (belonging to the fifth 
module) appeared together, and c( ) is the total number of times symbol  ap-
peared in module five with any symbol of the  module during the march (c( ) 
is equal to the sum of the c( , ) across all symbols  belonging to the  module). 
Only the pairwise conditional probabilities between symbols in the first four 
modules, conditioned on symbols of the fifth module, were computed because 
the phrase completion confabulations were always carried out with the fifth 
module as the answer module. Symbol pair counts below 3 were thrown out (set 
to zero) as accidental or meaningless, as were calculated p( | ) values below 
0.001. This knowledge acquisition process yielded 5,251,335 meaningful items of 
knowledge. This knowledge acquisition process was carried out on a desktop 
computer in a few hours. 

To test the system, a highly literate but non-technical person was asked to 
create a number of test word sequences to be completed. Confabulation was 
then applied to these assumed facts with the results shown below. The symbols 
determined by confabulation to be expectation elements are shown in decreas-
ing order of the confabulation product value. When an expectation had seven or 
more answers, the words corresponding to the top six are shown in parentheses, 
followed by the total number of symbols in the expectation; if six or fewer an-
swers were found, square brackets are used, and all of the corresponding words 
are shown: 

she could determine (whether, exactly, if, why, how, 
precisely) 8 
if it was not (immediately, clear, enough, true, properly, 
stupid) > 999 
earthquake activity was [centered] 
for lack of a (unified, blockbuster, comprehensive, 
definitive, coordinated, protein) 111 
a lack of (urgency, oxygen, understanding, confidence, 
communication, enthusiasm) 407 
regardless of expected [outcome, length] 
cars drove down a (lane, freeway, highway, dirt, taxi, 
tying) 9 
driving west on interstate [highway, freeway] 
snow fell in (freezing, montana, portions, northwestern, 
northeastern) 11 
the facts point to [ ] 
threats of terrorist [attacks, retaliation, strikes, 
violence] 
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the machine (tools, tool, guns, gun, operator, shop) 33 
children can learn [lessons, math, english] 
students can learn [lessons, math, english] 
college students can learn [math] 
knowledge of historical [facts, subjects, styles] 
questions that cannot be (answered, solved, resolved, 
avoided, addressed, yes) 9 
benefits from additional (cost-cutting, taxable, 
protections, taxes, acquisitions, payroll) 11 
limitations [expired, expires, imposed] 
her responsibility for taking [sole, matters] 
her responsibility for making [errors, matters, sure, 
references, choices, lethal] 
his responsibility for making (mistakes, matters, bombs, 
references, decisions, sure) 11 
his responsibility for taking [actions, sole, matters, 
decisions] 
mechanical failure [caused] 
crowded (commuter, marketplace, subway, courtroom, 
skies, sidewalk) 62 
they crowded (onto, lobby, shopping, shelters, around, 
into) 22 
beaches are covered with [pools] 
there were many (indications, surprises, instances, 
casualties, signs, exceptions) > 999 
are easy to (install, dismiss, detect, locate, 
accumulate, criticize) 159 
microsoft makes software for [apple’s, desktop, hardware] 
the green car turned [yellow] . 

Notice the automatic and instantaneous emergence of “grammar” and  
“semantics.” 

4.4  Discussion 

In the experiments above, many of the completed phrases never appeared any-
where in the training corpus. This strong ability to correctly generalize to cases 
which are novel in detail, but which involve familiar elements and include no 
unlearned exceptions, is a favorable characteristic that confabulation seems to 
possess. In addition, tens of nonsense phrases (e.g.,  = tune card fly 
bold) were tested as assumed facts for phrase completion and, in every case, 
confabulation returned no answers. 
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Some of the phrase completion examples presented above are perfectly valid 
sets of assumed facts (e.g., the facts point to), which should have at least 
some reasonable completions. Yet confabulation returns no answers. This is an 
indication that the knowledge used is not completely exhaustive. Thus,  
a collection of knowledge that falls somewhat short of being exhaustive seems to 
translate into a tendency to make errors of omission, not commission; a gener-
ally favorable attribute. 

Synaptic learning of the p( | ) probabilities (Chaps. 3, 5, and 7; Hecht-
Nielsen 2004) and the high-speed parallel competitive “winners-take-all” im-
plementation of confabulation by neuronal attractor networks (Anderson et al. 
1977; Sommer and Palm 1999; Amit 1989) seem biologically plausible. 

Now, as quickly as you can, select a next word for each of the following phrases: 

company rules forbid taking
mickey and minnie were
capitol hill observers are
paper is made from
riding the carousel was

The idea of finding that conclusion  which has the highest probability of be-
ing true, p( | ), given the assumed facts, , has, for decades, been an 
attractive model of cognition. This attractiveness is seemingly bolstered by the 
(average error rate) optimality of a posteriori probability in pattern classifica-
tion. A great deal of study has gone into this model (Bender 1996; Nilsson 1998; 
Pearl 2000). However, this is actually an awful model of cognition. Consider the 
following numerical calculations. 

Given a set of assumed facts , let  be a conclusion with a priori prob-
ability p( ) = 0.01 and  an alternative conclusion with p( ) = 0.0001. Also as-
sume that p( | ) = 0.01 and p( | ) = 0.2. Applying Bayes’ law twice to  
a posteriori probability yields: 

p( | ) = p( | )  [p( ) / p( )].  (4.4) 

Thus, p( | ) = 5  p( | ) and so the policy of maximizing a posteriori 
probability will overwhelmingly choose  over  even though p( | ) = 
20   p( | ). Thus, it should be possible to discern whether maximum a posteri-
ori probability is a good model of cognition by seeing how strongly a priori prob-
ability enters into cognitive decision making. In performing the above phrase 
completions, you have produced relevant (although perhaps not statistically sig-
nificant!) experimental data that bears on this question. 

In an informal poll, typical answers for the completions were: naps, happy, 
wondering, wood, and fun. However, in each example, the word the is both 
a viable answer and, by far, the most frequent word in English; so, if maximiza-
tion of a posteriori probability were a correct theory of cognition, you would 
surely have selected it, overwhelmingly (as the above calculation illustrates), in 
every case. Instead, as with the computer confabulation experiments presented 
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in the previous section, you probably selected words with much higher cogen-
cies than the. 

Cogency, p( | ), the cognitive analog of class probability in pattern classi-
fication theory, and likelihood in probability and statistics, has always been 
there. Waiting. Perhaps its time has finally arrived. 
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A fast winners-take-all competition process, termed confabulation (Chaps. 1 4; 
Chaps. 5 8), is proposed as the fundamental mechanism of all aspects of cogni-
tion (vision, hearing, planning, language, control of thought and movement, 
etc.). Multiple, contemporaneous, mutually interacting confabulations – in 
which millions of items of relevant knowledge are applied in parallel – are typi-
cally employed in thinking. At the beginning of such a multiconfabulation, bil-
lions of distinct, potentially viable, conclusion sets are considered. At the end, 
only one remains. This fast, massively parallel application of relevant knowledge 
(an alien kind of information-processing with no analog in today’s computa-
tional intelligence, computational neurobiology, or computer science) is hy-
pothesized to be the core explanation for the information-processing effective-
ness of thought. This paper presents a synopsis of this confabulation theory of 
human cortical and thalamic function. 

5.1  Introduction 

Confabulation theory offers a comprehensive, concrete explanation for animal 
cognition. The theory hypothesizes the specific underlying mathematical me-
chanism of cognition, as well as the human neuronal implementation of that 
mechanism (specified at a “meta-level” of neurophysiological detail: summary 
descriptions of the dynamical behavior of hypothesized sub-groups of neurons). 

Confabulation theory proposes that all aspects of cognition (seeing, hearing, 
command of movement and thought, planning, language, abstract thinking, 
etc.) are implemented using four fundamental elements: (1) a universal modular 
system for representing the objects of the mental world, (2) knowledge links,  
(3) confabulation, and (4) action command origination. These four elements are 
briefly sketched in the following four sections, emphasizing their human im-
plementations. Section 5.6 summarizes the underlying mathematics of confabu-
lation, and Sect. 5.7 sketches multiconfabulation. The concrete numerical pa-
rameter values stated here (cortical patch area, number of neurons representing 
one symbol, etc.) are guesses presented solely to help fix ideas. 

                                                                 
5 This chapter is based on the original publication Hecht-Nielsen R (2006) The mechanism of thought. 

In: Proceedings of the World Congress on Computational Intelligence. Vancouver, BC, Canada. 
July 16–21, IEEE Press, Piscataway, NJ, and is adapted here in accordance with IEEE copyrights. 
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5.2  Confabulation Theory Element 1 

5.2.1  Cognitive World Object Representation 

As illustrated in Fig. 5.1, human cerebral cortex is hypothesized to be exhaus-
tively divided into roughly 4,000 discrete, localized, largely disjoint patches, each 
the cortical component of a module. The exact physical form, and functional 
details, of modules are not specified by the theory, and are not known. For ex-
ample, applying Sutton and Strangman’s “network of networks” hypothesis  
(Sutton and Strangman 2003), each module could be made up of collections of 
smaller “sub-modules.” Another complicating issue is that excitatory cortical 
neurons having “pyramidal” morphology (which make up the majority of corti-
cal neurons) almost surely are further divided into many distinct sub-categories 
that have distinctive connectivity (Markram 2003). 

Each module is used to represent one attribute that an object (visual, audi-
tory, conceptual, abstract, motor process, thought process, plan, etc.) of the 

 

Fig. 5.1. A human thalamocortical module, as hypothesized by confabulation theory. Each 
module consists of a localized cortical patch extending through the full depth of cortex 
having a cortical surface area of roughly 45 mm2 [out of a total of roughly 180,000 mm2 
for both hemispheres (Paxinos and Mai 2003)], and a small localized zone of first-order 
thalamus (Sherman and Guillery 2006; Casagrande et al. 2005) which is reciprocally ax-
onally connected with the module’s cortical patch. The upper-right enlarged notional 
depiction shows the neurons of layer III of the cortical patch of the module. These are 
the neurons which are hypothesized to represent the distinct symbols of the module. 
The “magnified” depiction beneath illustrates that actual modules are probably actually 
irregular in shape (each colored “blob” illustrating what an individual module may look 
like). When their function is being emphasized, rather than their physiology, modules are 
referred to as modules 
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cognitive mental universe may possess (see Fig. 5.2). This representation takes 
the form of the selection of a single symbol from among a set of (typically) thou-
sands of symbols implemented by the module for describing its object attribute. 
For example, if a particular module is used to represent the English name of an 
object, it might be equipped with hundreds of thousands of symbols encoding 
everything from aardvark to cloud to Milan to Zigmund. When invoked (as part 
of a learned and stored thought process being deliberately executed), this mod-
ule will typically activate one of its symbols to represent the name of the object 
being considered. All of its other symbols will be inactive. 

Symbols are the durable, persistent terms of reference for describing the ob-
jects of the mental universe. Clearly, such fixed terms of reference must exist if 
knowledge is to be accumulated over long periods of time. 

 

Fig. 5.2. Each module describes a single attribute that objects of the mental universe may 
possess. This description, when used, is in terms of selection of a single symbol (object 
attribute descriptor) from among a collection of (typically) thousands of distinct symbols 
implemented by the module (the particular module shown here is implementing 
126,008 symbols). Each symbol is represented by a collection of roughly 60 active neu-
rons (a sampling of which are shown for each symbol), each belonging to a special 
population of about 450,000 neurons (shown notionally in the enlarged depiction of the 
module to the upper right of the cortex illustration). The first key hypothesis of confabu-
lation theory is that this is how the objects of the mental world are represented in cere-
bral cortex – by having selected attributes of the object each represented by a single 
active symbol in that attribute’s module 
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Confabulation theory postulates that within each module’s cortical patch the-
re exists a population of neurons that function to represent symbols (Fig. 5.2). 
These neurons may reside within layer III; but their exact location is not impor-
tant for the purposes of this synopsis. Since each square millimeter of full-depth 
cortex has roughly 100,000 neurons (Paxinos and Mai 2003), and this hypothe-
sized symbol-representing neuron population contains roughly 10% of these, 
each module’s 45 mm2 cortical patch will possess about 450,000 of these symbol 
representation neurons. If a particular module implements, for example, 100,000 
symbols, and each symbol of that module is represented by a collection of about 
60 of these neurons (the reason why 60 are needed is discussed below), then it is 
easy to see that, on average, each symbol representation neuron will participate 
in representing about 13 different symbols. 

The symbolic processing that is the heart of confabulation theory critically 
depends upon having the symbols of a module be functionally discrete and dis-
tinct – not fuzzy and overlapping. Worse yet, as will be discussed in Sect. 5.3 
below, during confabulation, the symbols must compete with one another on the 
basis of their representing neuron’s combined total input excitation. Thus, hav-
ing each symbol representation neuron participate in representing many sym-
bols would seem to be an invitation to “crosstalk” and “interference” between 
symbols. However, counterintuitively, such problems probably don’t actually 
arise (Haines and Hecht-Nielsen 1988; Xie et al. 2001; Hahnloser et al. 2003). 

5.3  Confabulation Theory Element 2: Knowledge Links 

Confabulation theory hypothesizes that all aspects of cognition utilize a simple, 
uniform type of knowledge: antecedent support axonal links (Hecht-Nielsen 
2004). Each such individual knowledge link (see Fig. 5.3) connects the neuron 
collection representing one symbol (termed the source symbol of the link) to 
neurons representing a second symbol (termed the target symbol of the link – 
usually a symbol in a different module from that of the source symbol). 

Again, there are details and complications involved. First of all, these axonal 
links are not direct. They are probably implemented as two-stage Abeles synfire 
chains (Abeles 1991). The 60 neurons of the source symbol send axons to a mil-
lion or more neurons scattered all over (many outside its module). Of these 
neurons, thousands receive sufficient synchronized input from multiple source 
symbol neurons to become highly excited. Thus, this first stage of the synfire 
chain “amplifies” the high activity of the 60 neurons representing the source 
symbol to high excitation of many thousands of transponder neurons (as these 
intermediate neurons of the chain are termed). Note that the synapses involved 
in this transponder neuron excitation process will, in general, not be strength-
ened, since the transponder neurons are typically not already active when the 
source symbol excitation arrives (thus failing the Hebb meaningful co-activity 
criterion for synapse strengthening). Of the thousands of transponder neurons 
that are excited by the momentary source symbol neuron activity, their statistical 



 5.3 Confabulation Theory Element 2: Knowledge Links 103 

axonal distributions are assumed to be genetically programmed so that some 
reasonable fraction (say, 10%) of the neurons representing the target symbol will 
receive synapses from multiple (perhaps three to six) transponder neurons. 
During learning, these final link synapses will be strengthened, since the in-
volved transponder neurons and the target symbol neurons will be meaningfully 
co-active. In other words, these synfire chain links from symbol to symbol will 
be formed only if Hebb’s co-occurrence condition on the source and target sym-
bols’ neurons is met. [New knowledge links are immediately, but temporarily, 
established when the involved symbols first co-occur. Permanent strengthening, 
if warranted, then occurs over the following few sleep periods (Chap. 8; Se-
jnowski and Destexhe 2000).] 

The set of all knowledge links connecting the symbols of one module to sym-
bols of a second module is termed a knowledge base. For any knowledge link to 
be used, its knowledge base must be deliberately enabled. Knowledge base  

 

Fig. 5.3. A knowledge link. Confabulation theory hypothesizes that all cognitive knowl-
edge is stored in the form of these axonal communication links. Each individual knowl-
edge link is between the collection of neurons representing a particular symbol (termed 
the source symbol of the knowledge link) and members of the collection of neurons 
representing a second symbol (termed the target symbol of the link). As presciently pos-
tulated by Hebb (Hebb 1949) in 1949, these pairwise neuron-collection-to-neuron-
collection links are established on the basis that the involved source and target symbols 
are meaningfully active at the same time (this is termed meaningful symbol co-
occurrence). The average human is hypothesized to possess many billions of knowledge 
links. That knowledge of such a simple kind can explain all of cognition is astounding, 
but that is precisely the second key hypothesis of confabulation theory 
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enablement is hypothesized by the theory as the primary function of higher-
order thalamus (Sherman and Guillery 2006; Casagrande et al. 2005). 

The average human is postulated to have many billions of individual knowl-
edge links (each of which is termed an item of knowledge). This implies a learn-
ing rate well in excess of one link per second throughout life. If true, this will 
have profound implications for our views of human nature, education, etc. For 
example, a child returning home after a day at school might report that she 
“learned nothing” that day. In reality, she probably began the process of estab-
lishing tens of thousands of new knowledge links. Humans (and other animals) 
are extremely “smart.” 

Another implication of this knowledge link hypothesis is that in order for 
learning to take place “on demand” (i.e., without waiting many days for new, 
correctly connected axons to somehow form) there must probably be a vast 
“overwiring” of cortex to support immediate inauguration of the required syn-
fire chain terminal synapses. Thus, confabulation theory also proposes that only  
a small fraction (roughly 1%) of the cortical synapses available for use in storing 
cognitive knowledge are actually used. Perhaps this is why so many excitatory 
cortical synapses seem “vestigial” and do not function reliably when tested with 
patch clamps. Synapses which are used to store cognitive knowledge are rare. 
Thus, the old saw that “we only use 10% of our brain” may need to be updated 
to: “we only use 1% of our knowledge synapses.” 

Modules are organized into hierarchies, one symbol in a higher-level module 
often representing multiple sets of particular symbols at lower levels. [Hierar-
chies are an old idea, the power of which is amply demonstrated by Fukushima’s 
Neocognitron family of visual neural networks (Fukushima 2005, 1975; Fuku-
shima et al. 1983).] In humans, the modules used to describe language object 
attributes form the core “hub” of cognition. These are connected (via knowledge 
links) to and from modules belonging to almost every other functional category 
of modules. 

5.4  Confabulation Theory Element 3: Confabulation 

Besides implementing a module of symbols for describing that module’s mental 
object attribute; each module is also responsible for carrying out the confabula-
tion operation (a “winners-take-all” competition process among the symbols of 
the module – see Fig. 5.4). Confabulation is postulated to be the only informa-
tion-processing operation used in cognition. The hypothesized neuronal attrac-
tor network (Haines and Hecht-Nielsen 1988; Amari 1974; Anderson et al. 1977; 
Hopfield 1982; Cohen and Grossberg 1983; Kosko 1988; Amit 1989; Sommer and 
Palm 1999) mechanism by which modules (when deliberately commanded to do 
so by a single, graded, thought-command signal input to the module from an 
external source) carry out confabulation is illustrated in Fig. 5.9. 

Figure 5.4 shows many symbols of the module (with symbol neurons notion-
ally represented by colored circles having thicknesses directly related to their  
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excitation levels) receiving various levels of input excitation at a starting time t0 
from incoming knowledge links (as shown, each such knowledge link typically 
only effects a subset of each involved target symbol’s neurons). Delivery of  
a thought-control signal input (illustrated in blue) of rapidly increasing ampli-
tude (indicated by the line thickness of the blue arrow above the module in the 
figure) to the module then causes that symbol with the highest average level of 
total input excitation (among its 60 neurons) to end up having all 60 of its neu-
rons highly active (for a brief moment). This symbol is termed the conclusion of 
the confabulation [confabulations can also end with multiple excited symbols or 
no symbol; but this complication is not discussed here (see Chap. 6)]. Confabu-
lation involves a multitude of parallel, local interactions between the involved 
neurons during the roughly 80 ms required to complete the process. 

 

Fig. 5.4. When deliberately commanded, a module is hypothesized to function as 
a neuronal attractor network. Confabulation theory hypothesizes that all aspects of cogni-
tion are carried out using this single “information-processing operation,” which is termed 
confabulation (this is the third key hypothesis of confabulation theory). Confabulation is 
a simple winners-take-all competition process among the symbols of a module (notionally 
illustrated here showing layer III of the module’s cortical patch). Confabulation takes place 
only when the module receives a deliberate thought-command signal (which originates 
outside the module). The thought-command signal is analog (graded), not binary. At the 
starting time of the confabulation (here denoted by t0), the thought-command signal level 
is low or zero. By rapidly increasing the strength of this command input (which arrives at 
all points of the module via a small number of parallel axons from an external source which 
ramify upon entering the module), the symbols compete with one another on the basis of 
their total excitation at t0. The symbol with the highest initial total excitation wins the 
competition (in this case, the symbol represented by the red neurons). This symbol is 
termed the conclusion of the confabulation. Confabulation is often completed in about 
80 ms. In light of the fact that each module is controlled by a single graded input (just as 
with the contraction of a muscle), modules can be viewed as the muscles of thought 
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In the confabulation theory view of cortical cognitive function (cortex does 
other things besides cognition, such as triggering behaviors – see next section), 
each module has its cognitive activity controlled by a small number of thought 
control input afferents from outside the module. Thus, the theory views a tha-
lamocortical module as an exact analog of a muscle: a discrete “action unit” 
controlled by a single graded input. The exact origin of the thought control ax-
onal inputs to modules is not known, but they probably arise in one or more 
sub-cortical nuclei (Herculano-Houzel et al. 1999; Fries et al. 2001; Freeman and 
Holmes 2005; Makeig et al. 2002). In summary, confabulation theory views mo-
dules as the muscles of thought. 

5.5  Confabulation Theory Element 4: 
The Origin of Behavior 

As illustrated in Fig. 5.5, confabulation theory hypothesizes that every time  
a confabulation operation carried out by any module yields a definitive conclu-
sion (namely, one symbol – not multiple symbols or no symbol), a set of action 
(movement process and/or thought process) commands associated from that 
particular conclusion symbol are immediately launched. This explains the con-
tinual flow of behaviors that emerge, moment by moment, during wakefulness. 
In effect, each new behavior is a response to the latest update to the represen-
tation of the mental world state. Action commands originate in layer V of cor-
tex and typically target sub-cortical nuclei such as motor or thought nuclei or 
the basal ganglia. 

Most behaviors are small “housekeeping” functions (e.g., the next small seg-
ment of a movement or thought process); which are termed microbehaviors. 
Tens of microbehaviors are often implemented in one second. Higher-level be-
haviors (launched by conclusions reached on higher-level, more abstract, mod-
ules devoted to planning or large-scale behavior representation – often residing 
in frontal cortex), such as a decision to take a trip to Copenhagen, are launched 
much less frequently. Microbehaviors are typically executed instantly, whereas 
higher-level behaviors are often treated as “suggestions” and subjected to fur-
ther scrutiny (e.g., by the basal ganglia and by cognitive modules executing plan 
evaluation thought processes) before being executed (or discarded). 

In effect, behavior results (during wakefulness) from the action commands 
which are launched each time the state description of the mental world is up-
dated (by activation of a new confabulation conclusion symbol in a module). 
Each successful confabulation launches the next set of action commands, and so 
on, endlessly until the next sleep period. The wizard homunculus standing be-
hind the curtain pulling the levers of behavior is thereby exorcised. All non-
reflexive and non-autonomic behavior is postulated to originate in this way 
(although many sub-cortical nuclei are involved in continuing, refining, and 
sustaining behaviors once they are started). 
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Fig. 5.5. The conclusion  action principle (the fourth and last key hypothesis of confabu-
lation theory). Here, a module (illustrated, in consonance with Fig. 5.1, as an abstract 
“oval” structure containing a list of symbols to emphasize its module function) has suc-
cessfully completed a confabulation operation (under control of its externally supplied 
thought-command signal) and reached a conclusion (symbol number 9). Whenever  
a module reaches a single conclusion it immediately causes a set of action command 
outputs to be launched (these outputs proceeding to sub-cortical brain nuclei from 
neurons in layer V of the module’s cortical patch). The specific action command outputs 
that are launched are those which have been previously associated from this specific 
conclusion symbol via a completely separate, sub-cortically managed, skill learning proc-
ess (Brown et al. 2004; Shibata et al. 2005). These action command outputs can cause 
behaviors to occur. The conclusion  action principle is hypothesized to be the origin of 
all non-autonomic and non-reflexive behavior. During wakefulness, many behaviors 
(most of them small “microbehaviors”) are launched every second 

5.6  Confabulation Theory Mathematics 

Confabulation theory hypothesizes that the four key elements described above, 
are capable of explaining every aspect of cognition. Here, the underlying ma-
thematics of confabulation is briefly discussed to see why this assertion may be 
tenable. 

Confabulation theory proposes that the underlying mathematical process of 
cognition is maximization of cogency (see Chaps. 3 and 7). For example, con-
sider four assumed fact symbols: , , , and  (these are symbols being ex-
pressed on four different modules, as shown in Fig. 5.6; with each symbol 
transmitting excitation, via all the available knowledge links, to target symbols 
of a fifth answer module that is about to undergo confabulation). Confabulation 
theory hypothesizes that the fundamental underlying mathematical operation of 
cognition is to find that symbol  of the answer module which maximizes co-
gency p( | ). Cogency is the probability of the assumed facts being true, 
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given an assumption that the symbol  is true. In other words, confabulation 
theory claims that each decision-making process involved in cognition is selec-
tion of that conclusion which is most supportive of the assumed facts being 
employed actually being true. 

Cogency maximization is a radical departure from the “Bayesian” viewpoint 
that has dominated thinking in computational intelligence, computational neu-
robiology, and computer science for decades. This viewpoint initially arose in 
the work of R.A. Fisher 80 years ago. It was eventually established that, for any 
fixed system of object property measurement, the optimal pattern classifier is 
that which selects the class which has the highest probability of being the cor-
rect one, given the available measurements (Duda et al. 2000). This optimum 
classifier became known as the “Bayes classifier,” because it involves a condi-
tional probability which (Fisher argued) can be evaluated using Bayes’ law from 
elementary probability theory. Since animals are excellent pattern classifiers, it 
became an article of faith that cognition must therefore be “Bayesian.” This 
view was later expanded to the principle that the “best” conclusion to select in 
any situation will be the one which has the highest probability of being correct, 
given the available facts (Pearl 2000; Korb and Nicholson 2003). Although this 
“Bayesian” viewpoint has a strong intuitive appeal, and has yielded a wide 
range of valuable technological applications, it is an incorrect model of cogni-
tion (see Chap. 3). 

 

Fig. 5.6. Confabulation. Four modules, which have already reached conclusions , , , 
and  in recently completed confabulations, are sending excitation via all available 
knowledge links from each of these symbols to the symbols of a fifth answer module 
that is about to be commanded to carry out confabulation. When completed, this next 
confabulation yields that symbol  of the answer module with the highest total knowl-
edge link excitation. The mathematics of confabulation shows that this conclusion  will 
be that symbol which maximizes cogency p( | ). Confabulation is a general-purpose 
decision-making tool that animals use to carry out all aspects of cognition 
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An important property of cogency maximization (rigorously proven in 
Chap. 4) is that in a “logical information environment” (playing chess, doing 
mathematics, etc.) it yields the same result as classical Aristotelian logic: 

Theorem 5.1: If    uniquely, then  uniquely maximizes cogency 
p( | ).   

Thus, the cogency maximization hypothesis implies that cognition is “logical” 
when that is possible (most of the information environments we encounter are 
not logical). In a “non-logical” environment (e.g., when parking your car), co-
gency maximization just picks the conclusion that best supports the probability 
of the available facts being true, and then moves on (there is no “logical guaran-
tee” that the conclusions reached are correct, but that is not important). 

As shown in Chap. 4: 

Theorem 5.2 [The Fundamental Theorem of Cognition]: Given non-exceptional 
assumed facts , , , and , and expectation element , then the following exact 
relationship holds between cogency p( | ) and the confabulation product 
p( | ) · p( | ) · p( | ) · p( | ): 

[p( | )]4 = [p( )/p( )] 
 · [p( )/p( )] 
 · [p( )/p( )] 
 · [p( )/p( )] 
 · [p( | ) · p( | ) · p( | ) · p( | )], 

confabulation (which maximizes the quantity [p( | ) · p( | ) · p( | ) · p( | )]) 
can, under the mild mathematical condition that the product of the first four 
terms of the right-hand side of this equation is approximately constant for all 
viable conclusions  (a condition which confabulation theory postulates animal 
neurological evolution has been able to satisfy), approximately maximize co-
gency. This is important, because cogency maximization itself cannot be carried 
out in practice. 

In summary, the central mathematical discovery of confabulation theory is 
that, under the mathematical condition of Theorem 5.2, which brain evolution is 
hypothesized to have found ways to satisfy hundreds of million years ago, there 
is no need for a priori probabilities in cognition. (except in the antecedent sup-
port probability weightings of knowledge links, which cortical synapses seem to 
be able to implement; Chaps. 3 and 8). By applying an axonally implementable, 
strictly monotonic logarithmic transformation to the confabulation product of 
Theorem 5.2 [see (Hecht-Nielsen 2006) for details], the neurons of symbol  of  
a confabulating module will be receiving total input excitation I( ) from the four 
knowledge links arriving from (in the specific example case considered in Theo-
rem 5.2) assumed fact symbols , , , and , where: 

I( )  [ln(p( | )/p0) + B] + [ln(p( | )/p0) + B]  
 + [ln(p( | )/p0) + B] + [ln(p( | )/p0) + B]. (5.1) 
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Thus, by eliminating a priori probabilities, and using axonal knowledge links 
with logarithmically-transformed pairwise symbol conditional (antecedent sup-
port) probability weighting (e.g., [ln(p( | )/p0) + B] for the knowledge link from 
symbol  to symbol  in the above equation), an astoundingly simple cogency-
maximizing winners-take-all competition, in which millions of relevant items of 
knowledge are automatically and effectively applied in parallel, via the above 
simple additive knowledge-combination law, can be used to implement all cog-
nitive functions at blazing speed. 

5.7  Multiconfabulation 

My colleagues at Fair Isaac Corporation and I have conducted two types of com-
puter simulation experiments to explore multiconfabulation (see Chap. 6 for 
complete details): sentence continuation without context, and sentence continua-
tion with context (Fig. 5.7). In each experiment, an ordered sequence of three 
words (termed the starter – shown in blue in Fig. 5.7) was supplied. Execution of 
the thought process then caused four phrases to be appended to this starter, the 
first four words of which were retained as the continuation. Some experimental 
results are shown in Fig. 5.8. Below, I briefly describe the confabulation architec-
ture used in the experiments, the learning process employed to prepare it for 
use, and the thought process which was applied to create the continuations. 

Each square in Fig. 5.9 represents a single computer-simulated module (here-
inafter, module). The 82-module confabulation architecture employed in the 
experiments consists of two vertical groupings of modules. The context sentence  

 

Fig. 5.7. The two types of experiments carried out. A / B Sentence continuation without / 
with a previous context sentence being supplied. The “purple box” is the confabulation 
architecture used to create the continuations 
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The New York Times' computer model collapses … 
Stocks proved to be a wise investment . 
The New York markets traded lower yesterday … 
Downtown events were interfering with local traffic . 
The New York City Center area where …
Coastal homes were damaged by tropical storms . 
The New York City Emergency Service System …
Medical patients tried to see their doctors . 
The New York University Medical Association reported … 
 
When the United Center Party leader urged … 
The car assembly lines halted due to labor strikes . 
When the United Auto Workers union representation … 
The price of oil in the Middle East escalated yesterday . 
When the United Arab Emirates bought the … 
 
But the Roman Empire disintegrated during the … 
She learned the history of the saints . 
But the Roman Catholic population aged 44 … 
She studied art history and classical architecture . 
But the Roman Catholic church buildings dating …
 
I was very nervous about my ability … 
Democratic citizens voted for their party's candidate . 
I was very concerned that they chose …
Restaurant diners ate meals that were served . 
I was very hungry while knowing he …
 
In spite of yesterday's agreement among analysts … 
The Mets were not expected to win . 
In spite of the pitching performance of …
The President was certain to be reelected . 
In spite of his statements toward the …
She had no clue about the answer . 
In spite of her experience and her …
 
It meant that customers could do away … 
The stock market had fallen consistently . 
It meant that stocks could rebound later …
I was not able to solve the problem . 
It meant that we couldn't do much …
The company laid off half its staff . 
It meant that if employees were through …
The salesman sold men's and women's shoes . 
It meant that sales costs for increases … 

Fig. 5.8. Sample of experimental results. Using the same color scheme as Fig. 5.7, the 
first line of each text block is the result of a continuation trial without context. The sub-
sequent lines are a supplied context sentence followed by the same starter and the 
continuation with context 
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Fig. 5.9. Inside the “purple box” of Fig. 5.7: the confabulation architecture employed in the 
experiments (see text). The swirling red arrow indicates the sentence continuation 
thought process, during which the thought-control signals to the “unlocked” phrase 
modules (i.e., P4, P5, P6, and P7 – those not used to re-represent the starter at the phrase 
level) and word modules (W4, W5, W6, and W7) of the continuation grouping are pro-
gressively “tightened” to yield the confabulation consensus 

grouping on the left is used to represent the context sentence, when one is em-
ployed. The continuation sentence grouping on the right is used to represent the 
starter and to carry out the thought process to obtain the confabulation consen-
sus; which yields the continuation. 

The 20 word modules comprising the bottom row of both groupings (of which 
the first seven are illustrated in Fig. 5.9) are used to represent individual English 
words or punctuation marks of a sentence (in order, from left to right). Each word 
module has 63,008 symbols representing common words and punctuations. Each 
punctuation mark is treated as a separate word. Capitalized words are repre-
sented by their own separate symbols (e.g., exit and Exit have separate symbols). 
In both groupings, a middle row of 20 phrase modules (of which the first seven are 
shown in Fig. 5.3) and the one top-level sentence meaning content summary 
module each have 126,008 symbols representing common words, multi-word 
phrases, and punctuations in English. 

An individual symbol of a module can be unidirectionally connected to an 
individual symbol of certain other modules via a knowledge link. The ordered 
pairs of modules for which knowledge links are allowed (indicated by the know-
ledge base arrow patterns in Fig. 5.9), are now described. 
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In the context sentence grouping: each phrase module receives knowledge ba-
ses from all word modules except those that lie to its left, and the summary mo-
dule receives knowledge bases from each of the phrase modules. In the con-
tinuation sentence grouping, every word (phrase) module receives knowledge 
bases from every word (phrase) module on its left; every phrase (word) module 
receives a knowledge base from every word (phrase) module, except those on its 
left (right); and the summary module sends knowledge bases to, and receives 
knowledge bases from, each of the phrase modules. Finally, a knowledge base 
links the summary module of the context grouping to that of the continuation 
sentence grouping. Thus, there are a total of 1,071 knowledge bases in this  
architecture. 

Learning consisted of two phases: exposure of the continuation grouping of 
modules alone to single sentences (124 million examples), followed by exposure 
of the whole architecture to meaning-coherent pairs of successive sentences 
(70 million examples). Following completion of the first phase of learning and 
before the second began, the context grouping knowledge base collections 
shown with the same color in Fig. 5.9 were copied, in order, from their corre-
sponding mates of the continuation grouping. The 70 million sentence pair ex-
amples were then used to build the knowledge base linking the context grouping 
summary module to the continuation grouping summary module. The examples 
used in learning were drawn from a varied proper English corpus containing 
novels, encyclopedias, news stories, etc. 

In the initial learning phase, each of the single sentences was represented by 
the modules of the continuation grouping. The counts of pairwise symbol co-
occurrences in pairs of modules linked by a knowledge base were accumulated. 
After all 124 million example sentences had been entered, those symbol pairs 
with meaningful co-occurrence counts had knowledge links established for 
them. Finally, during the second phase of learning, the meaning-coherent sen-
tence pairs were entered and represented in temporal order on the two module 
groupings and symbol co-occurrence counts were accumulated for the summary 
module to summary module knowledge base. The knowledge links of this 
knowledge base were then constructed from these counts in the same manner as 
in the first learning phase. Learning required about a month using a desktop 
computer and yielded an average of about 2.5 million links per knowledge base. 

As illustrated by the swirling red arrow in Fig. 5.9, the sentence continuation 
thought process involves a cyclic “tightening” of ongoing, parallel, unlocked 
phrase (P4, P5, P6, and P7) and word (W4, W5, W6, and W7) module confabula-
tions until, progressively in temporal order, each phrase module confabulation 
converges to a single conclusion (together, the conclusions constitute the con-
fabulation consensus). At the beginning of this process, billions of feasible per-
mutations of four phrases in sequence are being considered in parallel. At the 
end, only one of these remains. After all phrase module confabulations have 
converged, the four consensus conclusions (the continuation) are read out from 
word modules W4, W5, W6, and W7. Sample continuations are shown in Fig. 5.8. 
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Fig. 5.10. Multiconfabulation; explanation for the power of thought. Before beginning  
a multiconfabulation, available external context can be used to restrict subsequent 
processing to not-unacceptable sets of “viable” symbols (red-filled symbols). Multicon-
fabulation then invokes knowledge links from each viable symbol to symbols of the 
other modules involved in the multiconfabulation. Here, the four confabulating phrase 
modules are illustrated (with details simplified). A small subset of the links from only one 
viable symbol on P5 to viable symbols on other modules is illustrated in A (each viable 
symbol, of which each module frequently has thousands, often has links to thousands of 
viable symbols on each other module). These knowledge links are shown in colored 
groups to illustrate that the set of all links from one module to a second module forms  
a knowledge base. Each knowledge base is independently enabled during multicon-
fabulation. At the beginning of multiconfabulation, these millions of relevant knowledge 
links (each connecting a viable symbol to another viable symbol) are being employed in 
parallel to create the confabulation consensus. As this sentence continuation multicon-
fabulation progresses (B), module P4 converges to a conclusion (black symbol) first, 
which then, by deactivating all knowledge links from (and to) all other P4 symbols, sig-
nificantly restricts the other modules’ remaining sets of viable conclusions. Eventually, 
only one symbol on each of W4, W5, W6, and W7 (see Fig. 5.9 and text) remains 

The sentence continuation thought process implemented in these experi-
ments is a discrete-time approximation to the continuous-time process that is 
hypothesized to take place in human cortex. First, context is applied via knowl-
edge links brought in from the words and phrases of the starter and (if present) 
from the context sentence. These inputs, and the module tightenings that briefly 
follow it, serve to establish expectations (Hecht-Nielsen 2006) on each of the 
four involved phrase modules. This establishes the “initial configuration” shown 
in Fig. 5.10A. 

The function of the thought process is to continue the sentence by selecting 
an ordered sequence of four word symbols from the tens of billions of candidate 
sequences typically included within the initial configuration. As multiconfabula-
tion proceeds, knowledge links from all eight other modules are used to identify 
those symbols which are the most highly excited. Low-excitation symbols are 
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dropped as the number of symbols on the expectation is gradually reduced (i.e., 
the thought control input level to the module is tightened). 

The goal of the thought process is to complete each phrase module’s confabu-
lation in its proper order (P4, P5, P6, and P7). As each module’s expectation 
shrinks, the combinatorial collection of possible continuations plummets rap-
idly, as illustrated in Fig. 5.10B. This ongoing “mutual consultation” process 
ensures that the final continuation chosen is that one which has one of the 
“highest levels of consistency” with both the external context and between its 
individual conclusions. 

5.8  Discussion 

The excellent “grammar” and “syntax” seen in the experiments reported here 
suggests that these exist only as emergent properties of confabulation. If so, then 
the central conjectures of Miller, of Lenneberg, and of Chomsky (essentially that 
language reflects the universal human cognitive mechanism) are correct  
(Chomsky 1980). 

As with the properly coordinated and phased contractions of muscles during 
a successful movement, executing a successful thought process requires a prop-
erly coordinated and phased set of “contractions” of the involved modules to 
yield a confabulation consensus. Thinking is like moving; with modules func-
tioning as the “muscles of thought.” Confabulation theory postulates that 
thought is a phylogenetic outgrowth of movement. 

In the experiments presented here, the thought process causes the answer 
modules to converge in temporal order. However, thought process convergence 
can be made to occur in any desired order. This dynamic “convergence control” 
aspect of thought processes makes it meaningless to imagine a rigorous univer-
sal mathematical criterion for selecting confabulation consensuses. Each indi-
vidual module converges to that symbol with the highest confabulation product, 
but the thought process, by controlling the order (and rate) of module conver-
gence, and thereby the target symbol confabulation products considered, deter-
mines the final consensus. Thus, animal thought processes in which there are 
many viable confabulation consensuses are inherently non-deterministic, en-
dowing life with delightful unpredictability. Confabulation theory should keep 
neurophilosophers busy for decades. 

Finally, note that the acquisition of a new thought process (here, sentence 
continuation with or without a context sentence) is primarily dependent upon 
having a supply of products (examples available for learning of pairwise symbol 
co-occurrences) of that thought process being carried out by an existing compe-
tent practitioner (in this experiment, pairs of consecutive sentences produced by 
skilled human writers). This is the “monkey-see/monkey-do” principle of con-
fabulation theory (Chaps. 1 and 8). Developing the associated thought processes 
(confabulation consensus convergence control maneuvers) seems relatively 
easy, as the crude thought process used in these experiments illustrates. Thus, 
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besides illustrating the universal mechanism of thought, these experiments may 
be providing us deep insight into the fundamental nature of animal thought 
process acquisition. This points up the enormous treasure that is our accumula-
ted cultural and intellectual legacy – much of which exists solely in the fragile 
form of expertise possessed by a relatively small subset of individual humans. 

The role of synchrony in confabulation theory is seen in the function of 
knowledge links and in the details of confabulation (see Chaps. 3, 6 and 7). An 
interesting alternative is polysynchrony (Izhikevich 2006, 2007). 

All cognizing species are presumed to have functional analogs of the human 
structures and mechanisms described here (Karten 1991). 
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A winners-take-all competition process, termed confabulation (Chaps. 1 5), is 
proposed as the fundamental mechanism of all aspects of cognition (vision, hear-
ing, planning, language, control of thought and movement, etc.). Here, multiple, 
contemporaneous, mutually interacting computer-simulated confabulations – in 
which millions of items of relevant knowledge are applied in parallel – are con-
sidered. At the beginning of such a multiconfabulation, billions of distinct,  
potentially viable conclusion sets are considered. At the end, only one remains. 
This massively parallel, additive application of relevant knowledge is hypothe-
sized to be the core explanation for the effectiveness, flexibility, and speed  
of thought. 

6.1  Introduction 

We conducted two types of computer simulation experiments to explore multi-
confabulation: sentence continuation without context, and sentence continuation 
with context (Fig. 6.1). In each experiment, an ordered sequence of three words 
(termed the continuation sentence starter – shown in blue) was supplied. Execu-
tion of the thought process then caused four phrases to be appended to this 
starter, the first four words of which were retained as the continuation. Some 
experimental results are shown in Fig. 6.2. Below, we briefly describe the con-
fabulation architecture used in the experiments, the learning process employed 
to prepare it for use, and the thought process which was applied to create the 
continuations (see Appendixes 6.A and 6.B for complete details). 

                                                                 
6
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Fig. 6.1. The two types of experiments carried out. A) / B) Sentence continuation without / 
with a previous context sentence being supplied. The “purple box” is the confabulation 
architecture used to create the continuations 

Confabulation theory (Chaps. 1, 3, 4, 5, 7 and 8) hypothesizes that human 
cerebral cortex, and its locally paired first-order thalamus (Sherman and 
Guillery 2006; Casagrande et al. 2005), are divided into about 4,000 distinct, 
geographically localized, functional thalamocortical modules [which presumably 
have analogs in all other cognizing species (Karten 1991)]. Each individual 
module is devoted to describing one attribute that an object of the mental world 
may possess. To carry out this description, each module implements thousands 
of permanent symbols (most established in childhood), each symbol being rep-
resented by roughly 60 neurons belonging to a specialized population within  
the cortical portion of the module. When a particular module is being used to 
describe an object (most modules are hypothesized to typically use only one 
symbol at a time for this purpose), the neurons representing the symbol being 
employed are firing actively and synchronously, and the other symbol-
representation neurons of the module are not. 

When deliberately and individually commanded, a module implements an in-
formation-processing operation termed confabulation (Chaps. 1, 3 and 4): a fast, 
parallel, winners-take-all competition process [presumed to be carried out by  
a neuronal attractor network (Anderson et al. 1977; Kosko 1988; Haines and 
Hecht-Nielsen 1988; Hahnloser et al. 2003; Xie et al. 2001; Sommer and Palm 
1999; Amit 1989; Cohen and Grossberg 1983; Hopfield 1982; Amari 1974) im-
plemented within the module] between the symbols, with the winner being that 
symbol which is currently receiving the highest sum of knowledge link input 
excitation. Confabulation theory contends that this simple information-
processing operation can explain all of cognition. 



 6.2 Confabulation Architecture 119 

The New York Times' computer model collapses … 
Stocks proved to be a wise investment . 
The New York markets traded lower yesterday … 
Downtown events were interfering with local traffic . 
The New York City Center area where … 
Coastal homes were damaged by tropical storms . 
The New York City Emergency Service System … 
Medical patients tried to see their doctors . 
The New York University Medical Association reported … 
 
When the United Center Party leader urged … 
The car assembly lines halted due to labor strikes . 
When the United Auto Workers union representation … 
The price of oil in the Middle East escalated yesterday . 
When the United Arab Emirates bought the … 
 
But the Roman Empire disintegrated during the … 
She learned the history of the saints . 
But the Roman Catholic population aged 44 … 
She studied art history and classical architecture . 
But the Roman Catholic church buildings dating … 
 
I was very nervous about my ability … 
Democratic citizens voted for their party's candidate . 
I was very concerned that they chose … 
Restaurant diners ate meals that were served . 
I was very hungry while knowing he … 

Fig. 6.2. Sample of experimental results (see Appendix 6.B for the complete listing). Using 
the same color scheme as Fig. 6.1, the first line of each text block is the result of a con-
tinuation trial without context. The subsequent lines are a supplied context sentence 
followed by the same starter and the continuation with context 

6.2  Confabulation Architecture 

Figure 6.3 shows the confabulation architecture used in the experiments. Each 
square in Fig. 6.3 represents a single computer-simulated module (for complete 
details see Appendix 6.A at the end of this Chap.). This 82-module confabulation 
architecture consists of two vertical groupings of modules. The context sentence 
grouping on the left is used to represent the context sentence, when one is em-
ployed. The continuation sentence grouping on the right is used to represent the 
starter and to carry out the thought process to obtain the confabulation consen-
sus, which yields the continuation. 

The 20 word modules comprising the bottom row of both groupings (of 
which the first seven are illustrated in Fig. 6.3) are used to represent individual 
English words or punctuation marks of a sentence (in order, from left to right). 
Each word module has 63,008 symbols representing common words and punc-
tuations. Each punctuation mark is treated as a separate word. 
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Fig. 6.3. Inside the “purple box” of Fig. 6.1: the confabulation architecture employed in 
the experiments (see text). The swirling red arrow indicates the sentence continuation 
thought process. The thought-control signals to both the “unlocked” phrase modules 
(i.e., P4, P5, P6, and P7 – those not used to re-represent the starter at the phrase level) 
and word modules (W4, W5, W6, and W7) of the continuation grouping are progressively 
“tightened” to eventually yield the confabulation consensus 

Capitalized words are represented by their own separate symbols (e.g., exit 
and Exit have separate symbols). In both groupings, a middle row of 20 phrase 
modules (of which the first seven are shown in Fig. 6.3), and the one top-level 
sentence meaning content summary module, each have 126,008 symbols repre-
senting common words, multi-word phrases, and punctuations in English. 

An individual symbol of a module can be unidirectionally connected to an 
individual symbol of certain other modules via a knowledge link [the basic unit 
of knowledge in a confabulation architecture – each envisioned as a two-stage 
synfire chain (Abeles 1991; Chaps. 3, 5, 7 and 8) in human cortex]. The bundle of 
all knowledge links between the symbols of each such ordered module pair is 
termed a knowledge base. As discussed further below, knowledge links are for-
med in response to meaningfully repeated symbol co-occurrences in bodies of 
English text presented to, and represented within, the architecture during lear-
ning. The ordered pairs of modules for which knowledge links are allowed (indi-
cated by the knowledge base arrow patterns in Fig. 6.3), are now described. 

In the context sentence grouping: each phrase module receives knowledge 
bases from all word modules except those that lie to its left, and the summary 
module receives knowledge bases from each of the phrase modules. In the con-
tinuation sentence grouping: every word (phrase) module receives knowledge 
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bases from every word (phrase) module on its left; every phrase (word) module 
receives a knowledge base from every word (phrase) module, except those on its 
left (right); and the summary module sends knowledge bases to, and receives 
knowledge bases from, each of the phrase modules. Finally, a knowledge base 
links the summary module of the context grouping to that of the continuation 
sentence grouping. Thus, there are a total of 1,071 knowledge bases in this  
architecture. 

6.3  Learning 

Learning consisted of two phases: exposure of the continuation grouping of 
modules alone to single sentences (124 million examples), followed by exposure 
of the whole architecture to pairs of immediately successive sentences (70 mil-
lion sentence pair examples). Following completion of the first phase of learning 
and before the second began, the context grouping knowledge base collections 
shown with the same color in Fig. 6.3 were copied, in order, from their cor-
responding mates of the continuation grouping. The 70 million sentence pair 
examples were then used to build the knowledge base linking the context grou-
ping summary module to the continuation grouping summary module. The 
examples used in learning were drawn from a varied proper English corpus 
containing novels, encyclopedias, news stories, etc. 

In the initial learning phase, each of the single sentences was represented by 
the modules of the continuation grouping. The counts of pairwise symbol 
co-occurrences in pairs of modules linked by a knowledge base were accumula-
ted. After all 124 million example sentences had been entered, those symbol 
pairs with meaningful co-occurrence counts had [essentially as suggested by 
Hebb (Hebb 1949) – see Appendix 6.A for details] knowledge links established 
for them. Finally, during the second phase of learning, the meaning-coherent 
sentence pairs were entered and represented in temporal order on the two mo-
dule groupings and symbol co-occurrence counts were accumulated for the 
summary module to summary module knowledge base. The knowledge links of 
this knowledge base were then constructed from these counts in the same man-
ner as in the first learning phase. Learning required about a month using  
a desktop computer and yielded an average of about 2.5 million links per know-
ledge base. 

6.4  Thought Process 

As illustrated by the swirling red arrow in Fig. 6.3, and now summarized using 
Fig. 6.4, the sentence continuation thought process involves a cyclic “tightening” 
of ongoing, parallel, unlocked phrase (P4, P5, P6, and P7) and word (W4, W5, 
W6, and W7) module confabulations until, progressively in temporal order, 
each phrase module confabulation converges to a single conclusion (which 
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jointly constitute the confabulation consensus). At the beginning of this process, 
billions of feasible permutations of four phrases in sequence are being conside-
red in parallel. At the end, only one of these remains. After all phrase module 
confabulations have converged, the four consensus conclusions (the continua-
tion) are read out from word modules W4, W5, W6, and W7. Sample continua-
tions are shown in Fig. 6.2. 

The sentence continuation thought process implemented in these experiments 
is a discrete-time approximation to the continuous-time process that confabula-
tion theory hypothesizes takes place in human cortex and thalamus. First, con-
text is applied via knowledge links brought in from the words and phrases of the 
starter and (if present) from the context sentence. These inputs, and the module 
tightenings that briefly follow them, serve to establish expectations (Chaps. 3, 5 

 

Fig. 6.4. Multiconfabulation; explanation for the power and speed of thought. Here, the 
four confabulating phrase modules are illustrated (with details simplified). Before begin-
ning a multiconfabulation, available external context can be used to restrict subsequent 
processing to not-unacceptable sets of viable symbols (red-filled circles in A). Multicon-
fabulation then invokes knowledge links from each viable symbol to symbols of the other 
modules involved in the multiconfabulation. A small subset of the links from only one 
viable symbol on P5 to symbols on other modules is illustrated in A (each viable symbol, 
of which each module frequently has thousands, often has links to hundreds of symbols 
on each other module). These knowledge links are shown in colored groups to illustrate 
that the set of all links from one module to a second module form a knowledge base. Each 
knowledge base is independently deliberately enabled, and often employed multiple 
times, during a multiconfabulation. In the beginning stages of a typical multiconfabula-
tion (A), millions of these relevant knowledge links (meaning that each such knowledge 
link emanates from a viable symbol on one of the modules) are often being employed. As 
the multiconfabulation progresses (B), module P4 converges to a conclusion (black sym-
bol) first, which then automatically deactivates all knowledge links from all other P4 sym-
bols. This significantly restricts, and reorders, the other modules’ remaining sets of viable 
conclusions (expectations). Eventually, only one symbol on each of W4, W5, W6, and W7 
(see Fig. 6.3 and text) remains: the confabulation consensus, which, in these experiments, 
is the sentence continuation 
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and 9) (subsets of symbols that future steps in the thought process will be re-
stricted to) on each of the four involved phrase modules. This establishes the 
“initial configuration” shown in Fig. 6.4A. 

The function of the thought process is to continue the sentence by selecting an 
ordered sequence of four word symbols from the tens of billions of candidate 
sequences typically included within the initial configuration. As multiconfabula-
tion proceeds, knowledge links from subsequent phrase and word modules are 
used by each confabulating module to identify those symbols, from among the 
ever-shrinking expectation sets, which are the most highly excited. Low-
excitation symbols are dropped as the number of symbols on each module’s 
expectation is gradually reduced (i.e., the thought control input level to the  
module is tightened). 

The key to this convergence is cyclic application of millions of knowledge 
links, which causes elimination of symbols which were (earlier in the thought 
process) considered potentially viable conclusions, but which this newly applied 
knowledge does not support. These knowledge link applications also serve to 
reorder the remaining viable symbols in terms of their updated approximate 
cogencies. 

The goal of the particular thought process employed in these experiments is 
to complete each phrase module’s confabulation in its proper order (P4, P5, P6, 
and P7). As each module’s expectation shrinks, the combinatorial collection of 
remaining possible continuations plummets rapidly, as illustrated in Fig. 6.4B. 
This ongoing “mutual consultation” process ensures that the final confabulation 
consensus (i.e., sentence continuation) chosen is that one which has one of the 
“highest levels of consistency” with both the external context and between its 
individual conclusions. 

6.5  Discussion 

Confabulation architectures differ from past information-processing systems in 
that they do not employ algorithms, software, rules, priors, ontologies, etc. Their 
capabilities derive entirely from co-occurrence-based knowledge links obtained 
from exposure to raw data (proper English text in the experiments described 
here) and a simple mutually interacting multiple confabulation convergence 
(multiconfabulation) procedure. 

In the first two examples of Fig. 6.2, note that the only difference was the pre-
sence of a context sentence in the second. The knowledge link inputs providing 
the context sentence meaning content to the multiconfabulation that produced 
the second example’s continuation were essentially just “added in” (see Appen-
dix 6.A for details). This illustrates that applying additional context information 
or constraints to a thought process is a simple manner of providing additional 
knowledge link input. Past use of that knowledge in connection with confabula-
tion on a particular module need never have occurred. Thus, the use of an addi-
tive knowledge combination law (see Appendix 6.A) is surely another key secret 
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to the extreme generalization ability of thought. Confabulation architectures 
allow arbitrary combinations of established knowledge of different types to be 
brought to bear on the outcome of a thought process, even if that combination 
has never been used before. For example, auditory and linguistic knowledge 
might be freely applied in the determination of the name of a particular aircraft 
heard flying, but unseen, nearby. A few seconds later, when the aircraft becomes 
visible, the same thought process can be applied again, now also using visual 
knowledge input. 

The above characteristics possessed by confabulation architectures, the value 
of which is clearly illustrated by the ability of the specific architecture explored 
here to create the continuations shown in Fig. 6.2, are unprecedented. 

The role of neuronal synchrony in confabulation theory is seen in knowledge 
links and confabulation (Chaps. 5 and 8). An alternative (which may play a role 
in the detailed neuronal implementation of some aspects of these functional 
components) is polysynchrony (Izhikevich 2006, 2007). 

The excellent “grammar” and “syntax” seen in the experiments reported here 
suggests that these exist only as emergent properties of confabulation. If so, then 
the central conjectures of Miller, of Lenneberg, and of Chomsky [essentially that 
language reflects the universal human cognitive mechanism (Chomsky 1980)] 
are correct. 

As with the properly coordinated and phased contractions of muscles during 
a successful movement, executing a successful thought process requires a prop-
erly coordinated and phased set of “contractions” of the involved modules to 
yield a confabulation consensus. Thinking is like moving, with modules func-
tioning as the “muscles of thought.” 

In the experiments presented here, the thought process used causes the an-
swer modules to converge in temporal order. However, thought process conver-
gence can be made to occur in any desired order. This dynamic “convergence 
control” aspect of thought processes makes it meaningless to imagine a rigorous 
universal mathematical criterion for selecting confabulation consensuses. Each 
individual module converges to that symbol with the highest confabulation pro-
duct (Chaps. 3 and 7), but the thought process, by controlling the order (and 
rate) of module convergence, and thereby the specific target symbol confabula-
tion products considered, determines the final consensus. Thus, animal thought 
processes in which there are many viable confabulation consensuses are inher-
ently non-deterministic (the slightest symbol input excitation perturbation, 
often at many points during the multiconfabulation, can switch the final consen-
sus to one of a multitude of nearly-equally-good alternatives), endowing animal 
life with delightful inherent unpredictability. 

Finally, note that the acquisition of a new thought process (here, sentence 
continuation with or without a context sentence) is primarily dependent upon 
having a supply of products (examples available for learning of pairwise symbol 
co-occurrences) of that thought process being carried out by existing competent 
practitioners (in this experiment, pairs of consecutive sentences produced by 
skilled human writers). This is the “monkey-see/monkey-do” skill acquisition 
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principle (Chap. 8). Developing the associated confabulation consensus conver-
gence maneuvers seems relatively easy, as the crude thought process used in 
these experiments illustrates. Thus, besides illustrating the universal mechanism 
of thought, these experiments may be providing us deep insight into the funda-
mental nature of animal thought process acquisition. 
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Appendix 6.A: Methods 

Using Fig. 6.A.1 below, this appendix describes the sentence continuation 
thought process and remaining architecture details. The exposition starts with  
a more detailed description of the thought process; followed by a “third pass” 
discussion providing all remaining details. 

For simplicity, Fig. 6.A.1 presumes that the first three phrase modules are  
used to represent the starter (i.e., re-representation of the starter at the phrase 
level did not involve any multi-word phrase symbols) – which was the most 
common situation in the experiments (the extension to other cases is straight-
forward). For experiments involving continuation with context, it is assumed 
that the context sentence has been represented with the context grouping and 
that the relevant symbols of its summary module have delivered excitation (via 
the knowledge links of the summary-module-to-summary-module knowledge 
base) to the symbols of the continuation grouping summary module. For con-
tinuations without context, the continuation grouping summary module is 
blank. 
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Step A of the thought process (Fig. 6.A.1) involves first forming an expectation 
(a list of symbols receiving sufficient excitation) on P4, the fourth phrase module, 
by means of an initial light level of confabulation contraction (i.e., a small shorten-
ing of the module’s expectation symbol list), during which knowledge links deliver 
excitation from the single symbols active on each of P1, P2, and P3 (which repre-
sent the three words of the starter). This P4 expectation is illustrated in Fig. 6.A.1 
as a striped coloration fill. Next in Step A is knowledge link input to this P4 expec-
tation from the (usually many) excited symbols of the summary module (if a con-
text sentence is being used). This context input eliminates those expectation sym-
bols which do not receive input from one or more of these links (this part of Step A 
is skipped if this is a continuation without context). Finally, an initial light contrac-
tion of module W4 (while knowledge links from the single symbols on P1, P2, and 
P3, and the excited symbols of the P4 expectation, are delivering excitation to W4’s 
symbols), yields an initial expectation on W4 (again illustrated as a light color fill). 

In Step B, the W4 expectation first sends excitation to P4 and the P4 confabu-
lation is tightened further – typically reducing the number of symbols within the 
P4 expectation (i.e., narrowing the possible set of symbols that can be selected in 
this position). Then, the knowledge links from P1, P2, P3, and P4 are used to 
feed excitation to W4 as its confabulation is tightened a bit further. This “up and 
down” cycle is repeated until either a single symbol (a conclusion) emerges on 
P4, or the expectation on P4 stops changing. This ends Step B. 

If Step B has yielded a conclusion, then P4 is locked and the steps, beginning 
with Step A, are repeated for the next unlocked phrase module (with excitation 
from P4 joining that from the summary module and the three initial phrase 
modules). If a conclusion is not reached (i.e., there are still multiple viable sym-
bols on the P4 expectation after cycling), then Step C is invoked. Step C is like 
Step B, except that now W5 is fed by knowledge links from expectation symbols 
on P1, P2, P3 and P4 and lightly confabulated, yielding an expectation, which is 
then fed to P4, closing the loop. As in Step B, this “down and up” cycle is repeated 
until either a conclusion is reached on P4, or the P4 expectation stabilizes. If  
a conclusion is reached, P4 is locked and the steps, beginning with Step A, are 

 

Fig. 6.A.1. Sentence continuation thought process sequence. Only the first seven word 
and phrase modules of the continuation grouping are shown. These are the only mod-
ules involved in steps of the P4 convergence thought process described here. Subse-
quent phrase and word modules are involved in convergence of P5, P6, and P7 
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repeated for the next unlocked phrase module. If a conclusion is not reached, 
then “Step D” (not shown in Fig. 6.A.1) is invoked. Step D is the same as Step C 
except that it features W6. If a conclusion is not reached, then “Step E” (not 
shown in Fig. 6.A.1) is invoked. Step E is the same as Step D except that it fea-
tures W7 (the final word module of the continuation). If Step E still does not 
lead to convergence of P4 (a not uncommon occurrence), then all of the expecta-
tions of W4, W5, W6, and W7 are simultaneously used to excite P4, which is 
then strongly confabulated to yield a single conclusion. In principle, this final 
confabulation could lead to a null conclusion; in practice, however, this never 
happened during our experiments. 

Once P4 is locked, the steps are repeated, in sequence, for each remaining un-
locked phrase module. The final result is conclusions expressed on W4, W5, W6, 
and W7 – the confabulation consensus. Notice that in this thought process there is 
never any explicit consideration given to which words end up in the consensus – 
only that convergence to a consensus be achieved. There are no algorithms, rules, 
ontologies, productions, etc. involved in thought; only the thought-control signal 
manipulations required to achieve convergence to a confabulation consensus. 

In cerebral cortex and thalamus, this “progressive tightening” thought proc-
ess (the red circular arrow in Fig. 6.3) would presumably proceed smoothly and 
continuously in time and more in parallel, with each successive phrase module 
conclusion triggering the next step of the thought process. 

Note that in the sentence continuation thought process, unless the choice of 
each successive phrase module conclusion is definitively decided by the candi-
date words considered so far, then additional candidate words (W module ex-
pectation symbols), from later in the sentence, are considered. This is a key 
thought process design principle, which ensures that the earlier words of the 
confabulation consensus agree with the later ones – even though the words are, 
in the end, selected in causal sequential order. 

Words entered into the word modules of a grouping are automatically 
re-represented (via a simple thought process) (Chap. 7) in terms of phrases star-
ting at the sentence beginning and progressing to the right. In effect, each phrase 
symbol selected is the longest applicable phrase available at that position. The 
phrase module used to represent a contiguous string of words being 
re-represented is always the one located (see Fig. 6.3) immediately above the 
module representing the first word of that string. The phrase modules interme-
diate between those having a symbol locked into them are locked with no sym-
bol expressed. For example, if the P4 confabulation were to converge to the 
symbol representing New York, then P4 would be locked with this symbol ex-
pressed, and P5 would be locked with no symbol expressed [by a microbehavior 
launched by the conclusion symbol of New York – for details see Chap. 7]. Then 
P6 would be the next unlocked phrase module. 

Once re-representation of a context sentence has been completed at the phra-
se level of a grouping (during entry of a sentence), the sentence summary mod-
ule (responding to inputs from all of the active phrase modules) is lightly con-
fabulated to yield an expectation including each symbol expressed on the phrase 
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modules of that grouping. The relative excitation levels of these symbols reflect 
their multiplicity of appearance at the phrase level. 

During learning (Hecht-Nielsen 2005, 2006), after the symbol co-occurrence 
counts were accumulated, p( | ) was approximated by c( , )/c( ), where 
c( , ) is the count of the number of times the word represented by symbol  
(belonging to the source module of the link within a designated knowledge base) 
and the word represented by symbol  (belonging to the target module of a can-
didate link within a designated knowledge base) appeared together, and c( ) is 
the total number of times symbol  appeared in the target module with any 
symbol of the source module (c( ) is equal to the sum of the c( , ) across all 
symbols  belonging to the source module). Candidate knowledge links with 
c( , ) < 3 or with c( , )/c( ) < 0.0001 were discarded as not meaningful. The 
only exception to this was the content summary module to content summary 
module knowledge base, produced during the second phase of leaning, where we 
discarded links having c( , ) < 25 or c( , )/c( ) < 0.0001. 

Remaining details of the thought process are now described. 
During each step of confabulation, the input excitation (Chaps. 3 and 7) I( ) 

of symbol  (assumed, for concreteness, to be receiving knowledge links from 
four assumed fact symbols: , , , and ) was always initially computed using 
the formula: 

I( )  [log2 (p( | )/p0) + B] 
 + [log2 (p( | )/p0) + B] 
 + [log2 (p( | )/p0) + B] 
 + [log2 (p( | )/p0) + B] 
 = log2 [p( | ) · p( | ) · p( | ) · p( | )] 
 – 4 log2 (p0) + 4B, (6.A.1) 

where log2 is the logarithm to the base 2, B is the bandgap (Chap. 7), and p0 is the 
smallest meaningful antecedent support probability p( | ) value (in these ex-
periments we used B = 30 and p0 = 0.0001). The formula for other numbers of link 
inputs to a symbol is the same, but with one term in the initial expression per 
knowledge link. In the case where a link’s source symbol is not an assumed fact 
(previous confabulation conclusion or external input), but is part of an expecta-
tion, then the input excitation is the above term (e.g., [log2 (p( | )/p0) + B]) mul-
tiplied by the excitation level of that source symbol (its fraction of the normalized 
total excitation – see below). Note that, as shown by the second equality above, 
for all target module symbols receiving the same number of knowledge links, the 
input excitation will vary directly and monotonically with the confabulation 
product. Thus, input excitation maximization can function as a surrogate for 
confabulation (maximization of the product p( | ) · p( | ) · p( | ) · p( | )). 
However, this mathematical formulation has many other benefits and is postu-
lated to represent the neuronally implemented computational approach used  
in module confabulation (Hecht-Nielsen 2006). This additive knowledge combi-
nation law allows enabled knowledge links from active symbols to simply add 
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their influence to that of others. This implies that symbols and knowledge links  
– as allowed by the genetically determined configuration of the brain – to freely 
combine available knowledge of all types (sensory, linguistic, abstract, planning, 
action, etc.). Thus knowledge links and symbols constitute a universal internal 
language of cognition, for which confabulation is the corresponding universal 
information-processing operation. 

Once all of the symbols’ initial input excitation levels are calculated, a “mild 
tightening” of the confabulation control signal is carried out. Effectively, this 
eliminates any symbol whose input excitation is more than B units below the 
input excitation of the most excited symbol [confabulation theory (Chap. 7) 
hypothesizes that a dynamic manipulation of module’s thought-control signal 
can eliminate relatively-low-input-intensity symbols]. This yields the initial 
expectation list for this confabulation. 

After the initial expectation list is formed, the final step of each individual 
confabulation tightening (in the event that the expectation contains any sym-
bols) is to normalize the sum of the symbol excitations to 1.0 [this is hypothesi-
zed to occur in modules (Chap. 8)]. (Note: In these experiments there was one 
exception to this procedure; and that was the sentence meaning summary mo-
dule of the continuation grouping. To simulate a much longer, sustained appli-
cation of the knowledge link from the summary module of the context group-
ing, the expectation of this summary module, when it was used – namely, when 
a context sentence was present – was normalized to a sum of 8.0.) Thus, at the 
end of the confabulation tightening, we are left with an expectation list in which 
each symbol’s excitation is set to its normalized value greater than or equal to 
0.00 and less than or equal to 1.00 (a value of 1.00 implies that this is the only 
symbol in the expectation – i.e., this is the definitive conclusion). If the expecta-
tion is empty, then all symbols have excitations of 0.00. When a symbol in an 
existing expectation receives knowledge link inputs in a subsequent confabula-
tion operation, its newly calculated input intensity is added to its pre-existing 
excitation before normalization. 

When P4 (or the current leftmost unlocked phrase module) has still not been 
locked after Steps B, C, D, and E have been carried out, the knowledge links 
linking the most recent expectations of W4, W5, W6, and W7 are enabled to 
deliver excitation to the symbols of the latest P4 expectation. A strong confabu-
lation contraction is then commanded; which selects that one symbol which is 
receiving the most input excitation (i.e., which has approximately the highest 
cogency). (Note: It is possible that no P4 symbol would be receiving any links 
and then this procedure would lead to a null conclusion. However, this never 
happened in our experiments.) This symbol is then used as the conclusion on 
P4. P4 is then locked with this symbol being expressed and, if the symbol repre-
sents a multi-word phrase with K words, the next (K-1) phrase modules are 
locked also, with no symbols expressed. The steps of the thought process are 
then applied again, starting with the first module following these locked modu-
les. The process stops as soon as W4, W5, W6, and W7 become locked. These are 
then read out as the confabulation consensus. 
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Appendix 6.B: 
Complete List of Experiments and Results 

The complete set of experimental examples that we investigated in this work, and 
the sentence continuations which resulted by applying the thought process, in-
cluding the samples presented in Fig. 6.2, are provided below. These test starters / 
context sentences were formulated and frozen before the experiments began. We 
then carried out the thought process for each example. The same color scheme as 
in Figs. 6.1 and 6.2 is used. Changes of starter are indicated by lines of dots. 

Because even more savvy enough investors usually … 
In South Africa Mandela fought segregation and discrimination . 
Because even more blacks weren't needed to … 
A two-thirds majority won the vote . 
Because even more Republicans vote Democratic Senate … 
It was a technology training seminar for engineers 
Because even more than enough jobs without … 
The fed lowered interest rates again . 
Because even more tight money market traders … 
……………………………………… 
 
But the other semifinal match between fourth-seeded … 
The state governor vetoed the bill . 
But the other Republicans support abortion legislation … 
The point guard made the free throws . 
But the other game points out Mike … 
The French foreign minister cried foul . 
But the other EU leaders including France … 
The school children study to improve math test scores . 
But the other classes are students benefit … 
Church priests counseled survivors of the earthquake . 
But the other victims of the crash … 
Our old machines were not powerful enough . 
But the other programs have got us … 
……………………………………… 
 
But the peace plan signed by former … 
A neutral party helps to reach an agreement . 
But the peace process fail to agree … 
The volunteers helped refugees with basic needs . 
But the peace forces began taking positions … 
They were arrested for their beliefs . 
But the peace activists gathered peacefully outside … 
He was awarded for his lifetime achievement in science and technology . 
But the peace prize awards ceremony Sunday … 
The war in Gaza continues without ceasefire . 
But the peace process still stalled further … 
……………………………………… 
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But the Roman Empire disintegrated during the … 
A two-thirds majority won the vote . 
But the Roman Senate vote passed the … 
She learned the history of the saints . 
But the Roman Catholic population aged 44 … 
Throughout history , wartime follows peace . 
But the Roman period of stability particularly … 
She studied art history and classical architecture . 
But the Roman Catholic church buildings dating … 
The athlete competed in several events . 
But the Roman Empire split during games … 
……………………………………… 
 
For now this image has also uses … 
The space race stopped at the Moon . 
For now this goal of an overwhelming … 
The Bulls also need a new guard . 
For now this team isn't going to … 
The new model will add many features . 
For now this technology provides users access … 
The coach was content with the season . 
For now this game he's playing pretty … 
The returns were very low this year . 
For now this money keeps getting better … 
It's a good time for businesses . 
For now this year we're making more … 
Next year the Yankees will win . 
For now this deal got four players … 
……………………………………… 
 
He liked to read them things better … 
Bill Clinton enjoyed his 2 terms in office . 
He liked to stay around and keep … 
He brought us to his favorite restaurants . 
He liked to eat anything he says … 
The guitarist was a fantastic musician . 
He liked to dance around me in … 
Bill Clinton was a popular president . 
He liked to play ; but kept … 
Patrick had a happy childhood . 
He liked to draw people playing together … 
He sought the committee's advice . 
He liked to show them that he … 
……………………………………… 
 
I was very nervous about my ability … 
The football quarterback fumbled the snap . 
I was very upset with his team's … 
The state governor vetoed the bill . 
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I was very satisfied with his performance … 
The president addressed congress about taxes . 
I was very difficult because Mrs. Clinton … 
Democratic citizens voted for their party's candidate . 
I was very concerned that they chose … 
Restaurant diners ate meals that were served . 
I was very hungry while knowing he … 
She quickly walked up the building stairs . 
I was very nervous before she got … 
……………………………………… 
 
In spite of yesterday's agreement among analysts … 
The Mets were not expected to win . 
In spite of the pitching performance of … 
The elections were deemed to be fair . 
In spite of the dire results during … 
The President was certain to be reelected . 
In spite of his statements toward the … 
The challenger was unlikely to win . 
In spite of the fall season schedule … 
She had no clue about the answer . 
In spite of her experience and her … 
Investor confidence was at an all-time low . 
In spite of Japan's big business market … 
The price of oil fell further today . 
In spite of the economic conditions facing … 
The president made a public apology . 
In spite of political support in the … 
The mood was buoyant on Capitol Hill . 
In spite of the government's budget appropriations … 
The mood was buoyant on Wall Street . 
In spite of higher short-term rates lower … 
……………………………………… 
 
In the middle of the 5th century … 
Mike Piazza caught the foul ball . 
In the middle of the season came … 
The frozen lake was still very dangerous . 
In the middle of the lake is … 
Even the best students could not pay attention . 
In the middle of one year term … 
The annual corn harvest was very abundant . 
In the middle price range roughly $$ … 
……………………………………… 
 
It meant that customers could do away … 
The stock market had fallen consistently . 
It meant that stocks could rebound later … 
I was not able to solve the problem . 



 Appendix 6.B: Complete List of Experiments and Results 133 

It meant that we couldn't do much … 
The company laid off half its staff . 
It meant that if employees were through … 
The president addressed congress about taxes . 
It meant that we pay much more … 
The salesman sold men's and women's shoes . 
It meant that sales costs for increases … 
She quickly walked up the building stairs . 
It meant that she got me away … 
Good quarterbacks run without fumbling the football . 
It meant that offense against good team … 
……………………………………… 
 
It must not be confused about what … 
I can't make it work any better . 
It must not be easy enough ! 
The news was a revelation to us . 
It must not be true ... but … 
The effects of alcohol can be dangerous . 
It must not be used without supervision … 
The subject was put to a vote . 
It must not be required legislation to … 
The opposition party has grown even stronger . 
It must not be strong political opposition … 
There's no way to solve the problem . 
It must not be easy problem solution … 
The Padres have not won a game yet . 
It must not be better players thinking … 
……………………………………… 
 
It was a gutsy performance by John … 
The tennis player served for the match . 
It was a match played on grass … 
The state governor vetoed the bill . 
It was a Republican bill in Congress … 
The bank robber stole the money . 
It was a dlrs 500 million project … 
Desperate refugees arrived daily by the thousands . 
It was a small city under Israeli … 
Coastal homes were damaged by tropical storms . 
It was a huge relief effort since … 
The ship's sails swayed slowly in the breeze . 
It was a long ride from the … 
……………………………………… 
 
It was about twelve hundred men ! 
The football quarterback fumbled the snap . 
It was about 20 yards this season … 
The president addressed congress about taxes . 



134 6 The Mechanism of Thought 

It was about 25 % 30 15 … 
The frozen lake was still very dangerous . 
It was about 20 feet above flood … 
Stocks proved to be a wise investment . 
It was about 20 percent cheaper than … 
The basketball player made the free throw . 
It was about 10 players out there … 
International organizations are created nearly every day . 
It was about 40 groups of people … 
……………………………………… 
 
She thought that would throw us away … 
The tennis player served for the match . 
She thought that she played a good … 
Desperate refugees arrived daily by the thousands . 
She thought that they live under close … 
At the library she studied many books . 
She thought that I learned her words … 
Children played at the park all afternoon . 
She thought that would put her kids … 
……………………………………… 
 
Shortly thereafter , she began singing lessons … 
The football quarterback fumbled the snap . 
Shortly thereafter , Lewis got him to … 
The president addressed congress about taxes . 
Shortly thereafter , Gore aides noted strong … 
The baseball pitcher threw at the batter . 
Shortly thereafter , the Mets in Game … 
Democratic citizens voted for their party's candidate . 
Shortly thereafter , Gore was elected vice … 
……………………………………… 
 
The following day she began her again … 
The football quarterback fumbled the snap . 
The following day he took his first … 
The point guard made the free throws . 
The following day was given another shot … 
The president addressed congress about taxes . 
The following day he called for repeated … 
They hoped to improve election results . 
The following day President and government released … 
……………………………………… 
 
The New York Times' computer model collapses  … 
Stocks proved to be a wise investment . 
The New York markets traded lower yesterday … 
Downtown events were interfering with local traffic . 
The New York City Center area where … 
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Library books were sold for almost nothing . 
The New York library opens into three … 
The salesman sold men's and women's shoes . 
The New York fashion show ran off … 
Coastal homes were damaged by tropical storms . 
The New York City Emergency Service System … 
Church priests counseled survivors of the earthquake . 
The New York Community Services Council voted  … 
Metals such as silver and copper are mined . 
The New York metals futures exchanges closed … 
Medical patients tried to see their doctors . 
The New York University Medical Association reported … 
……………………………………… 
 
The president said he personally met French … 
Regarding the alleged abuse of Iraqi prisoners . 
The president said he had met the … 
Free trade benefits the entire nation . 
The president said that Pakistan would continue … 
The constitution guarantees freedom of religion . 
The president said he had been assured … 
The flat tax is an interesting proposal . 
The president said he promised Congress to … 
The commission has reported its findings . 
The president said he appointed former Secretary … 
The court ruled yesterday on conflict of interest . 
The president said he rejected the allegations … 
……………………………………… 
 
The San Francisco Redevelopment Authority officials announced … 
What makes fish and dolphins jump in the air ? 
The San Francisco Water Department issued recently … 
Their star player caught the football and ran ! 
The San Francisco quarterback Joe Brown took … 
The pitcher threw a strike and won the game . 
The San Francisco fans hurled the first … 
I listen to blues and classical music . 
The San Francisco band draws praise from … 
Area citizens complained about pollution in local water . 
The San Francisco residents witnessed the closest … 
Many survivors of the catastrophe were injured . 
The San Francisco Police officials announced Tuesday … 
Annual crops of wheat and corn were subsidized . 
The San Francisco biotechnology company ; cost … 
The wheat crops were genetically modified . 
The San Francisco food sales rose 7.3 … 
……………………………………… 
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There were several unconfirmed reports that Iraqi … 
The football quarterback fumbled the snap . 
There were several moments when he felt … 
The bank robber stole the money . 
There were several hundred dollars chasing fewer … 
Stocks proved to be a wise investment . 
There were several risks are investors regarding … 
The state governor vetoed the bill . 
There were several senators joined Republicans Tuesday … 
……………………………………… 
 
This meant that instead of just how … 
New Zealand won the America's Cup . 
This meant that they lost face against … 
The LA Dodgers defeated the Red Sox . 
This meant that Park stadium where Democrats … 
I got a large tax refund . 
This meant that they get little money … 
France opposed the US in front of the UN Security Council . 
This meant that some government should not … 
……………………………………… 
 
This resulted in a substantial performance increase … 
The state governor vetoed the bill . 
This resulted in both the state tax … 
Oil prices rose on news of increased hostilities . 
This resulted in cash payments of $ … 
The United States veto blocked the security council resolution . 
This resulted in both Britain and France … 
……………………………………… 
 
Three or four persons who have killed … 
The president addressed congress about taxes . 
Three or four years because Clinton would … 
The tennis player served for the match . 
Three or four times in a row … 
Stocks proved to be a wise investment . 
Three or four years since Clinton opened … 
……………………………………… 
 
We could see them again if we … 
The point guard made the free throws . 
We could see the ball forward toward … 
The president addressed congress about taxes . 
We could see additional spending money bills … 
The number of car thefts was especially low . 
We could see an increase in demand … 
The view in Zion National Park was breathtaking . 
We could see snow conditions for further … 
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We read the children's books out loud . 
We could see the children who think … 
The U.N. Security Council argued about sanctions . 
We could see a decision must soon … 
……………………………………… 
 
What will occur during the darkest days … 
Research is leading to new discoveries . 
What will occur during training program testing … 
Research scientists have made astounding breakthroughs . 
What will occur within the industry itself … 
The vacation should be very exciting . 
What will occur during Christmas season when … 
I would like to go skiing . 
What will occur during my winter vacation … 
There's no way to be certain . 
What will occur if we do nothing … 
……………………………………… 
 
When the Union Bank launched another 100 … 
The rebel leader fought until death . 
When the Union flag was raised nearly … 
He lived during the Civil War era . 
When the Union Jack dips for the … 
She loved her brother's Southern hospitality . 
When the Union flag was raised again … 
New York City theater is on Broadway . 
When the Union Square Theater in Manhattan … 
The railroad reached the Pacific ocean . 
When the Union Pacific A fell 75 … 
……………………………………… 
 
When the United Center Party leader urged … 
The airplane wreck worried anxious travelers . 
When the United Airlines flight crashed off … 
The car assembly lines halted due to labor strikes . 
When the United Auto Workers union representation … 
The price of oil in the Middle East escalated yesterday . 
When the United Arab Emirates bought the … 
The dictator's reign of torture and terror ended in trial . 
When the United Nations opened in mid-May … 
The American people felt quite patriotic . 
When the United States' best friends ever … 
………………………………………  



 

7  Mechanization of Confabulation8 

7.1  Introduction 

This chapter describes the state of the art in creating animal cognition in machi-
nes. It begins with a discussion of the two fundamental processes of cognitive 
knowledge acquisition – training and education. The subsequent sections then 
present some ideas for building key components of cognition (language, sound, 
and vision). The main point of this chapter is to illustrate how we can now pro-
ceed towards the mechanization of key elements of cognition. This chapter as-
sumes that the reader is familiar with the concepts, terminology, and mathemat-
ics of elementary confabulation (as described in Chaps. 1–6 and the DVD video 
presentation) and its hypothesized biological implementation in the human 
cerebral cortex and thalamus (as described in Chaps. 3, 5, and 8). 

7.1.1  Mechanized Cognition: The Most Important Piece of AI 

As discussed in Chaps. 3, 5, and 8, human (and higher mammal) intelligence 
involves a number of strongly interacting, but functionally distinct, brain struc-
tures. Of these, significant progress has now been made on three: cerebral cortex 
and thalamus (the engine of cognition – and the focus of this chapter), basal 
ganglia (the behavioral manager of the brain – which manages action evalua-
tion, action selection, and skill learning), and cerebellum (the autopilot of the 
brain – which implements detailed control of routine movement and thought 
processes with little or no need for ongoing cognitive involvement once a proc-
ess has been launched and until it needs to be terminated). There are a number 
of other, smaller-scale, brain functions that are also critical for intelligence (e.g., 
ongoing drive and goal state determination by the limbic system), but these will 
not be discussed here. 

Of all of the components of intelligence, cognition is, by far, the most impor-
tant. It is also the one that has, until now, completely resisted explanation. This 
chapter provides the first sketch of how cognition can be mechanized. The ap-
proach is based upon the author’s theory of vertebrate cognition described in 
Chaps. 3, 5, and 8. This chapter is not an historical description of “how cognition 

                                                                 
8 This chapter is based on the original publication Hecht-Nielsen R (2006) The mechanization of 

cognition. In: Bar-Cohen Y (ed) Biomimetics. CRC Press, Boca Raton, FL, pp 57–128, adapted 
here from the original with kind permission of the publisher. 
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was mechanized,” rather, it is an “initial plan for mechanizing cognition.” Initial 
progress in implementing this plan in areas such as language and hearing (the 
subjects of Sects. 7.3 and 7.4) has been encouraging. 

7.1.2  Module Capabilities 

This chapter considers some more sophisticated variants of confabulation that 
go beyond elementary confabulation. Each module used in our (technological) 
confabulation architectures (collections of modules and knowledge bases) will 
be assumed to possess the machinery for carrying out each of these confabula-
tion variants (or information-processing effects – the term that will be used for 
them here), as described below. Thus, from now on, the term module implies  
a capability for implementing a finite set of symbols, maintaining a list of the 
excitation states of those symbols, and for executing the effects defined below. 
For the moment, module dynamics will be ignored. (However, in later sections, 
concepts such as multiconfabulation and symbol interpolation, which intrinsi-
cally require module dynamical behavior, will be briefly mentioned.) 

One very important detail is that, while confabulation is underway, a module 
can have multiple highly excited symbols (as opposed to just one active symbol, 
or the null symbol). When this occurs, the neurons representing these symbols 
will be excited at various (high) levels for different symbols. 

When such multiple highly excited but not active symbols are used as “as-
sumed facts” transmitting through a knowledge base, their effects on symbols to 
which they link via this knowledge base will essentially be the product of their 
excitation and the link strength. In practice, such multi-symbol “assumed facts” 
are very important, as they are the key ingredient in multiconfabulation, which 
is also characterized as consensus building. This involves dynamically interact-
ing confabulations taking place contemporaneously in multiple modules, which 
is the dominant mode of use of confabulation in human cognition. However, to 
keep this chapter at an elementary and introductory level, the mathematics of 
multiple-symbol “assumed fact sets” will not be discussed in detail. As needed, 
the qualitative properties of this mode of confabulation will be discussed, which 
will be sufficient for this introduction. 

For the technological purposes of this chapter, confabulation will be taken to 
be dependent upon the input excitation sum I( ) of symbol , which is 
re-defined (from Chap. 3) to be: 

I( )  [ln(p( | )/p0) + B] + [ln(p( | )/p0) + B]  
 + [ln(p( | )/p0) + B] + [ln (p( | )/p0) + B] 
 = ln[p( | ) · p( | ) · p( | ) · p( | )]  4 ln(p0) + 4B, (7.1) 

where ln is the natural logarithm function, B is a positive global constant called the 
bandgap (a term coined by my colleague Robert W. Means), and p0 is the smallest 
meaningful p( | ) value. Clearly, for a symbol  receiving N knowledge links, the 
value of I( ) ranges over the numerical interval from NB to N[ln(1/p0) + B].  
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It will be assumed that the constant B is selected such that for N = 1, 2, … , Nmax 
none of these intervals ever overlap. For example, if we take p0 = 0.0005 and 
Nmax = 10, then we can select B = 100. The intervals upon which I( ) can lie are then 
given by [100,107.6], [200,215.2], … , [1000,1076.0] for N = 1, 2, … , Nmax, respec-
tively. The utility of this definition will be seen immediately below. Given these 
preliminaries, we can now discuss variants of confabulation. 

The first effect considered is erasing, denoted by E. Erasing clears the current 
record of excitation states of the module and prepares the module for a new use. 
For example, before a module is used as the answer module of a confabulation 
operation it must be erased. 

Elementary confabulation (as described in Chaps. 3 and 4), denoted by W, is 
carried out by activating a single symbol  with the highest value of I( ) (ties are 
broken randomly). By activation it is meant that the final excitation level I( ) of 
that symbol is set to 1 and the final excitation levels of all other symbols are set 
to zero. There is also the effect WK, which is the same as W with the added re-
quirement that the single winning symbol, if there is to be one, must have had at 
least K knowledge link inputs (i.e., the winning symbol must have its input in-
tensity in the Kth, or higher, I( ) interval). The primary form of confabulation 
discussed in Chaps. 3 and 4 was W4. 

The effect CK (confabulation conclusions having K or more knowledge link 
inputs), which will be needed for discussions, first zeros the excitation sum I( ) 
of each symbol  whose I( ) is not in the Kth (or higher) I( ) interval(s) occupied 
by symbols of the module. The excitation levels of all the symbols are then 
summed. Finally, each remaining non-zero symbol excitation is then divided by 
this sum to yield its final excitation level. For example, in the above example 
with p0 = 0.0005 and Nmax = 10, and B =100, if the four highest symbol input exci-
tation sums are 346.8, 304.9, 225.0, and 146.8, then a C2 will yield only the top 
three symbols, with final excitation levels of 0.395, 0.3478, and 0.2566, respec-
tively. Clearly, this effect yields the set of confabulation conclusion symbols that 
had K or more knowledge link inputs. Normalizing the sum of the “significant 
symbol’s” excitation levels to 1.0 corresponds to the notions of “activation” and 
“high excitation” in cortex. Cognition must very often conduct a multi-stage 
process of gradually promoting hypotheses (expectation symbols) which gain 
significant support from incoming knowledge links and demoting those which 
fail to gain as much support. Thus, the effect CK is very important in cognition. 
In the brain, “CK processing” is continuous in time and happens very rapidly. In 
mechanizing cognition CK is important because in practical implementations 
time moves forward in discrete steps. CK is a transformation taking a module’s 
excitation state from one time step to the next. 

The set of symbols of a module having non-zero excitation levels I( ) follow-
ing a W, WK, or CK effect is termed an expectation. Expectations are considered 
to have a short life (i.e., after a “short” time has elapsed after a confabulation the 
state of the module, its collection of I( ) values, becomes indeterminate). Note 
that this is a refinement of the term expectation used in Chap. 4.  
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The term active is still reserved for the case of a single confabulation conclusion; 
and highly excited will still mean that the expectation has multiple elements. 

Another effect is freezing, denoted by the letter F. Freezing a module causes 
each symbol with positive final excitation (i.e., after a W, WK, or CK) to have its 
final excitation I( ) value preserved for a longer time. During this (still rather 
brief) period of time that follows F, only those symbols which are members of 
this expectation can receive further knowledge link inputs. In other words, the 
input excitations of symbols not in the expectation stay at zero during the frozen 
period. So, for example, if further new link inputs arrive shortly after an F has 
been invoked, and then a W is commanded, an expectation symbol (if there are 
any) which obtains the highest positive I( ) value will be made active. 

As we will see later, building and using expectations is one of the most impor-
tant elements of cognitive information-processing. By using sequences of con-
fabulations to “whittle down” expectations, constraint knowledge of various 
kinds can be applied to rapidly home in on a final conclusion. In effect, each 
expectation represents the set of all “reasonable conclusions” that are worth 
considering further. When the expectation is finally reduced to one conclusion, 
via successive freezes and confabulations, the final, decisive, conclusion is found 
(or, if the final expectation is empty, then the answer is “I don’t know”). Almost 
every aspect of cognition is implemented by such sequences of such “deductive” 
confabulation steps [although this is not deduction in any formal sense because 
it based on the undecidable (but usually reasonable) assumption of exhaustive 
knowledge]. 

Finally, consider a module which, when last used for confabulation (within 
the past few hours), yielded a decisive conclusion and which, subsequently, has 
not been erased. If this module now receives a W, WK, or CK but no knowledge 
link inputs, that symbol which was its last conclusion will, in isolation, become 
active. This is a sort of temporary symbol storage mechanism that the theory 
terms working memory. 

7.1.3  Discussion 

Technological cognition will be inherently limited without the other functional-
ities that brains provide (see Sect. 8.1). Further limitations arise because of the 
lack of on-line memory formation mechanisms (short-term, medium-term,  
and long-term memory processes) and the lack of a capability for goal-driven 
delayed reinforcement learning of thought and movement procedures (see 
Sect. 7.6). Yet, despite these limitations, there are probably many high-value 
early applications of pure cognition (i.e., cognition using contrived thought pro-
cesses, as discussed in the DVD video presentation) that will be possible. Pure 
cognition is the focus of this chapter. 

Language is almost surely the faculty which accounts for the dramatic increa-
se in human mental capability in comparison with all other animals. It is in the 
language faculty, and in the language faculty’s interfaces with the other cognitive 
faculties, that almost all distinctly human knowledge is centered. Thus, language 
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is where the mechanization of cognition must start (see Sect. 7.3). However, 
before discussing language cognition, the next section discusses the currently 
available general methods of antecedent support knowledge acquisition: train-
ing and education. 

7.2  Training and Education 

As discussed above, current confabulation technology is limited to development 
of knowledge using some externally guided process; not via dynamic, autono-
mous goal and drive satisfaction-driven memory formation, as in brains. This 
section discusses the two main processes currently used in knowledge develop-
ment: training and education. When dynamic memory formation eventually 
arrives, training and education will still be important learning processes (but no 
longer the only ones). 

7.2.1  Training 

Training is a knowledge acquisition process that is carried out in a batch mode 
without any significant active supervision or conditional intervention. It is  
a learning mode that can only be applied when the data set to be used has been 
carefully cleaned and prepared. For example, in learning proper English lan-
guage structure it is possible to take a huge (multi-gigaword) proper text corpus 
and train knowledge bases between modules representing the words in English 
[Chap. 4]. The corpus used must be near-perfect. It must be purged of words, 
punctuation, and characters that are not within the selected word list and must 
not have any strange annotation text, embedded tables, meaningless text frag-
ments, highly redundant content, or markup language fragments that will be 
inadvertently used for learning. Achieving this level of cleanliness in a huge 
training corpus which, necessarily – for diversity – is drawn from many sources, 
is expensive and time consuming. 

Once a suitably clean text corpus has been created, each sentence is consid-
ered as a whole item (up to a chosen maximum allowed number of words – e.g., 
20, as in Chap. 6 – after which the sentence is simply truncated). The confabula-
tion architecture to be trained has as many word modules (in a linear sequence) 
as the maximum number of allowed words in a sentence). The words of the sen-
tence are represented by active symbols on the corresponding word modules of 
the architecture (see Sect. 7.3 and Chap. 6 for more details). Co-occurrence 
counts are then recorded for each causal pair of symbols (i.e., between each 
symbol and each of the symbols on modules further down the sequence of mod-
ules). Once these counts are recorded, the process moves on to the next sentence 
of the training corpus. 

A beautiful thing about training is that the result is knowledge that presu-
mably has the same origin and legal standing as knowledge obtained from mate-
rial that a human person has read; but which they do not remember in detail. 
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Namely, this knowledge is presumably not subject to source copyright restricti-
ons or other source intellectual property restrictions. Use of raw data for train-
ing probably falls under the category of “fair use,” which eliminates any need to 
pay royalties. Confabulation-based systems may thus be able to absorb whole 
libraries of knowledge without cost. This is fair use because the content of the 
work is not stored and cannot be recalled. (How much does your library charge 
you in royalties for reading a book? Answer: Absolutely nothing, because read-
ing a library book is fair use.) This fortuitous loophole may allow cognitive ma-
chines to rapidly and efficiently accumulate almost all human knowledge, 
without having to pay any royalties and without the delays associated with wor-
king through legal and bureaucratic objections. Mechanizers of cognition may 
want to expose their systems to the available libraries of written knowledge at 
the first possible opportunity before legal innovators find ways of closing this 
loophole. It may not be long before intelligent machines are as unwelcome at 
libraries as blackjack card counters are at casinos. 

In the short term, early confabulation entrepreneurs will probably use librar-
ies, web scrapers, or informally obtained e-mail message examples (for text 
knowledge), informal public volunteer web portals for conversational data (for 
sound knowledge), public location video (for vision knowledge), and multi-
camera video of moving humans with colored dots pasted to their bodies (for 
motor knowledge). Paying for training data will probably not be feasible for 
most confabulation startup companies. 

The above comments also raise the technical legal question of whether the 
knowledge in confabulation-based systems can itself be copyrighted (this would 
seem reasonable); or must it be protected as a trade secret? Methods of training 
and education may be patentable. The legal implications and ramifications of 
confabulation are clearly going to be complicated, and probably contentious. 
An overriding consideration should be the irreplaceable value of the work out-
put that intelligent machines (which can potentially produce prodigiously, but 
consume insignificantly) will quickly add to the world economic product. It will 
be fun to watch this saga unfold in the courts and in diplomacy over the coming 
decades. 

Knowledge created by training is limited to situations such as that considered 
above; namely, where extensive, highly conditioned and prepared data sets exist. 
In more general situations, online, active, expert human supervision must be 
employed to carefully select meaningful symbol co-occurrences for use in learn-
ing. Such a carefully sequenced program of sophisticated and controlled expo-
sure of the machine to meaningful examples is termed education, which is the 
subject of the next sub-section. 

7.2.2  Education 

A critical aspect of development, particularly in higher mammals, is the limited, 
deliberately controlled exposure to progressively more complicated stimuli that 
characterizes the early phases of an animal’s life (in cats, this might occupy a few 
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weeks, whereas in humans it occupies tens of years – which is often not  
enough!). During this development period, the sequence of exposure of the ani-
mal to information is in some manner controlled (often by confining the animal 
to a particular limited range, such as a nest, home, or school and its immediate 
surround). 

For example, a human baby learning to see has eyes that are physically inca-
pable of focusing much beyond its reach. Thus, most visual stimuli are the ba-
by’s own limbs or individual objects that the baby itself is holding and manipu-
lating. During this period, the visual system develops its ability to segment 
individual objects in single views and also develops higher-level visual modules 
containing symbols that are pose-insensitive (see Sect. 7.5). Knowledge related 
to the integration of form, color, texture, and internal object motion is also de-
veloped during this initial phase. In order for this phase to properly complete, 
the baby must have spent a large amount of time holding and viewing a reaso-
nably rich collection of objects. 

Once the initial phase of human visual development is completed, the baby 
begins to acquire distant vision and begins to learn about a much richer visual 
environment. Again, parental provision of appropriate stimuli during this peri-
od is critical. Persons who are deprived of visual input during these early phases 
(e.g., due to disease that temporarily impairs visual function) are often never 
able to fully complete their visual development, even if their visual input is 
restored at some later point. Such persons can respond to light in some limited 
ways, but cannot see as well as normals. Some persons with restored sight actu-
ally voluntarily limit their exposure to visual input (Gregory 2004). 

As with the initial stage of visual development, the most important source of 
educational input in the later stages of visual development is the child itself. By 
holding an object and examining it (e.g., in an exploration of its function or 
component parts), knowledge in the visual domain, as well as in the linkage of 
vision to the language (and other) faculties, is expanded. Unlike intellectual 
information (which is sometimes fallacious), visual knowledge is “safe” to rap-
idly gather and store because it is essentially never erroneous (except in cases 
where optical distortions exist – which, when corrected too late in the develop-
ment process, often cause a permanent reduction in visual capability). Parents 
often endlessly admonish their children not to handle everything they fancy in 
stores, yet this is probably enriching. Perhaps the admonishment should be to 
take care not to soil or damage what they handle. If you are punctilious in this 
regard, have your children wear clean disposable latex gloves and force them to 
pay for any damage or breakage out of their allowance. But give them these va-
luable experiences. 

Even more than basic sensory processing, learning to carry out important 
behavioral tasks requires deliberate provision of examples, and supervised re-
hearsal practice. This often includes feedback on performance, something that 
will be ignored here since using such feedback requires non-cognitive functions 
which, as yet, we do not understand sufficiently to build. Because of this current 
lack of a reinforcement learning adjunct to cognition [work is proceeding in 
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this area – see Miyamoto et al. (2004), for example], for the moment, education 
of confabulation-based cognitive systems will probably be confined to strictly 
positive examples. In other words, examples where learning should definitely 
take place. 

For example, consider a confabulation-based vision system viewing cars pas-
sing by on a busy road. The visual portion of the system segments each car it 
fixates on (see Sect. 7.5) and then re-represents its visual form, color, and inter-
nal motion using high-level symbols that have invariance properties (e.g., pose 
and illumination insensitivity). Thus, the final product of processing one such 
look is activation of a set of high-level symbols, each describing one visual  
attribute of the object. 

Imagine that a human educator sitting at a computer screen where each look 
(eyeball snapshot image – see Sect. 7.5) to be processed by the confabulation-
based vision system is being displayed (each subsequent look is processed only 
after the previous look’s use for education has been completed). The human 
examines the visual object upon which the center (fixation point) of the eyeball 
image rests and describes it in terms of English phrases (spoken into a noise-
canceling microphone connected to an accurate speech transcriber – see 
Sect. 7.4). For example, if the object is a green Toyota Tundra truck with a dou-
ble cab, the educator might speak: “Toyota Tundra truck,” “dark green,” “two 
rows of seats; in other words, a full-sized back seat,” “driving in the left lane of 
traffic.” After accurate transcription, this text is represented by a set of active 
symbols in a language module (see Sect. 7.3). Knowledge links are then establis-
hed between the active visual symbols representing the visual content of the look 
and the active language symbols representing the education-supplied language 
content of the look. 

Note that the language description is not exhaustive; it is just a sample of de-
scriptive terms for the visual object. For example, if a similar look of the same 
truck were presented on another occasion, the educator might add: “oh, and 
there are four dogs in the bed of the truck.” This would add further links. 

7.2.3  Discussion 

One of the most exasperating things about confabulation theory is that it seems 
impossible that just forming links between co-occurring symbols and then using 
these links to approximately maximize cogency could ever yield anything re-
sembling human cognition. The theory appears to be nothing but a giant moun-
tain of wishful thinking! That such a simple construction can do all of cognition 
is indeed astounding. Yet that is precisely the claim of confabulation theory. 
Some reasons why confabulation may well be able to completely explain cogni-
tion are now discussed. 

First is the fact that the number of links that get established (i.e., the number 
of individual items of knowledge that are employed) is enormous. Even in the 
narrow domain of single proper English text sentences (see Sect. 7.3 and 
Chap. 6), over a billion individual knowledge items are often employed (contrast 
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this with the world’s largest rule bases, which have about 2 million items of 
knowledge). Slightly more elaborate proper English text confabulation systems 
(able to deal with two successive sentences – see Sect. 7.3) often possess multiple 
billions of items of knowledge. 

The value of having such huge quantities of such a simple form of knowledge 
is best seen in terms of how this knowledge is used in confabulation. The first 
use of knowledge is to excite those conclusion symbols which strongly support 
the truth of the set of assumed facts being considered. 

However, an even more important aspect of cognition is the underlying as-
sumption that the knowledge we possess is exhaustive (see Chap. 4). In other 
words, once the available knowledge has been used, we can be reasonably sure 
that no other viable conclusions have been excluded (dropped from the expecta-
tions involved). This effectively causes the known knowledge to act as an im-
plied constraint. In particular, those possible conclusions identified as known to 
be supportive of the assumed facts are not just viable alternatives; they are pro-
bably the only viable alternatives. Thus, in non-Aristotelian information envi-
ronments the exhaustive knowledge assumption leads to answers which are “al-
most logical deductions.” Thus, confabulation can be viewed as a “strong” 
(although not logically rigorous) form of inductive reasoning. 

Another factor that makes confabulation so powerful is its ability to support 
the construction and use of module hierarchies. In the simplest case, the sym-
bols of a higher-level module each represent an ordered set of symbols that 
meaningfully co-occur on lower-level modules. But much more is possible. For 
example, in vision (see Sect. 7.5), individual higher-level symbols each represent 
several groups of lower-level symbols. These are symbol groups that are seen in 
successive “eyeball snapshots” of the same object at the same fixation point (but 
at slightly varied object poses). In this way, these higher-level symbols respond 
to the appearance of a localized portion of an object at a number of different 
poses. They are pose-insensitive localized visual appearance descriptors. 

In language hierarchies, knowledge can be used to discern symbols which are 
highly similar in meaning and usage (in a particular given context) to a particu-
lar symbol. These are termed semantically replaceable elements (SREs). Knowl-
edge possessed about an SRE) of a symbol can sometimes be used to augment 
knowledge possessed about that base symbol. This can significantly extend the 
“conceptual reach” of a system without requiring training material covering all 
possible combinations of all symbols. For example, what if a friend tells you 
about the food “guyap” that they had for breakfast. They poured the flakes of 
guyap from its cardboard box into a bowl, added milk and sweetener, and then 
ate it with a spoon. It was good. By now, you are fairly sure that “guyap” is  
a breakfast cereal of some kind and, at least in the “breakfast food” context, you 
can apply your knowledge about breakfast cereal to “guyap.” 

Hierarchies can work backwards too. For example, if you say you are looking 
for a ruler on your desk, then links from the word ruler (and perhaps some of 
its SREs) go to the visual system and provide input to high-level visual attribute 
(“holistic”) representation symbols which, in the past, have meaningfully 
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co-occurred with visual sightings of rulers. This is accomplished via a CKF ef-
fect, which leaves an expectation of all such symbols that have previously been 
significantly linked to the word ruler. During perception, which takes place 
immediately after this expectation symbol set has been generated, knowledge 
links from primary, and then secondary, visual modules arrive at this high-level 
visual module and a W, CK, or WN is issued at the same time. Only elements of 
the expectation can be activated by the visual input, and the net result is a set of 
symbols that are consistent with both the word ruler and with the current 
visual input. As discussed further in Sect. 7.5, the final step is a rapid bidirec-
tional knowledge link interaction of the higher-level expected symbols with 
those of the lower-level modules to shut off any symbols that are not participat-
ing in “feeding” (i.e., are not consistent with) symbols of the high-level expecta-
tion. This, in effect, causes low-level symbols representing portions of the visual 
input that are not part of the ruler to be shut off. It is by this visual object seg-
mentation mechanism that sensory objects are almost instantly isolated so that 
they can be analyzed without interference from surrounding objects (segmenta-
tion is also a key part of sound and somatosensory processing). Without an 
expectation, sensory processing cannot proceed. [This point, which seems to be 
to be widely unappreciated in the biologically-oriented neuroscience disciplines, 
is the subject of a wonderful book describing clever experiments that well il-
lustrate this point (Mack and Rock 1998).] 

Above all else, cognition works because of the huge hierarchical repertoire of 
learned and stored action sequences (programs of thought and/or movement – 
see Sect. 7.6). Appropriate actions, or action sequences, are triggered instantly 
each time a module confabulation operation yields a single active symbol (i.e.,  
a decisive conclusion). As discussed in Chap. 8, this is the conclusion  action 
principle of the theory. The action(s) automatically triggered by the winning 
symbol can be of many characters. They can be immediate postural goal outputs 
that are sent down the spinal cord to motor nuclei and the cerebellum to launch 
a movement process, they can be immediate module operation commands, they 
can be immediate knowledge base enablement commands, or they can be candi-
date actions (cortically proposed thoughts and movements) which must first be 
sent to the basal ganglia for evaluation and approval before they are executed. 

The main advantage of confabulation-based cognition over traditional pro-
grammed computing (formal computer programs, rule-based systems, etc.) is  
a much greater capacity for handling novel arrangements of individually famil-
iar objects. Programmed computing must essentially have a pre-defined plan for 
dealing with every situation that is to be handled. For example, a plan for brea-
king up a complicated ensemble of problems into isolated, disconnected prob-
lems, so that each can be handled in a pre-defined way. Unfortunately, in most 
real-world situations this approach fails badly because complicated real-world 
situations inevitably have unanticipatable interrelations between their elements. 
By virtue of their huge stores of general-purpose, low-level knowledge, confabu-
lation-based systems are inherently able to take novel external context into ac-
count as each individual conclusion (or ensemble of conclusions, if mutual  
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solution constraints are to be honored – see the discussion of multiconfabula-
tion in Sect. 7.3 below) is addressed. Confabulation-based systems can also  
adapt existing action plans (e.g., by replacing specific elements of a stored plan 
with similar substitutions which are relevant to the current situation) to fit novel 
circumstances. They do not typically run out of things to try and, instead, tend 
to press on and do the best they can, given what they know. If a particular ap-
proach yields no conclusion, other approaches are typically immediately laun-
ched. Yet, because actions are triggered each time a conclusion is reached, alm-
ost all behavioral sequences are dramatically novel. Also, each new experience 
having a positive outcome (as judged by the human educator) be added to the 
knowledge base to further enlarge the system’s future repertoire. 

More could be said regarding the benefits of the confabulation approach. 
However, the remaining sections of this chapter present more concrete examples 
of this. The nature of cognition is very different from that of computing. So much 
depends upon designing clever architectures of modules and knowledge bases 
and upon using clever, highly threaded, but very simple thought processes to 
control these architectures. Since the information-processing control which must 
be exerted at each stage of an action process is triggered by the current cognitive 
world state (the collection of all decisive confabulation conclusions that are ac-
tive at that moment), cognition has no need for “computer programs” or “soft-
ware.” In effect, the conclusion of each “cognitive microaction” (lowest-level 
action sequence) is a GOTO statement. There is no overall program flow defined, 
just action sequences that complete and then trigger subsequent action sequen-
ces (in a pattern that almost never exactly repeats). Things happen as they hap-
pen, with no master program controller involved or needed (although a number 
of sub-cortical brain structures can execute “interrupts” when certain conditions 
occur). This brain operating system (or lack thereof, depending on your point of 
view) seems like an invitation to disaster. However, beyond possible conflicts 
between commands to the same action (movement or thought) resource (which 
are impossible by design! – see Sect. 8.2), very little can go wrong. 

7.3  Language Cognition 

This section discusses the use of confabulation for representing and generating 
language. This application arena is the most developed, and yet is transparent-
ly crude and primitive. An enormous amount of work needs to be done in 
language. The hope of this section is to illustrate how promising this research 
direction is. 

7.3.1  Phrase Completion and Sentence Continuation 

This discussion of language cognition begins with consideration of a class of con-
fabulation architectures for dealing with single English sentences. These architec-
tures address the problems of phrase completion and sentence continuation; 
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simple sub-cases of language generation. This sub-section expands upon on the 
brief introductions provided in Chaps. 4 and 6. These architectures provide  
a good introduction to the “look and feel” of cognitive information-processing – 
which is completely different from the familiar computer paradigm. 

Figure 7.1 illustrates a confabulation architecture for phrase completion and 
sentence continuation in a single sentence of up to 20 words. Each module has 
about 63,000 symbols, including symbols for the 63,000 most common words in 
English (as reflected in the training corpus) and eight punctuations (period, 
comma, semicolon, etc.), which are treated as separate words. Capital letters are 
used when they appear in words in the training corpus selected for representati-
on within the word modules (i.e., mark and Mark are different words, with 
different symbols). Thus, many of the words in the module are represented twi-
ce, once capitalized and once not; some have even more than two representati-
ons, e.g., EXIT, Exit, and exit; and some, such as e.g. and the punctuati-
ons, are never capitalized and only have one representation. 

Once a suitably “clean” huge proper English text training corpus (typically 
containing billions of words) has been created, each successive sentence in the 
corpus is entered, in sequence, into the architecture of Fig. 7.1. The first word of 
the sentence is entered into the leftmost module (i.e., the symbol representing 
this word is made active) and the remaining words of the sentence (or punctua-
tions – which, again, are treated as separate words) are entered successively until 
the ending period. If the sentence has more than 20 words, those words beyond 
the first 20 are discarded. Because of the positioning of the words of each sen-
tence in order, this architecture is termed position-dependent. 

It is also possible to use hierarchical ring architectures for representing 
strings of words, which I believe is probably how the human cortical language 
architecture is organized. As the words are loaded into the ring of modules, they 
are quickly removed in groups (phrases) and re-represented in modules at  
a higher conceptual level, leaving the lower-level modules free for capturing 
additional words. I believe that this is why humans can only instantly remember 
in working memory “about 7 things  2” (Miller 1956) – we physically only have 
about seven modules at the word level. When required to remember a sequence 

 

Fig. 7.1. Naïve single-sentence confabulation architecture for proper English phrase 
completion or sentence continuation. Knowledge bases link each of the first 19 of the 
20 modules to all of the modules to their right. Sentences are represented with the first 
word in the first module on the left, and so on in sequence. This architecture has a total 
of 19 + 18 + ... + 1 = 190 knowledge bases 
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of things, we repeatedly rehearse the sequence (to firmly store it in short-term 
memory) by traversing the ring from the beginning module (which is always the 
same one for each sentence or word sequence) to the last item and then back to 
the beginning. However, given the lack of limitations of computer implementa-
tions of confabulation architectures (at least conceptually), there is no need for 
us to use these more complicated ring architectures for this chapter’s introduc-
tory discussion. 

The knowledge bases of the architecture of Fig. 7.1 are all causal, meaning 
that the symbols of each module are linked only to symbols of later modules 
(i.e., those that lie to the right of it), which represent words which occur later in 
the temporal sequence of the word string. The first (i.e., leftmost) module is 
connected to all of the 19 modules which follow it by 19 individual knowledge 
bases; the second module to the 18 modules to its right; and so forth. Thus, this 
architecture has a total of 20 modules and 190 knowledge bases. 

The training process starts with the first sentence of the training corpus and 
marches one sentence at a time to the last sentence. As each sentence is encoun-
tered it is entered into the architecture of Fig. 7.1 (unless its first 20 words inclu-
de a word not among the 63,000, in which case the sentence is discarded) and 
used for training. Sentences with more than 20 words are truncated to 20. The 
details of training are now discussed. 

At the beginning of training, 190 63,000  63,000 single precision float matri-
ces are created (one for each knowledge base) and all of their entries are set to 
zero. In each knowledge base’s matrix, each row corresponds to a unique source 
module symbol and each column corresponds to a unique target module sym-
bol. The indices of the symbols of each module are arbitrary, but once set, they 
are frozen forever. These matrices are used initially, during training on the text 
corpus, to store the (integer) co-occurrence counts for the (causally) ordered 
symbol pairs of each knowledge base. Then, once these counts are accumulated, 
the matrices are used to calculate and store the (floating point) p( | ) antece-
dent support probabilities. In practice, various computer science storage sche-
mes for sparse matrices are used (in both RAM and on hard disk) to keep the 
total memory cost low. 

Given a training sentence, it is entered into the modules of the architecture by 
activating the symbol representing each word or punctuation of the sentence, in 
order. Unused trailing modules are left blank (null). Then, each causal symbol 
pair is recorded in the matrix of the corresponding knowledge base by incre-
menting the numeric entry for that particular source symbol (the index of which 
determines the row of the entry) and target symbol (the index of which determi-
nes the column of the entry) pair by one. 

After all of the many tens of millions of sentences of the training corpus have 
been used for training (i.e., the entire training corpus has been traversed from 
the first sentence to the last), the entries (ordered symbol pair co-occurrence 
counts) in each knowledge base’s matrix are then used to create the knowledge 
links of that knowledge base. 
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Given a knowledge base matrix, what we have traditionally done is to first set 
to zero any counts which are below some fixed threshold (e.g., in some experi-
ments three, and in others 25 or even 50). In effect, such low counts are thereby 
deemed random and not meaningful. Then, after these low-frequency 
co-occurrences have been set to zero, we use the “column sum” of each count 
matrix to determine the appearance count c( ) of each target symbol  for  
a particular knowledge base. Specifically, if the count of co-occurrences of 
source symbol  with target symbol  is c( , ) (i.e., the matrix entry in row  
and column ), then we set c( ) equal to the column sum of the quantities c( , ) 
over all source module symbols . Finally, the knowledge link probability p( | ) 
is set equal to c( , ) / c( ), which approximates the ratio p( ) / p( ), which, by 
Bayes’ law, is equal to p( | ). 

Note that the values of c( , ), c( ), and p( | ) for the same two symbols can 
differ significantly for different pairs of source and target modules within the 
sentence. This is because the appearances of particular words at various positi-
ons within a sentence differ greatly. For example, essentially no sentences begin 
with the uncapitalized word and. Thus, the value of c( , ) will be zero for every 
knowledge base matrix with the first module as its source module and the sym-
bol  = and as the source symbol. However, for many other pairs of modules 
and target symbols this value will be large. [A technical point: These disparities 
are greatest at the early words of a sentence. At later positions in a sentence the 
p( | ) values tend to be very much the same for the same displacement between 
the modules – probably the underlying reason why language can be handled well 
by a ring architecture.] 

After the p( | ) knowledge link probabilities have been created for all 190 
knowledge bases using the above procedure, we have then traditionally set any 
of these quantities which are below some small value (in some experiments 
0.0001, in others 0.0002, or even 0.0005) to zero, on the basis that such weak 
links reflect random and meaningless symbol co-occurrences. It is important to 
state that this policy (and the policy of zeroing out co-occurrence counts below 
some set number) is arbitrary and definitely subject to refinement (e.g., in the 
case of high-frequency target symbols we sometimes accept values below 0.0001 
because these low-probability links can still be quite meaningful). The final re-
sult of this training process is the formation of 190 knowledge bases, each con-
taining an average of a million or so individual items of knowledge. 

Given this architecture, with its 20 modules and 190 knowledge bases, we can 
now consider some thought processes using it. The simplest is phrase completi-
on. First, we take a coherent, meaningful, contiguous string of fewer than  
20 words and represent them on the modules of the architecture, beginning with 
the first module. The goal is to use these words as context for selecting the next 
word in the string (which might be a punctuation; since these are represented in 
each of the modules). To be concrete, consider a situation where the first three 
words of a sentence are provided. 

The three words are considered to be the assumed facts of the confabulation. 
They must be coherent and “make sense,” else the confabulation process will 
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yield no answers. To find the phrase completion we use the knowledge bases 
from the first, second, and third modules to the fourth. The completion is obtai-
ned by carrying out confabulation on the fourth module using a W3. The ans-
wer, if there is one, is then the symbol expressed on the fourth module after 
confabulation. 

With only three words of context (e.g., The only acceptable), the answer 
that is obtained will often be one of a huge number of viable possibilities (al-
ternative, person, solution, flight, car, seasoning, etc. – 
which can be obtained as an expectation by simply performing a C3). Language 
generation usually involves invoking longer-range or abstract context (expres-
sed in some manner as a set, or multiple sets, of assumed facts that act as 
constraints on the completions or continuations) to more precisely focus the 
meaning content of the language construction (which, by the inherent nature of 
confabulation, is generally automatically grammatical and syntactically con-
sistent). This context can arise from the same sentence (e.g., by supplying more, 
or more specific, words as assumed facts) or from external bodies of language 
(e.g., from previous sentences, as considered below in Sect. 7.3.3). 

If we supply more assumed facts, or more narrowly specific assumed facts, 
confabulation can then supply the best answer from a much more restricted ex-
pectation. For example, Mickey and Minnie yields only one answer: mouse. 

However, using more words in phrase completion (or in sentence continuati-
on, where multiple successive words are added onto a starting string – see 
Chap. 6) introduces some new dilemmas. In particular, beyond a range of two or 
three words, the string of words that emerges is likely to be novel in the sense 
that some of the early assumed facts may not have knowledge links to distant, 
newly selected words in the word string. The design of confabulation architectu-
res and thought processes to handle this common situation is a key problem that 
my research group has solved, at least in a preliminary way. As always, there is 
no software involved, just proper sequences of thought actions (module confa-
bulations and knowledge base enablements) that are invoked by the conclusions 
of previous confabulations. 

For example, consider the assumed facts The canoe trip was going 
smoothly when all of a sudden. Such partial sentences will almost cer-
tainly not have a next word symbol that receives knowledge links from all of the 
preceding assumed fact symbols. So what procedure shall we use to select the 
next word? One answer is to simply go on the preponderance of evidence: select 
that 12th module symbol that has the highest input intensity among those sym-
bols which have the maximum available number of knowledge links. This is 
accomplished by W. This approach can yield acceptable answers some of the 
time, but it does not work as well as one would like. If we were to attempt sen-
tence completion with this approach (i.e., adding multiple words), the results 
are awful. 

The solution is to invoke two new confabulation architecture elements: a lan-
guage hierarchy and multiconfabulation. These are sketched next. 
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7.3.2  Language Hierarchies 

The reasons why the architecture of Fig. 7.1 does not solve the long phrase 
completion and sentence continuation problems are many. First of all, this archi-
tecture disallows the learning and application of standard language constructions 
such as multi-word conceptual units (e.g., New York Stock Exchange, which 
we will refer to as phrases), variable element constructions (VECs, e.g., ___ went 
to the ___), and pendent clauses (e.g., the success of her daughter was, ex-
cept for ordinary daily distractions, foremost on her mind). Stan-
dard constructions are important elements of all human languages (although 
they differ, and can take on different forms, in different languages), and  
a comprehensive architecture must include provisions for representing them. 

For the problems of phrase completion and sentence continuation, the archi-
tecture of Fig. 7.2 is much more capable than that of Fig. 7.1. For example, con-
sider again the problem of finding the next word for the assumed fact phrase 
The canoe trip was going smoothly when all of a sudden. Now, the 
first thing that happens is that this phrase is parsed, meaning that the words are 
re-represented at the phrase level. This happens almost instantly by using the 
knowledge bases which proceed from the word level to the phrase level. The 
parsing process, which is described next, proceeds in a rapid “rippling wave” of 
thought processes running from the beginning of the assumed fact word string 
to the end. 

The first word of the string, The, goes up first. These links (in accordance 
with the knowledge base design described in the caption of Fig. 7.2) only go to 
the first phrase module. A C1F on this first phrase module yields an expectation 
consisting of those symbols which represent phrases that begin with the word 
The. The second word module then sends links upward to the first and second 
phrase modules from the symbol for canoe. C1Fs on phrase modules one and 
two then do two things: on phrase module one, only the symbol for The remains 
(since The canoe, or any further extension of it, is not in the phrase module  

 for brevity, the manner in which the phrase module itself, and the additional 
knowledge bases of the Fig. 7.2 architecture, are derived using word-level know-
ledge – this process too is totally confabulation-implemented and does not use 
any linguistic knowledge – is not described here). This parsing process contin-
ues down the phrase modules, quickly yielding the parse (with the phrase sym-
bol numbers in parentheses): The(8) canoe(25085) trip(1509) {was go-
ing}(63957) smoothly(9723) when(64) all(56) {of a sudden}(69902). 
Thus, phrase modules 1, 2, 3, 4, 6, 7, 8, and 9 have symbols active on them (each 
phrase is represented on the module immediately above its first word). All the 
other phrase modules have no symbols active on them. Note that if the last word 
(sudden) of the assumed fact phrase were not present, that phrase module 9 
would not have a single phrase active on it, but would have several (representing 
all of the phrases that begin with of a: e.g., of a, of a kind, of a sudden, of 
a sort, etc.). Thanks to my colleague Robert W. Means for implementing and 
providing the details of this example. 
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Fig. 7.2. Single-sentence hierarchical confabulation architecture for proper English phrase 
or sentence completion. The lower row of modules are used to represent words, as in 
the architecture of Fig. 7.1. Again, knowledge bases link each of the first 19 of these  
20 word-level modules to all of the modules to their right. Positioned exactly above the 
word-level module row is a row of 20 phrase-level modules. These phrase modules re-
present word groups (and other standard language constructions, although these will 
not be discussed much in this chapter). Each phrase module has at least 126,000 sym-
bols (63,000 single words and punctuations and the 63,000 most common multiple 
word groups). Knowledge bases connect each phrase module to each of the phrase 
modules which follow it. Knowledge bases also connect each phrase module to all of the 
word modules except those that lie to its left. Finally, knowledge bases connect each 
word module with all of the phrase modules except those that lie to its right. This archi-
tecture has a total of 800 knowledge bases. On average, each knowledge base contains 
roughly a million individual items of knowledge. The capability of this architecture is  
a practical demonstration of the main premise of the author’s theory of vertebrate cog-
nition; namely, that lots of simple knowledge, along with a single, simple information-
processing operation can implement all of cognition 

The above processing sounds like it would take a long time. Remember, ho-
wever, that thinking is just like moving. When you throw a baseball many tens of 
muscles are being commanded in parallel in a precisely timed and coordinated 
way. The above thought process (“parse sentence”) is stored, recalled, and exe-
cuted just like a motor action such as throwing a baseball. The initiation of each 
involved knowledge base activation and confabulation happens in close succes-
sion in a “ripple” of processing that rapidly moves from the left end of the archi-
tecture to the right; terminating at the end of the assumed fact phrase. The entire 
parsing process is completed in just a small multiple of one knowledge base 
transmission time. Like some movement actions (e.g., dribbling a basketball); 
thought actions are often divided up into small “macro” segments which, de-
pending upon their outcome (one active symbol, multiple highly excited sym-
bols, or no symbol), trigger alternative next segments. 

As discussed in Chap. 8, a key concept of hierarchical architecture design is 
the precedence principle. There, it is discussed in the context of the constitution 
of individual symbols within a single module. However, the same principle holds 
between lower and higher abstraction level modules within a hierarchy (such as 
that of Fig. 7.2). In this expanded form, what the precedence principle says is 
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that as soon as content that is represented at a lower level of a hierarchy is 
re-represented at a higher level, the involved active lower-level module symbols 
must be shut off. This is implemented in human cerebral cortex by use of the 
conclusion  action principle (see Sect. 8.6). 

In the case of the precedence principle, the action which is triggered by the 
expression of a phrase representation symbol is to shut off the modules which 
supplied words to the phrase that the symbol represents. For example, if the 
phrase that emerges from the parse has three words, the word module directly 
underneath the phrase module, and the next two modules to its right, are shut 
off (they stop expressing their word symbols). If the phrase has only one word,  
a different action is triggered; namely, only shutting off the module directly 
beneath. And so on. Note that these action commands are not issued until the 
choices have narrowed to a single symbol; since it is only then that the conclu-
sion  action principle operates. This is a concrete example of how thought is 
not software. It is a series of sets of action commands, each set being immediate-
ly originated (issued to action nuclei) when a firm conclusion is reached (i.e., 
each conclusion has its own set of action commands that are permanently asso-
ciated with it and which are originated every time that conclusion is expressed 
as the lone final result of a confabulation operation by its module). 

This example illustrates a thought process that can be launched immediately 
with no further evaluation (e.g., by basal ganglia). It also illustrates how we will 
need to implement the action command output portion of cognition from the 
very outset of research. A great deal more could be said about action command 
generation and action symbol sequence learning and recall using confabulation 
architectures. However, this topic would take us beyond the introductory sketch 
being attempted in this chapter. Suffice it to say that quite a lot is known about 
how action sequences can be learned (by rehearsal), stored, and recalled using 
confabulation architectures (e.g., the UCSD graduate students in my course built 
a confabulation-based checker-playing system that learned to play by mimi-
cking a skilled human). Confabulation architectures for appropriately modifying 
action sequences, in real time, in response to changes in the world state that 
occur during execution (a crucial capability if we are to perform in a complica-
ted, real-world environment) have also been developed. 

Obviously, when the conclusion  action principle “branching” capability is 
combined with an ability to store and retrieve data (e.g., using short-term, me-
dium-term, long-term memory, or working memory), the cognitive brain passes 
the test of being, at least conceptually, capable of universal computation in the 
Turing sense. However, the very limited “RAM memory” or “tape memory” 
available for immediate reading and writing probably limits the value of this 
capability. Certainly, as demonstrated in Chap. 4, logical reasoning in Aristote-
lian information environments is carried out directly by confabulation (cogency 
maximization), without need for any recourse to computer principles. Nonethe-
less, a human with a paper and pencil (to supplement the extremely limited 
“RAM memory” available in the brain) can easily learn to carry out thought 
processes that will accurately simulate operation of a computer. However, such  
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a “human-implemented computer” is to a modern desktop electronic computer 
as a unicycle is to a racing car. 

Given the parse of an assumed fact phrase (say, the first few words of a sen-
tence), we can then use the architecture of Fig. 7.2 to carry out “phrase comple-
tion” (as in Chap. 4). The first step is to build an expectation in the phrase mod-
ule above the next word’s module by activating the knowledge bases between the 
last active phrase module of the parse and that “target” phrase module and doing  
a C1F. This first step exploits the fact that adjacent phrases are usually highly 
coherent and it would be rare indeed for the next phrase to not receive knowled-
ge links from the last known phrase of the parse. The result of this first step is an 
expectation on the target phrase module containing all of the reasonable next 
phrases. Note that the last-phrase module of the parse may itself have an expecta-
tion containing multiple symbols which themselves could contain the next word. 

For example, as above, if sudden were not present in the starting word string 
phrase: The canoe trip was going smoothly when all of a sudden, 
the last-phrase module would have an expectation with multiple phrases, in-
cluding all of a sort, all of a sudden, all of a kind, etc. If, for e-
xample, all of these symbols represent multi-word phrases then the target phrase 
module expectation will automatically be empty (since none of the phrases in 
the last-phrase module’s expectation will have any knowledge links to symbols 
of that module). If this is not clear, using Fig. 7.2, work out some examples using 
a diagram on a piece of paper. This is a perfect example of how all thought pro-
cesses are conclusion-driven. 

The expectations established by the above process then send output through 
their knowledge links to the first unfilled word module; where an expectation is 
formed by a C1F. Since this word module is the next one after the last assumed 
fact word module, we can again assume that the symbols in this expectation 
represent all reasonable possibilities for the next word of the continuation. Then 
knowledge linking the rest of the parsed phrase symbols to the word module is 
used with a W to select that word symbol in the expectation which is most con-
sistent with this additional context. Here again, there are many possible things 
that could go on (e.g., knowledge links may or may not exist from various phra-
se symbols to words of the expectation); yet, whatever the situation, this process 
works better than that using the architecture of Fig. 7.1. A bit of time spent thin-
king about this phrase completion process with some concrete examples will be 
most illuminating and compelling. Try to build some meaningful examples whe-
re this process won’t work. You won’t be able to. 

Why would this phrase completion process (using the architecture of Fig. 7.2) be 
better than just using the word-level knowledge as described earlier in connection 
with Fig. 7.1? The answer is that knowledge links from phrases to words generally 
have two superior characteristics over links at the word level. First, the parse often 
removes a significant amount of ambiguity that can exist in word-level knowledge. 
For example, the word module symbol for word New will have strong links to the 
symbol for Stock two word modules later (independent of what word follows it). 
However, if the parse has activated the phrase New Orleans no such erroneous 
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knowledge will be invoked. The other advantage of using the parsed representation 
is that the knowledge links tend to have a longer range of utility; since they repre-
sent originally extended conceptual collections that have been unitized. 

If, as often occurs, we need to restore the words of a sentence to the word 
modules after a parse has occurred (and the involved word modules have been 
automatically shut off by the resulting action commands), all we need to do is 
activate all the relevant downward knowledge bases and simultaneously carry 
out confabulation on all of the word modules. This restores the word-level re-
presentation. If it is not clear why this will work, it may be useful to consider 
the details of Fig. 7.2 and the above description. The fact that “canned” thought 
processes (issued action commands), triggered by particular confabulation 
outcomes, can actually do the above information-processing, generally without 
mistakes, is rather impressive. 

7.3.3  Multiconfabulation 

For sentence continuation (adding more than just one word), we must introduce 
yet another new concept: multiconfabulation (sometimes termed consensus 
building). Multiconfabulation is simply a set of brief, but not instantaneous, 
temporally overlapping, mutually interacting confabulation operations that are 
conducted in such a way that the outcomes of each of the involved operations 
are consistent with one another in terms of the knowledge possessed by the 
system. Multiconfabulation involves constraint satisfaction, a classic topic in-
troduced into neurocomputing in the early 1980s by studies of Boltzmann ma-
chines (Ackley et al. 1985). 

For example, consider the problem of adding two more sensible words onto 
the following sentence-starting word string (or, simply starter): The hyperac-
tive puppy. One approach would be to simply do a W simultaneously on the 
fourth and fifth word modules. This might yield: The hyperactive puppy 
was water; because was is the strongest fourth word choice and, based upon 
the first three words alone, water (as in drank water) is the strongest fifth 
word choice. The final result doesn’t make sense. 

But what if the given three-word starter were first used to create expectations 
on both the fourth and fifth modules (e.g., using C3Fs). These would contain all 
the words consistent with this set of assumed facts. Then, what if Ws on word 
modules four and five were carried out simultaneously, with a requirement that 
the only symbols on module five that will be considered are those which receive 
inputs from module four. Further, the knowledge links back to phrase modules 
having unresolved expectations from word modules four and five, and those in 
the opposite directions, are used as well to incrementally enhance the excitation 
of symbols that are consistent. Expectation symbols which do not receive incre-
mental enhancement have their excitation levels incrementally decreased  
(to keep the total excitation of each expectation constant at 1.0). This multiple,  
mutually interacting, confabulation process is called multiconfabulation and it 
yields a consensus of conclusions (see below and Chap. 6). 
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Applying multiconfabulation yields sensible continuations of starters. For ex-
ample, the starter I was very continues to: I was very pleased with my 
team’s, and the starter There was little continues to: There was lit-
tle disagreement about what importance. Thanks to my colleague 
Robert W. Means for these examples. 

7.3.4  Multi-sentence Language Units 

The ability to exploit long-range context using accumulated knowledge is one of 
the hallmarks of human cognition (and one of the glaring missing capabilities in 
today’s computer and AI systems). 

This section presents a simple example of how confabulation architectures 
can use long-range context and accumulated knowledge. The particular example 

Fig. 7.3. Two-sentence hierarchical confabulation architecture for English text analysis or 
generation illustrated as the functional machinery of a “purple box.” The sub-architectures 
for representing the first sentence (illustrated on the left) and that for the second sentence 
– the one to be continued – illustrated on the right) are each essentially the same as the 
architecture of Fig. 7.2, along with one new module and 20 new knowledge bases. The one 
additional module is shown above the phrase layer of modules of each sub-architecture. 
This sentence meaning content summary module contains symbols representing all of the 
126,000 words and word groups of the phrase-level modules (and can also have additional 
symbols representing various other standard language constructions). Once the first sen-
tence has been parsed its summary module has an expectation containing each phrase 
level module symbol (or construction subsuming a combination of phrase symbols) that is 
active. The (causal) long-range context knowledge base connects the summary module of 
the first sentence to the summary module of the second sentence 
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considered is an extension of the architecture of Fig. 7.2 namely, the one ex-
plored in detail in Chap. 6. The remainder of this sub-section is largely a reca-
pitulation of Chap. 6. However, the reader may find this useful because some of 
the involved issues are discussed from a somewhat different viewpoint. 

The confabulation architecture illustrated in Fig. 7.3 allows the meaning con-
tent of a previous sentence to be brought to bear on the continuation, by multi-
confabulation, of a starter (shown in green in Fig. 7.3) for the second sentence. 
The use of this architecture, following knowledge acquisition is illustrated in 
Fig. 7.4 (where, for simplicity, the architecture of Fig. 7.3 is represented as a “pur-
ple box”). This architecture, its education, and its use are now briefly explained. 

The sentence continuation architecture shown in Fig. 7.3 contains two of the 
architectures of Fig. 7.2 along with two new sentence meaning content summary 
modules (one above each sentence architecture). The left-hand modules are 
used to represent the context sentence, when it is present. The right-hand modu-
les represent the sentence to be continued. 

 

Fig. 7.4. Use of the “purple box” confabulation architecture of Fig. 7.3 for sentence con-
tinuation. Following knowledge acquisition (see text), the architecture’s capabilities are 
evaluated by a series of testing events (each consisting of two trials). In Trial 1 (part A of 
the figure), three words, termed a sentence starter (shown in blue entering the architec-
ture from the left) are entered into the architecture; without a previous sentence being 
provided. The architecture then uses its acquired knowledge and a simple, fixed, 
thought process to add some words; which are shown on the right in green appended 
to the starting words. In Trial 2 (part B of the figure), a previous context sentence (shown 
in brown being entered into the top of the architecture) is also provided. This alters the 
architecture’s continuation output (shown in red). The context sentence (if one is being 
used on this trial) is entered into the left-hand sentence representation module of 
Fig. 7.3 and the starter is entered into the first three words of the right-hand module. 
A simple, fixed, “swirling” multiconfabulation thought process then proceeds to gener-
ate the continuation 
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To prepare this architecture for use, it is educated by selecting pairs of topically 
coherent successive sentences, belonging to the same paragraph, from a general 
coverage, multi-billion-word proper English text corpus. This sentence pair selec-
tion process can be done by hand by a human or using a simple computational 
linguistics algorithm. Before beginning education, each individual sentence mo-
dule was trained in isolation on the sentences of the corpus. 

During education of the architecture of Fig. 7.3, each selected sentence pair 
(of which roughly 50 million were used in the experiment described here) was 
loaded into the architecture, completely parsed (including the summary mod-
ule), and then counts were accumulated for all ordered pairs of symbols on the 
summary modules. The long-term context knowledge base linking the first sen-
tence to the second was then constructed in the usual way, using these counts. 
This education process takes about two weeks on a PC-type computer (see 
Chap. 6 for details). 

Figure 7.5 (spanning the next few pages) illustrates the architecture evalua-
tion process. During each testing episode, two evaluation trials are conducted: 
one with no previous sentence (to establish baseline continuation) and one with  
a previous sentence (to illustrate the changes in the continuation that the avail-
ability of context elicited). For example, if no previous sentence was provided, 
and the first three words of the sentence to be continued were The New York, 
then the architecture constructed: The New York Times' computer model col-
lapses … (where the words added by this sentence continuation process without 
context are shown in green). However, if the previous context sentence Stocks 
proved to be a wise investment . was provided, then, again beginning the next 
sentence with The New York, the architecture constructed The New York mar-
kets traded lower yesterday … (where, as in Fig. 7.4, the words added by the 
sentence continuation process are shown in red). Changing the context sentence 
to Downtown events were interfering with local traffic ., the architecture then 
constructs The New York City Center area where …. Changing the context sen-
tence to Coastal homes were damaged by tropical storms . yields The New York 
City Emergency Service System …. And so on. Below are some other examples 
(first line: continuation without context, second line: previous sentence supplied 
to the architecture, third line: continuation with the previous sentence context): 

The New York Times' computer model collapses … 
Medical patients tried to see their doctors . 
The New York University Medical Association reported … 
 
But the other semifinal match between fourth-seeded … 
Chile has a beautiful capital city . 
But the other cities have their size … 
 
But the other semifinal match between fourth-seeded … 
Japan manufactures many consumer products . 
But the other executives included well-known companies … 
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When the United Center Party leader urged … 
The car assembly lines halted due to labor strikes . 
When the United Auto Workers union representation … 
 

When the United Center Party leader urged … 
The price of oil in the Middle East escalated yesterday . 
When the United Arab Emirates bought the shares … 
 

But the Roman Empire disintegrated during the fifth … 
She learned the history of the saints . 
But the Roman Catholic population aged 44 … 
 

But the Roman Empire disintegrated during the fifth … 
She studied art history and classical architecture . 
But the Roman Catholic church buildings dating … 
 

The San Francisco Redevelopment Authority officials announced … 
Their star player caught the football and ran ! 
The San Francisco quarterback Joe Brown took … 
 

The San Francisco Redevelopment Authority officials announced … 
The pitcher threw a strike and won the game . 
The San Francisco fans hurled the first … 
 

The San Francisco Redevelopment Authority officials announced … 
I listen to blues and classical music . 
The San Francisco band draws praise from … 
 

The San Francisco Redevelopment Authority officials announced … 
Many survivors of the catastrophe were injured . 
The San Francisco Police officials announced Tuesday … 
 

The San Francisco Redevelopment Authority officials announced … 
The wheat crops were genetically modified . 
The San Francisco food sales rose 7.3 … 
 

I was very nervous about my ability … 
The football quarterback fumbled the snap . 
I was very upset with his team's … 
 

I was very nervous about my ability … 
Democratic citizens voted for their party's candidate . 
I was very concerned that they chose … 
 

I was very nervous about my ability … 
Restaurant diners ate meals that were served . 
I was very hungry while knowing he had … 
 

In spite of yesterday's agreement among analysts … 
The Mets were not expected to win . 
In spite of the pitching performance of some … 
 

In spite of yesterday's agreement among analysts … 
The President was certain to be reelected . 
In spite of his statements toward the government … 



 7.3 Language Cognition 163 

In spite of yesterday's agreement among analysts … 
She had no clue about the answer . 
In spite of her experience and her … 
 

In the middle of the 5th century BC … 
Mike Piazza caught the foul ball . 
In the middle of the season came … 
 

In the middle of the 5th century BC … 
The frozen lake was still very dangerous . 
In the middle of the lake is a … 
 

It meant that customers could do away … 
The stock market had fallen consistently . 
It meant that stocks could rebound later … 
 

It meant that customers could do away … 
I was not able to solve the problem . 
It meant that we couldn't do much better … 
 

It meant that customers could do away … 
The company laid off half its staff . 
It meant that if employees were through … 
 

It meant that customers could do away … 
The salesman sold men's and women's shoes . 
It meant that sales costs for increases … 
 

It must not be confused about what … 
The effects of alcohol can be dangerous . 
It must not be used without supervision … 
 

It must not be confused about what … 
The subject was put to a vote . 
It must not be required legislation to allow … 
 

It was a gutsy performance by John … 
The tennis player served for the match . 
It was a match played on grass … 
 

It was a gutsy performance by John … 
Coastal homes were damaged by tropical storms . 
It was a huge relief effort since … 
 

It was a gutsy performance by John … 
The ship's sails swayed slowly in the breeze . 
It was a long ride from the storm … 
 

She thought that would throw us away … 
The tennis player served for the match . 
She thought that she played a good … 
 

Shortly thereafter , she began singing lessons … 
The baseball pitcher threw at the batter . 
Shortly thereafter , the Mets in Game … 
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Shortly thereafter , she began singing lessons … 
Democratic citizens voted for their party's candidate . 
Shortly thereafter , Gore was elected vice president … 
 

The president said he personally met French … 
The flat tax is an interesting proposal . 
The president said he promised Congress to let … 
 

The president said he personally met French … 
The commission has reported its findings . 
The president said he appointed former Secretary … 
 

The president said he personally met French … 
The court ruled yesterday on conflict of interest . 
The president said he rejected the allegations … 
 

This resulted in a substantial performance increase … 
The state governor vetoed the bill . 
This resulted in both the state tax … 
 

This resulted in a substantial performance increase … 
Oil prices rose on news of increased hostilities . 
This resulted in cash payments of $ … 
 

This resulted in a substantial performance increase … 
The United States veto blocked the security council resolution . 
This resulted in both Britain and France … 
 

Three or four persons who have killed … 
The tennis player served for the match . 
Three or four times in a row … 
 

We could see them again if we … 
The president addressed congress about taxes . 
We could see additional spending money bills … 
 

We could see them again if we … 
The view in Zion National Park was breathtaking . 
We could see snow conditions for further … 
 

We could see them again if we … 
We read the children's books out loud . 
We could see the children who think … 
 

We could see them again if we … 
The U.N. Security Council argued about sanctions . 
We could see a decision must soon … 
 

What will occur during the darkest days … 
Research scientists have made astounding breakthroughs . 
What will occur within the industry itself … 
 

What will occur during the darkest days … 
The vacation should be very exciting . 
What will occur during Christmas season when … 
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What will occur during the darkest days … 
I would like to go skiing . 
What will occur during my winter vacation … 
 

What will occur during the darkest days … 
There's no way to be certain . 
What will occur if we do nothing … 
 

When the Union Bank launched another 100 … 
She loved her brother's Southern hospitality . 
When the Union flag was raised again … 
 

When the Union Bank launched another 100 … 
New York City theater is on Broadway . 
When the Union Square Theater in Manhattan … 

Fig. 7.5. Confabulation architecture evaluation process (see text) 

A good analogy for this system is a child learning a human language. Young 
children need not have any formal knowledge of language or its structure in 
order to generate it effectively. Consider what this architecture must “know” 
about the objects of the world (e.g., their attributes and relationships) in order 
to generate these continuations, and what it must “know” about English gram-
mar and composition. Is this the world’s first AI system? You decide. 

Note that in the above examples the continuation of the second sentence in 
context was conducted using an (inter-sentence, long-range context) knowledge 
base educated via exposure to meaning-coherent sentence pairs selected by an 
external agent. When tested with context, using completely novel examples, it 
then produced continuations that are meaning-coherent with the previous sen-
tence (i.e., the continuations are rarely unrelated in meaning to the context sen-
tence). Think about this for a moment. This is a valuable general principle with 
endless implications. For example, we might ask: How can a system learn to 
carry on a conversation? Answer: simply educate it on the conversations of  
a master human conversationalist! There is no need or use for a “conversation 
algorithm.” Confabulation architectures work on this monkey-see/monkey-do 
principle. If these statements upset you, then you are one of those exquisite few 
who actually delve into details. Your reward is to now understand how pro-
foundly alien confabulation theory is in the context of the panorama of classical 
information-processing and systems neuroscience. Again: Conversation in-
volves no algorithms whatsoever. 

This sentence continuation example reveals the true nature of cognition: it is 
based on ensembles of properly phased confabulation processes mutually inter-
acting via knowledge links. Completed confabulations provide assumed facts for 
confabulations newly underway. Contemporaneous confabulations achieve 
mutual “consensus” via rapid interaction through knowledge links as they pro-
gress (thus the term multiconfabulation). There are no algorithms anywhere in 
cognition; only such ensembles of confabulations. This illustrates the starkly 
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alien nature of cognition in comparison with existing neuroscience, computer 
science, and AI concepts. 

In speech cognition (see Sect. 7.4), elaborations of the architecture of Fig. 7.3 
can be used to define expectations for the next word that might be received 
(which can be used by the acoustic components of a speech understanding sys-
tem), based upon the context established by the previous sentences and previous 
words of the current sentence which have been previously transcribed. For text 
generation (a generalization of sentence continuation, in which the entire sen-
tence is completed with no starter), the choices of words in the second sentence 
can now be influenced by the context established by the previous sentence. The 
architecture of Fig. 7.3 generalizes to using larger bodies of context for a variety 
of cognition processes. 

Even more abstract levels of representation of language meaning are possible. 
For example, after years of exposure to language and co-occurring sensory and 
action representations, modules can form that represent sets of commonly en-
countered lower-abstraction-level symbols. Via the SRE mechanism (a type of 
thought process), such symbols take on a high level of abstraction, as they be-
come linked (directly, or via equivalent symbols) to a wide variety of similar-
meaning symbol sets. Such symbol sets need not be complete to be able to (via 
confabulation) trigger activation of such high-abstraction representations. In 
language, these highest-abstraction-level symbols often represent words! For 
example, when you activate the symbol for the word joy, this can mean joy as  
a word, or joy as a highly abstract concept. This is why in human thought the 
most exalted abstract concepts are made specific by identifying them with words 
or phrases. It is also common for these most abstract symbols to belong to  
a foreign language. For example, in English speaking lands, the most sublime 
abstract concepts in language are often assigned to French, or sometimes Ger-
man, words or phrases. In Japanese, English or French words or phrases typical-
ly serve in this capacity. 

High-abstraction modules are used to represent the meaning content of ob-
jects of the mental world of many types (language, sound, vision, tactile, etc.). 
However, outside of the language faculty, such symbols do not typically have 
names (although they are often strongly linked with language symbols). For 
example, there is probably a module in your head with a symbol that abstractly 
encodes the combined taste, smell, surface texture, and masticational feel of  
a macaroon cookie. This symbol has no name, but you will surely know when it 
is being expressed! 

7.3.5  Discussion 

A key observation is that confabulation architectures automatically learn and 
apply grammar, and honor syntax, without any in-built linguistic structures, 
rules, or algorithms. This strongly suggests that grammar and syntax are fictions 
dreamed up by linguists to explain an orderly structure that is actually  
a by-product of the mechanism of cognition. Otherwise put, for cognition to be 
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able, given the limitations of its native machinery, to efficiently deal with lan-
guage, that language must have a structure which is compatible with the mathe-
matics of confabulation and multiconfabulation. In this view, every functionally 
usable human language must be structured this way. Ergo, the universality of 
grammar and syntactic structure in all human languages. 

Thus, Noam Chomsky’s (Chomsky 1980) famous long search for a universal 
grammar (which must now be declared over) was both correct and incorrect. 
Correct, because if you are going to have a language that cognition can deal with 
at a speed suitable for survival, grammar and syntactic structure are absolute 
requirements (i.e., languages that don’t meet these requirements will either  
adapt to do so, or will be extincted with their speakers). Thus, grammar is in-
deed universal. Incorrect, because grammar itself is a fiction. It does not exist. It 
is merely the visible spoor of the hidden underlying native machinery of cogni-
tion: confabulation and antecedent support knowledge. 

7.4  Sound Cognition 

Unlike language, which is the centerpiece and masterpiece of human cognition, 
many of the other functions of cognition (e.g., sensation and action) must inter-
act directly with the outside world. Sensation requires conversion of externally 
supplied sensory representations into symbolic representations and vice versa 
for actions. This section, and the next (discussing vision), must therefore discuss 
not only the confabulation architectures used, but also cover the implementati-
on of this transduction process, which is necessarily different for each of these 
cognitive modalities. Readers are expected to have a solid understanding of 
traditional speech signal processing and speech recognition.

7.4.1  Representation of Multi-source Soundstreams 

Figure 7.6 illustrates an “audio front end” for transduction of a soundstream 
into a string of “multi-symbols,” with a goal of carrying out ultra-high-accuracy 
speech transcription for a single speaker embedded in multiple interfering 
sound sources (often including other speakers). The description of this design 
does not concern itself with computational efficiency. Given a concrete design 
for such a system, there are many well-known signal-processing techniques for 
implementing approximately the same function, often orders of magnitude 
more efficiently. For the purpose of this introductory treatment (which, again, is 
aimed at illustrating the universality of confabulation as the mechanization of 
cognition), this audio front end design does not incorporate embellishments 
such as binaural audio imaging. 

Referring to Fig. 7.6, the first step in processing is analog speech lowpass fil-
tering (say, with a flat, zero-phase-distortion response from DC to 4 kHz, with  
a steep rolloff thereafter) of the high-quality (say, over 110 dB dynamic range) 
analog microphone input. Following bandpass filtering, the microphone signal 
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is sampled with an (e.g., 24-bit) analog to digital converter operating at a 16 kHz 
sample rate. The combination of high-quality analog filtering, sufficient sample 
rate (well above the Nyquist rate of 8 kHz) and high dynamic range yields  
a digital output stream with almost no artifacts (and low information loss). Note 
that digitizing to 24 bits supports exploitation of the wide dynamic ranges of 
modern high-quality microphones. In other words, this dynamic range will 
make it possible to accurately understand the speech of the attended speaker, 
even if there are much higher amplitude interferers present in the soundstream. 

The 16 kHz stream of 24-bit signed integer samples generated by the above 
preprocessing (see Fig. 7.6) is next converted to floating point numbers and 
blocked up in time sequence into 8,000-sample windows (8,000-dimensional 
floating point vectors), at a rate of one window every 10 ms. Each such sound 
sample vector X thus overlaps the previous such vector by 98% of its length 
(7,840 samples). In other words, each X vector contains 160 new samples that 
were not in the previous X vector (and the “oldest” 160 samples in that previous 
vector have “dropped off the left end”). 

As shown in Fig. 7.6, the 100 Hz stream of sound sample vectors then pro-
ceeds to a sound feature bank. This device is based upon a collection of L fixed, 
8,000-dimensional floating point feature vectors: K1, K2, … , KL (where L is typi-
cally a few tens of thousands). These feature vectors represent a variety of sound 
detection correlation kernels. For example: gammatone wavelets with a wide 
variety of frequencies, phases, and gamma envelope lengths; broadband impulse 
detectors; fricative detectors; etc. When a sound sample vector X arrives at the 
feature bank the first step is to take the inner product of X with each of the  

 

Fig. 7.6. An audio front end for representation of a multi-source soundstream. See text for 
details 
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L feature vectors, yielding L real numbers: (X  K1), (X  K2), … , (X  KL). These  
L values form the raw feature response vector. The individual components of the 
raw feature response vector are then each subjected to further processing (e.g., 
discrete time linear or quasi-linear filtering), which is customized for each of the 
L components. Finally, the logarithm of the square of each component of this 
vector is taken. The net output of the sound feature bank is an L-component 
non-negative primary sound symbol excitation vector S (see Fig. 7.6). A new  
S vector is issued every 10 ms. 

The criteria used in selection of the feature vectors are low information loss, 
sparse representation (a relatively small percentage of S components meaning-
fully above zero at any time due to any single sound source), and low rate of 
individual feature response to multiple sources. By this latter it is meant that, 
given a typical application mix of sources, the probability of any feature which is 
meaningfully responding to the incoming soundstream at a particular time be-
ing stimulated (at that moment) by sounds from more than one source in the 
auditory scene is low. The net result of these properties is that S vectors tend to 
have few meaningfully non-zero components per source, and each sound sym-
bol with a significant excitation is responding to only one sound source [see 
(Sagi et al. 2001) for a concrete example of a sound feature bank]. 

Figure 7.7 illustrates a typical primary sound symbol excitation vector S. This 
is the mechanism of analog sound input transduction into the world of symbols. 
One hundred times per second a new S vector is created. S describes the content of 
the sound scene being monitored by the microphone at that moment. Each of the 
L components of S (again, L is typically tens of thousands) represents the respon-
se of one sound feature detector (as described above) to this current sonic scene. 

S is composed of small, mostly disjoint (but usually not contiguous), subsets 
of excited sound symbol components – one subset for each sound source in the 
current auditory scene. Again, each excited symbol is typically responding to the 
sound emanating from only one of the sound sources in the audio scene being 
monitored by the microphone. While this single-source-per-excited-symbol rule 

 

Fig. 7.7. Illustration of the properties of a primary sound symbol excitation vector S (only 
a few of the L components of S are shown). Excited symbols have thicker circles. Each of 
the four sound sources present (at the moment illustrated) in the auditory scene being 
monitored is causing a relatively small subset of feature symbols to be excited. Note that 
the symbols excited by sources 1 and 3 are not contiguous. That is typical. Keep in mind 
that the number of symbols, L (which is equal to the number of feature vectors) is typi-
cally tens of thousands, of which only a small fraction are meaningfully excited. This is 
because each sound source only excites a relatively small number of sound features at 
each moment and typical audio scenes contain only a relatively small number of sound 
sources (typically fewer than 20 monaurally distinguishable sources, with all other sour-
ces merging into an unresolved “audio background noise”) 
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is not strictly true all the time, it is almost always true (which, as we will see, is 
all that matters). Thus, if, at each moment, we could somehow decide which 
subset of excited symbols of the symbol excitation vector to pay attention to, we 
could ignore the other symbols and thereby focus our attention on one source. 
That is the essence of all initial cortical sensory processing (auditory, visual, 
gustatory, olfactory, and somatosensory): figuring out, in real time, which pri-
mary sensor input representation symbols to pay attention to, and ignoring the 
rest. This ubiquitous cognitive process is termed attended object segmentation. 

7.4.2  Segmenting the Attended Speaker 
and Recognizing Words 

Figure 7.8 shows a confabulation architecture for directing attention to a par-
ticular speaker in a soundstream containing multiple sound sources and also 
recognizing the next word they speak. For a concrete example of a simplified 
version of this architecture (which nonetheless can competently carry out these 
kinds of functions), see Sagi et al. (2001). This architecture will suffice for the 
purposes of this introduction, but would need to be further augmented (and 
streamlined for computational efficiency) for practical use. 

Each 10 ms a new S vector is supplied to the architecture of Fig. 7.8. This  
S vector is directed to one of the primary sound modules; namely, the next one 
(moving from left to right) in sequence after the one which received the last  
S vector. It is assumed that there are a sufficient number of modules so that all of 
the S vectors of an individual word have their own module. Of course, this  

 

Fig. 7.8. Speech transcription architecture. The key components are the primary sound 
modules, the sound phrase modules, and the next-word acoustic module. See text for ex-
planation 
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requires 100 modules for each second of word sound input, so a word like anti-
disestablishmentarianism will require hundreds of modules. For illustrative 
purposes, only 20 primary sound modules are shown in Fig. 7.8. Here again, in an 
operational system, one would simply use a ring of modules [which is probably 
what the cortical “auditory strip” common to many mammals, including humans 
(Paxinos and Mai 2004), probably is – a linear sequence of modules which func-
tionally “wraps around” from its physical end to its beginning to form a ring]. 

The architecture of Fig. 7.8 presumes that we know approximately when the 
last word ended. At that time, a thought process is executed to erase all of the 
modules of the architecture, feed in expectation-forming links from external 
modules to the next-word acoustic module (and form the next-word expecta-
tion), and redirect S vector input to the first primary sound module (the one on 
the far left). [Note: As is clearly seen in mammalian auditory neurophysiology, 
the S vector is wired to all portions (modules) of the strip in parallel. The proc-
ess of “connecting” this input to one selected module (and no other) is carried 
out by manipulating the operating command of that one module. Without this 
operate command input manipulation, which only one module receives at each 
moment, the external sound input is ignored.] 

The primary sound modules have symbols representing a statistically com-
plete coverage of the space of momentary sound vectors S that occur in connec-
tion with auditory sources of interest, when they are presented in isolation. So, if 
there are, say, 12 sound sources contributing to S, then we would nominally 
expect that there would be 12 sets of primary sound module symbols responding 
to S (this follows because of the “quasi-orthogonalized” nature of S, e.g., as de-
picted in Fig. 7.7). Mathematically, the symbols of each primary sound module 
are a vector quantizer (Zador 1963) for the set of S vectors that arise, from all 
sound sources that are likely to occur, when each source is presented in isolation 
(i.e., no mixtures). Among the symbol sets that are responding to S are some 
that represent the sounds coming from the attended speaker. This illustrates the 
critically important need to design the acoustic front end so as to achieve this 
sort of quasi-orthogonalization of sources. By confining each sound feature to  
a properly selected time interval (a sub-interval of the 8,000 samples available at 
each moment, ending at the most recent 16 kHz sample), and by using the pro-
per post-filtering (after the dot product with the feature vector has been com-
puted), this quasi-orthogonalization can be accomplished. [Note: This scheme 
answers the question of how brains carry out “independent component analy-
sis” (Hyvärinen et al. 2001). They don’t need to. Properly designed quasi-
orthogonalizing features, adapted to the pure sound sources that the critter 
encounters in the real world, map each source of an arbitrary mixture of sources 
into its own separate components of the S vector. In effect, this is essentially  
a sort of “one-time ICA” feature development process carried out during devel-
opment and then essentially frozen (or perhaps adaptively maintained) for life. 
Given the stream of S vectors, the confabulation processing which follows (as 
described below) can then, at each moment, ignore all but the attended-source-
related subset of components, independent of how many, or few, interfering 
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sources are present. Of course, this is exactly what is observed in mammalian 
audition – effortless segmentation of the attended source at the very first stage 
of auditory (or visual, or somatosensory, etc.) perception.] 

The expectation formed on the next-word acoustic module of Fig. 7.8 (which 
is a huge structure, almost surely implemented in the human brain by a number 
of physically separate modules) is created by successive C1Fs. The first is based 
on input from the speaker model module. The only symbols (each representing 
a stored acoustic model for a single word – see below) that then remain available 
for further use are those connected with the speaker currently being attended to. 

The second C1F is executed in connection with input from the language mo-
dule word module that has an expectation on it representing possible predic-
tions of the next word that the speaker will produce (this next-word module 
expectation is produced using essentially the same process as was described in 
Sect. 7.3 above in connection with sentence continuation with context). (NOTE: 
This is an example of the situation mentioned above and in Chap. 8, where an 
expectation is allowed to transmit through a knowledge base.) After this opera-
tion, the only symbols left available for use on the next-word acoustic module 
are those representing expected words spoken by the attended speaker. This 
expectation is then used for the processing involved in recognizing the attended 
speaker’s next word. 

As shown in Fig. 7.8, knowledge bases have previously been established (us-
ing pure source, or well-segmented source, examples) to and from the primary 
sound symbol modules with the sound phrase modules and to and from these 
with the next-word acoustic module. Using these knowledge bases, the expecta-
tion on the next-word acoustic module is transferred (as described immediately 
above), via the appropriate knowledge bases, to the sound phrase modules, whe-
re expectations are formed; and from these to the primary sound modules, whe-
re additional expectations are formed. It is easy to imagine that, since each of 
these transferred expectations is typically much larger than the one from which 
it came, that by the time this process gets to the primary sound modules the 
expectations will encompass almost every symbol. This is not so! While these 
primary module expectations are indeed large (they may encompass many hun-
dreds of symbols), they are still only a small fraction of the total set of tens of 
thousands of symbols. Given these transfers, which actually occur as soon as the 
recognition of the previous word is completed – which is often long before its 
full acoustic content has arrived, the architecture is prepared for detecting the 
next word spoken by the attended speaker. 

As each S vector arrives at the architecture of Fig. 7.8, it is sent to the proper 
module in sequence. For simplicity, let us assume that the first S vector associ-
ated with the initial sound content of the next word is sent to the first primary 
sound module (if it goes to the “wrong” module, or is missed altogether, it 
doesn’t matter much – as will be explained below). Given that the first primary 
sound module has an expectation, and that the only symbols in this expectation 
are those that represent sounds that a speaker of this type (we each have hun-
dreds of “canonical models” of speakers having different accents and vocal appa-
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rati, and most of us add to this store throughout life) speaking early parts of one 
of the words we are expecting. Again note that, because of the orthogonalized 
nature of the S vector and the pure-signal nature of the primary feature symbols, 
each of the symbols in this expectation will typically represent sounds having 
only a tiny number of S vector components that are non-zero. Each symbol in a 
primary sound module is expressed as a unit vector having these small number 
of components with coefficients near 1, and all other components at zero. The 
module takes the inner product of each symbol’s vector expression with S and 
this is then used as that symbol’s initial input excitation (this is how symbols get 
excited by sensory input signals, in contrast to how symbols get excited by 
knowledge links from other symbols, which was discussed in Sect. 7.1). We have 
now completed the transition from acoustic space to symbol space. 

Notice that the issue of signal level of the attended source has not been dis-
cussed. As described in Sect. 7.3.1, each S vector component has its amplitude 
expressed on a logarithmic scale (based on “sound power amplitudes” ranging 
across many orders of magnitude). Thus, on this scale, the inner product of S 
with a particular symbol’s unit vector will still (because of the linear nature of 
the inner product) be substantial, even if the attended source sounds are tens of 
decibels below those of some individual interferers. Thus, with this design, at-
tending to weak, but distinct, sources is generally possible. These are, of course, 
the characteristics we as humans experience in our own hearing. Further, in 
auditory neuroscience, such logarithmic coding of sound feature response sig-
nals (in particular, those from the brainstem auditory nuclei to the medial geni-
culate nucleus, which are the auditory signals analogous to the components of S) 
is well established (Oertel et al. 2002). 

During the entire time of the word detection processes, all of the modules of 
the Fig. 7.8 architecture are operated in a multiconfabulation mode. Thus, as 
soon as the S-input excitations are established on the expectation element sym-
bols of the first primary sound module, only those symbols which received these 
expectations remain on the expectation (the multiconfabulation is run faster on 
the primary sound modules, somewhat slower on the sound phrase modules, 
and even slower on the next-word acoustic module). This process of expectation 
refinement that occurs during multiconfabulation is termed honing. 

After acoustic input has arrived at each subsequent primary sound module 
(the pace of the switching is set by a separate part of the auditory system, which 
will not be discussed further here, which synchronizes the pace of S vector for-
mation – no, it is not always exactly every 10 ms – to the recent pace of speech 
production of the attended speaker), that module’s expectation is thereby honed 
and this revised expectation is then automatically transferred to all of the sound 
phrase modules that are not on its right (during multiconfabulation, all of the 
involved knowledge bases remain operational). This has the effect of honing 
some of the sound phrase module expectations, which then are transferred to 
the next-word acoustic module; honing its expectation. 

This process works in reverse also. As higher-level module expectations are 
honed, these are transferred to lower levels, thereby refining those lower-level 
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expectations. Note that if occasional erroneous symbols are transferred up to the 
sound phrase modules, or even from the phrase modules to the next-word  
acoustic module, this will not have much effect. That is because the process of 
multiconfabulation effectively “integrates” the impact of all of the incoming 
transfers on the symbols of the original expectation. Only when a phrase module 
has honed its symbol list down to one symbol (which then becomes active) is  
a final decision made at that level. Similarly, only at the point where the ex-
pected word duration has been reached does the next-word acoustic module 
make a decision (or, it can even transfer a small expectation back to the lan-
guage module – which is one way robust operation is aided). 

Figure 7.9 illustrates the multiconfabulation process on the next-word acous-
tic module as the S vector is directed to each subsequent primary sound module 
in turn. As honed expectations are transferred upward, the expectation of the 
next-word acoustic module is itself honed. This honed expectation is then trans-
ferred downward to refine the expectations of the as-yet-unresolved sound 
phrase and primary sound layer modules. Unlike ordinary confabulations, these 
multiconfabulation interactions happen dynamically in continuous time as the 
involved operation commands are slowly tightened. This again illustrates the 
almost exact analogy between thought and movement. As with a movement, 
these smoothly changing, precisely controlled, multiconfabulation module ope-
rate commands are generated by a set of modules (in frontal cortex) that specia-
lize in storing and recalling action symbol sequences. 

A common objection about this kind of system is that as long as the expectati-
ons keep being met, the process will keep working. However, if even one glitch 
occurs, it looks like the whole process will fall apart and stop working. Then, it 
will somehow have to be restarted (which is not easy – for example, it may re-
quire the listener to somehow get a high enough signal-to-noise ratio to allow  
a much cruder trick to work). Well, this objection is quite wrong. Even if the next 
word and the next-after-that word are not one of the expected ones, this architec-
ture will often recover and ongoing speechstream word recognition will conti-
nue, as we already proved with our crude initial version (Sagi et al. 2001). A prob-
lem that can reliably make this architecture fail is a sudden major change in the 
pace of delivery, or a significant brief interruption in delivery. For example, if the 
speaker suddenly starts speaking much faster or much slower the mentioned 
sub-system that monitors and sets the pace of the architecture’s operation will 
cause the timing of the multiconfabulation and word-boundary segmentation to 
be too far off. Another problem is if the speaker gets momentarily tongue-tied 
and inserts a small unexpected sequence of sounds in a word (try this yourself by 
smoothly inserting the brief meaningless sound “bryka” in the middle of a word 
at a cocktail party – the listener’s Fig. 7.8 architecture will fail and they will be 
forced to move closer to get clean recognitions to get it going again). 

A strong tradition in speech recognition technology is an insistence that 
speech recognizers be “time-warp insensitive” (i.e., insensitive to changes in the 
pace of word delivery). Well, Fig. 7.8 certainly is not strongly “time-warp insen-
sitive,” and, as pointed out immediately above, neither are humans! However,  
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Fig. 7.9. Multiconfabulation process on the next-word acoustic module (see Fig. 7.8). 
Initially, symbols in the next-word expectation (green dots in the left-most representation 
of the module state) are established by knowledge link inputs from the speaker model 
module and from the language module. As multiconfabulation progresses, transfers of 
honed expectations from sound phrase modules (which themselves are receiving trans-
fers from primary sound modules) hone this initial expectation, as illustrated here moving 
from left to right. Yellow-filled circles represent symbols that were not part of the initial 
expectation. These are locked at zero excitation. The color chart on the left shows the 
positive excitation scale from lowest on the bottom to highest on top. Some of the initial 
expectation symbols become progressively promoted to higher levels of excitation (the 
sum of all symbol excitations is roughly constant during multiconfabulation). Others go 
down in excitation (it is possible for a symbol to change non-monotonically, but that is 
not illustrated here. In the end state of the module (far right) one symbol (red) has be-
come active – this symbol represents the word that has been detected. Keep in mind that 
in a real architecture there would typically be tens of thousands of symbols and that only 
a few percent, at most, would be part of the initial expectation 

modest levels of time warp have no impact, since this just changes the location 
of the phrase module (moves it slightly left or right of its nominal position) 
where a particular phrase gets detected. Also note that since honed phrase  
expectations are transferred, it is not necessary for all of the primary sound 
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symbols of a phrase to be present in order for that phrase to contribute signifi-
cantly to the “promotion” of the next-word acoustic module symbols that re-
ceive links from it. Thus, many primary symbols can be missed with no effect 
on correct word recognition. This is one of the things which happens when we 
speak more quickly: some intermediate sounds are left out. For example, say 
Worcestershire sauce at different speeds from slow to fast and consider the 
changes in the sounds you issue. 

7.4.3  Discussion 

This section has outlined how sound input can be transduced into a symbol 
stream (actually, an expectation stream) and how that stream can, through  
a multiconfabulation process, be interpreted as a sequence of words being emit-
ted by an attended speaker. 

One of the many Achilles’ heels of past speech transcription systems has been 
the use of a vector quantizer in the sound-processing front end. This is a device 
that is roughly the same as the sound feature bank described in this section, 
except that its output is one and only one symbol at each time step (10 ms). This 
makes it impossible for such systems to deal with multi-source audio scenes, 
since their “attention” is always focused on whichever feature happens to be 
responding most strongly at the moment (a response that could be elicited by 
any one of multiple sound sources, or from superpositions of those sources, 
from moment to moment). 

The sound-processing design described in this section also overcomes the in-
ability of past speech recognition systems to exploit long-range context. Even 
the best of today’s speech recognizers, operating in a totally noise-free environ-
ment with a highly cooperative speaker, cannot achieve much better than 96% 
sustained accuracy with vocabularies over 60,000 words. This is primarily be-
cause of the lack of a way to exploit long-range context from previous words in 
the current sentence and from previous sentences. In contrast, the system de-
scribed here has full access to the context-exploitation methods discussed in 
Sect. 7.3, which can be extended to arbitrarily large bodies of context. 

Building a speech recognizer for colloquial speech is much more difficult than 
for proper language. As is well known, children essentially cannot learn to un-
derstand speech unless they can also produce it (in some way). Undoubtedly, 
this will hold for systems of the type considered in this section. Thus, to solve 
the whole speech language understanding problem we must also solve the 
speech language production problem. 

In summary, the confabulation theory of vertebrate cognition seems to pro-
vide the basis for mechanizing sound cognition in a manner that has the familiar 
characteristics of human sound cognition. 
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7.5  Visual Cognition 

As with sound, the key challenge of monocular (cycloptic) vision is to usefully 
transduce incoming image information into symbolic form. Another key part of 
vision is to build, at higher representation levels, symbolic representations of 
individual visual objects that are invariant to certain transformations of selected 
visual attributes such as pose, lighting, color, and form. These are the main to-
pics of this section. Ancillary subjects, such as the highly specialized visual hu-
man face recognition system and binocular vision, are not discussed. Readers 
are expected to have a solid understanding of traditional machine vision. 

7.5.1  Building an Eyeball Vision Sensor and Its Gaze Controller 

Vertebrate vision is characterized by the use of eyeballs. A gaze controller is used 
to direct the eye(s) to (roughly repeatable) key points on objects of interest.  
In this section we will consider only monocular, panchromatic visual cognition 
in detail. 

Figure 7.10 illustrates the basic elements of the confabulation-based vision 
architecture that will be discussed in this section. For simplicity, the subject of 
how pointing of the video camera sensor will be controlled is ignored. It is as-
sumed that the wide-angle large image camera is fixed and that everything we 
want to see and visually analyze is within this sensor’s fixed visual field of view 
and is of sufficient size (number of pixels) to make its attributes visible at the 
sensor’s resolution. For example, imagine a wide-angle, high-resolution video 
camera positioned about 8 feet above the pavement near a busy downtown street 
intersection, pointed diagonally across the intersection, viewing the people on 
the sidewalks and the vehicles on the streets. 

Assume that the visual sensor (i.e., video camera) gathers digital image 
frames, each with many millions, or tens of millions, of pixels, at a rate of 30 
frames per second. For simplicity, each pixel will be assumed to have its pan-
chromatic (gray scale) brightness measured on a 16-bit linear digital scale. 

The gaze controller (sometimes also called a gaze director or saliency detec-
tor) of this visual system (see Fig. 7.10) is provided with all of the pixels of each 
individual frame of imagery. Using this input, it decides whether to select a fixa-
tion point (a particular pixel of the frame) for that frame (it can select at most 
one). The manner in which a gaze controller can be built [my laboratory has 
built one (Hecht-Nielsen and Zhou 1995) and so have a number of others] is 
described next. To make the discussion which follows concrete, consider a situa-
tion where our video camera sensor is monitoring a street scene in a busy down-
town area. Each still frame of video contains tens of people and a number of cars 
driving by. 

The basic idea of designing a gaze controller is to mimic human performance. 
Let an attentive human visual observer watch the output of the video sensor on  
a computer screen. Attach an eye tracker to the screen to monitor the human’s 
eye movements. These movements will typically be saccades – jumps of the eye 
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position between one fixation point and the next. At each fixation point, the 
human eye gathers image data from a region surrounding the fixation point. 
This can be viewed as taking a “snapshot” or “eyeball” image centered at that 
fixation point. The human visual system then processes that eyeball image and 
jumps to the next fixation point selected by its gaze director (a function which is 
implemented, in part, by the superior colliculus of the brainstem). Visual proces-
sing is not carried out during these eyeball jumps. While the human observer is 
viewing the video it is important that they be carrying out whatever specific task 
or tasks that the automated vision system will be asked to carry out (e.g., spot-
ting people, pets, bicycles, and cars). 

After many tens of hours of video have been viewed by the human observer 
carrying out the function that the machine visual cognition system will later 
perform, and their eye movements have been recorded, this provides a record of 
their fixation point choices for each still frame of specific scene content when 
that choice was made. This record is then used to train a multilayer perceptron 

 

Fig. 7.10. Vision cognition architecture. The raw input to the visual system is a wide-angle 
high-resolution video camera (large frame shown in the lower right of the figure). A sub-
image, of a permanently fixed size (say 1024  1024 pixels) of a single video frame 
(shown as a square within the large frame), termed the eyeball image, is determined by 
the location of its center (depicted by the intersection of crosshairs), known as the 
fixation point. The gaze controller uses the entire large frame to select a single fixation 
point, if it deems that such a selection is warranted for this large frame (it only attempts 
to select a fixation point when processing of the last eyeball image has been com-
pleted). For simplicity, it is assumed that the video camera is fixed and is able to see the 
entire visual scene of interest (e.g., a camera viewing a busy downtown intersection). 
The confabulation architecture used for visual processing is described in the text 
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(Hecht-Nielsen 1989, 2004b) to carry out the gaze control function. The basic 
idea is simple. Each frame of high-resolution video is described by an image 
feature vector V. This feature vector is produced by first taking the inner prod-
uct of each of a collection of Gabor logons with the image frame (both consid-
ered as vectors of the same dimension). The specific Gabor logons used in form-
ing V (each logon is defined by the constants E, F, and G, and by its position and 
angle of plane rotation in the image – see Fig. 7.11) are now described. 

First, we create a fixed rectangular set of gridpoints located at equal pixel 
spacings across the entire high-resolution video camera frame (Caid and Hecht-
Nielsen 2001, 2004; Hecht-Nielsen and Zhou 1995; Daugman 1985, 1987, 1988a, 
1988b; Daugman and Kammen 1987). For example, if each video camera image 
frame were a 8,192  8,192 pixel digital image, with a 16-bit panchromatic gray-
scale, or, equivalently, a 67,108,864-dimensional floating point real vector with 
integer components between 0 and 65,535, then we might have gridpoints 
spaced every 16 pixels vertically and horizontally, with gridpoints on the image 
edges, for a total of 513  513 = 263,169 gridpoints. 

At each gridpoint we create a set of Gabor logons centered at that position, 
each having a specified rotation angle and E, F, and G values. The set of logons 
at each gridpoint are exactly the same, save for their translated position. This 
set, which is now described, is termed a jet (von der Malsburg 1990). In the vi-
sion work done in my lab we have typically set the ratio E/F to 5/8 and the G/E 
ratio to 3 /2 for every logon in every jet [these are the values that seem to be 
used by domestic cats (Hecht-Nielsen 1989)]. 

Each jet consists, for example, of pairs of a sine logon and a cosine logon at 
each of seven scales (E = 2, 3, 5, 9, 15, 20, and 35 pixel units) and 16 regularly 
spaced angular orientations, including having the major ellipse axis of one logon 
pair vertical. Thus, each jet at each gridpoint has 224 logons. Again, each indi-
vidual logon is viewed as a 67,108,864-dimensional floating point real vector, 
with each component value given by the evaluation of its formula (Fig. 7.11, 
properly translated and rotated) evaluated at the pixel location corresponding to 
that component (obviously, with most of its values at pixels distant from the 
gridpoint very close to zero). Thus, there are a total of 224  263,169 = 58,949,856 
logons in all of the gridpoint jets; almost as many as there are pixels in the high-
resolution camera image. 

The image feature vector V of a single camera (assumed to employ a progres-
sive scan) frame is defined to be the 29,474,928-dimensional vector obtained by 
first calculating the inner product of each logon of each jet with the image vec-
tor, and then, to get each component of V, adding the squares of the sine and 
cosine inner products of the logons of the same scale and rotational orientation 
in each jet (which reduces the total dimensionality of V to half that of the total 
number of logons). [Note: Other mathematical transformations are then applied 
to each of these sums to make their values insensitive to average absolute 
brightness within a region of the image and insensitive to lighting gradient 
slopes – but these details go beyond the scope of this sketch and so are left out – 
see Hecht-Nielsen and Zhou (1995) for examples of such transformations.] 



180 7 Mechanization of Confabulation 

 

Fig. 7.11. Gabor logon local image features. Logons are defined as images with real-valued 
pixel brightnesses (i.e., both positive and negative values are allowed) defined by geomet-
rical plane rotations and translations (in the image plane) of the canonical two-dimensional 
functions sin(G x)/exp(E x2 + F y2) (called a sine logon) and cos(G x)/exp(E x2 + F y2) (termed  
a cosine logon); where E, F, and G are positive constants and x and y are image plane coordi-
nates in the translated and rotated coordinates. Note that E and F define the principal axis 
lengths of a two-dimensional Gaussian-type ellipsoid and G defines the spatial frequency 
of a plane grating (with oscillations along the x-axis). The ratio E/F is fixed for all logons 
used. Each individual logon is considered as a (real-valued) digital image; i.e., as image 
vectors of the same dimension as the wide-angle video camera frames 

Each component of V essentially represents an estimate of the localized 
spatial frequency content of the camera image (at the position of the associ-
ated gridpoint) at the spatial frequency of the involved logon pair, in the 
direction of oscillation of that pair. It is on the basis of local spatial frequency 
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structure (which V accurately defines) that fixation points are chosen by the 
gaze controller. 

The job of the gaze controller is to learn to mimic the performance of  
a skilled human observer performing the visual task that is to be mechanized. 
The manner in which the gaze controller works and the method used to train it 
are now described. 

The gaze controller [a perceptron (Hecht-Nielsen 2004b)] has 224 inputs and 
two outputs. The inputs represent the components of V corresponding to the jet 
at a particular image gridpoint (the current position of regard of the gaze con-
troller). The outputs of the gaze controller are estimates of the a posteriori prob-
ability of this gridpoint being chosen by the skilled human as a fixation point 
along with the a posteriori probability of this gridpoint not being chosen by the 
skilled human as a fixation point. Training of the gaze controller is discussed 
below; but, to set the stage, the manner in which the gaze controller is used op-
erationally is described first. 

Once trained, the gaze controller is used to select a fixation point in a newly 
acquired video frame by evaluating each of the V component sets from each of 
the 263,169 gridpoints of the frame. If the first output of the controller is above  
a fixed threshold (say, 0.8), and the second output is below a fixed threshold 
(say, 0.2), then that gridpoint is selected as a candidate fixation point. If there 
are no candidate fixation points for the frame, then that frame is skipped. If 
there are one or more, the one with the highest first output value is selected as 
the fixation point. The gaze controller also has provisions for creating multiple 
successive “looks” at the same object during visual training, to facilitate learning 
of pose insensitivity (see below). In operational use, when a visual object of in-
terest has been fixated on and described, the gaze controller tracks that object’s 
fixation point and prevents return to it until the other visual objects of interest 
in the scene have been described. 

To train the gaze controller, each fixation point example (for which a refer-
ence frame is selected as the definitive “image input” that the human used – by 
taking a frame that is a fixed time increment right before the beginning of the 
saccade) has its pixel coordinates (supplied by the frequently recalibrated eye 
tracker) stored with its reference frame. Eventually, many thousands of such 
fixation point–reference frame pairs are produced, randomly scrambled to re-
move possible content correlations between them, and stored. The V vector for 
each reference frame is also calculated and stored with it. 

The gaze controller perceptron is trained by marching through the fixation 
point–reference frame examples, in sequence, many times. At each training 
episode, the next fixation point–reference frame example in sequence is selected 
and the gridpoint nearest to the fixation point is located. The jet components of 
the reference frame V vector for that gridpoint are then extracted and provided 
to the perceptron, along with desired outputs 1 and 0, and one backpropagation 
training episode using these specified inputs and outputs is carried out. Another 
gridpoint, distant from any fixation point, is then selected and its jet V compo-
nents are provided to the perceptron, along with desired outputs 0 and 1,  
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and a second perceptron training episode is carried out using these inputs and 
outputs. The training process then moves on to the next fixation point–refer-
ence image example. Thus, this training procedure beneficially utilizes oversam-
pling of the examples of the class of human-supplied fixation points (Hecht-
Nielsen 2004). 

Training is continued until the perceptron learning curve (as calculated by 
considering the performance of the perceptron when tested on, say, the last 1000 
training examples) reaches a sufficiently low value (say, 80% of the training 
example pairs would be declared as fixation points and not fixation points, re-
spectively). Final testing is carried out on hundreds of fresh examples not used 
in testing. If, say, 70% of the final testing examples are classified correctly, then 
the gaze controller is frozen and ready for service. If not, then additional train-
ing is called for. After training, the outputs are scaled to reflect operational class 
a priori probabilities (Hecht-Nielsen 2004b). 

It is natural to doubt that the above procedure would produce a functional 
gaze controller that would mimic the performance of a skilled human. But it 
can! The reason is probably that the human superior colliculus (and its various 
input nuclei) is essentially a fixed neuronal machine (at least in autonomous 
operational mode where no external control is exerted – there are several brain 
nuclei that can send “commands” to the superior colliculus which override its 
indigenous decisions) that is not all that “smart” (it operates very fast, in what 
looks like a “flow through” processing mode). Thus, its natural internal function 
is capable of being fairly accurately mimicked by a perceptron. 

7.5.2  Building the Primary Visual Modules and Knowledge Bases 

After the gaze controller has finished its training, it is time to build the rest of 
the visual system (and link it up with the language module). The first step is to 
set up the camera and start feeding frames to the gaze controller. Every time it 
chooses a fixation point (which is, of necessity, a grid point), the V components 
of the gridpoints lying within the eyeball image centered at that fixation grid-
point are gathered to form the eyeball image description vector (or just eyeball 
vector) U. 

Just as in the design of mammalian primary visual cortex, each of the primary 
visual modules is responsible for monitoring a small local neighborhood of the 
eyeball image (these neighborhoods are all regularly spaced, they overlap some-
what, and they completely cover the eyeball image). For instance, using the ex-
ample numbers provided above, each primary visual module (of which, for illus-
tration purposes, Fig. 7.10 shows 36, but there might actually be, say, 81) would 
monitor the U components from, say, 4,900 gridpoints within and adjacent to its 
neighborhood of the eyeball image. The vector formed by these selected U com-
ponents constitutes the input vector to that module. 

Now comes the tricky part! In order to train the primary visual modules, it  
is essential that, while this training is underway, the images being gathered by 
the high-resolution video camera have only one visual object (an object of  
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operational interest) in them; and nothing else. Further, all visual objects that 
will ever be of interest to the system must be presented in this manner during 
this training phase. As mentioned in Chap. 8, in humans, this requirement is 
met by physically altering the characteristics of the baby’s eyes after it passes 
through this stage (during which its vision is limited in range to about arm 
length). Similarly in other mammals. For artificial visual cognition, a way must 
be found to meet this critical requirement. For many applications, motion seg-
mentation, and rejecting eyeball images with more than one object fragment in 
them (as determined by a human educator supervising visual knowledge acqui-
sition), will work. 

The symbols of each module are built by collecting input vectors from a huge 
collection of eyeball images selected by the gaze controller from images gathered 
in the operational visual environment, but where each eyeball image contains 
only one object (as described in the previous paragraph). These input vectors for 
each module are then used to build a VQ codebook for that module (Zador 
1963) which is sufficiently large so that, as training progresses, very few input 
vectors are relatively far (more than the local intra-codebook vector distance) 
from a codebook vector. Once this criterion is met, the codebook is frozen and 
one symbol is created for, and uniquely associated with, each codebook vector. 
This is how the primary visual module symbol sets are developed. As discussed 
in Chap. 8, it can also be useful (but it is not essential) to develop “complex fea-
ture detector” symbols and invoke the precedence principle, as in mammalian 
primary visual cortex. However, this possibility will be largely ignored here. 

Once the primary module symbol sets are developed, the next step is to de-
velop the knowledge bases between these modules. For simplicity, we can as-
sume that every primary visual module is connected to every other by a knowl-
edge base. 

The primary visual layer (i.e., the primary visual modules and the knowledge 
bases linking them) knowledge bases are trained using large quantities of new 
video gathered from the operational source, with the gaze controller selecting 
fixation points. Again, it is somehow arranged that each eyeball image contains 
only an object of operational interest at the fixation point and no visual ele-
ments of other objects (i.e., the rest of the eyeball image is blank). 

As each eyeball image vector U is created and its selected subsidiary compo-
nents (making up the 81 primary visual module input vectors) are sent to the 
primary visual modules, each module expresses an expectation with the, say, 10 
symbols whose associated codebook vectors lie closest to its input vector. Count 
accumulation then takes place for all (unidirectional) links between pairs of 
these expectation symbols lying on d. 

The idea of using the 10 closest symbols is based upon the discovery (Caid 
and Hecht-Nielsen 2001, 2004) that jet correlation vectors which are near to one 
another in the Euclidean metric (i.e., in the VQ space of a module) represent 
local visual appearances that are (to a human observer) visually similar to each 
other; and vice versa. This valuable fact was pointed out in the 1980s by John 
Daugman (Daugman 1985, 1987, 1988a, 1988b; Daugman and Kammen 1987); 
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(Daugman also invented the “iris scan” biometric signature). This way, symbols 
which could reasonably occur together meaningfully within the same object 
become linked. This is much more efficient and effective than if each module 
simply expressed the one closest symbol; and yet, because of Daugman’s impor-
tant principle, no harm can come of this expansion to multiple symbols. The key 
point is that counts are kept between each of the combinatorially-many ordered 
excited symbol pairs (of symbols on different modules) involved. The process of 
deriving the p( | ) knowledge link strengths from the counts ensures that only 
the meaningful links are retained in the end. 

As training progresses, the p( | ) knowledge link strengths are periodically 
calculated from the symbol co-occurrence count matrices (of which there is one 
for each knowledge base). When the meaningful p( | ) values stop changing 
much, training is ended. The primary visual layer is now complete. 

7.5.3  Building the Secondary and Tertiary Visual Layers 

After completion of the primary visual layer, it is time to build the secondary 
and tertiary visual layers. However, this process requires that the primary visual 
layer representation of each eyeball image pertain to only one object – which can 
be accomplished using the primary layer’s knowledge bases, as described next. 

Figure 7.12 shows a portion of a frame from the wide-angle high-resolution 
panchromatic video camera containing an eyeball image that has been selected 
by the gaze controller. Each of the 81 primary visual modules shown is receiving 
its input vector from this eyeball image. The first thing that happens is that each 
module expresses an expectation consisting of those (again, say, 10) symbols 
which were closest to that module’s input vector. (Note: This is similar to a C1F 
effect, except that the inputs are not coming from knowledge links, but from 
“extra-cortical sensory afferents.” This illustrates, as does the handling of the  
S vector by primary sound modules discussed in Sect. 7.4, how the handling of 
these special external sensory inputs is very similar to the handling of knowl-
edge link inputs.) 

Once the primary visual module expectations are established, knowledge 
links proceeding from the central module of the primary layer, and its immedi-
ately neighboring modules, outward are enabled (allowing all symbols of all 
expectations of those modules to transmit) and the distal modules that these 
links target receive C1F commands. Those distal modules that do not receive 
links to symbols of their (previously established and frozen) expectations de-
scribing their portion of the eyeball image have all of their symbols shut down 
and thereby become null (this follows from the fact, discussed in Sect. 7.1, that 
the only symbols of a module with a frozen expectation which can receive input 
excitation from a knowledge link are those which belong to the expectation). In 
general, the only way that the expectation of an outlying module can have any 
symbols retained is if one or more of its expectation symbols codes a local ap-
pearance that has been meaningfully seen before in conjunction with one or 
more of those expectations of the modules proximal to the fixation point. 
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Fig. 7.12. Object segmentation example. A portion of a wide-angle camera frame is 
shown. The gaze controller has fixated upon the upper left back corner of a rectangular 
solid (shown here in colour for clarity). The eyeball image is shown surrounding the 
fixation point with the 81 (overlapping – they actually overlap a bit more than is shown 
here) fields of view of the 81 primary visual modules shown. As explained in the text, the 
primary visual layer knowledge bases can be used to eliminate the module responses to 
all visual objects except the one upon which the fixation point lies 

A more elaborate version of this process can also be used, in which a “wave” 
of confabulations moves outward from the middle of the primary module array 
to the periphery; with only knowledge bases that span one or two inter-module 
distances being enabled as the wave progresses. This improves performance 
because closer-distance-related appearances are more likely to have appeared 
enough during training to be considered meaningful and be retained. 

The astounding thing about this process (which is very fast because all of the 
distal module confabulations happen in parallel) is that it effectively segments 
the object upon which the fixation point lies from all the other image content of 
the eyeball image. In other words, ideally, after this segmentation procedure, 
which is virtually instantaneous, only symbols describing local appearance of 
the attended object (the one selected by the gaze controller, having the fixation 
point sitting on it) remain in the expectations of the primary visual layer mod-
ules. In Fig. 7.12, these non-null modules (representing the rectangular solid 
shown) are illustrated as diagonally hatched in magenta. In other words, the 
only visual appearance data left on the primary visual layer is that describing the 
attended object, which has thereby effectively been segmented and isolated from 
the surrounding objects (as if cut out by scissors). 
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Note that, given the reasonably long reach of the knowledge bases projecting 
radially outward from the center of the primary visual layer, even objects which 
are interrupted by an occluding foreground object will, in principle, have all of 
their visible components represented by primary modules [and those coding the 
interrupting object(s) will be nulled]. Also note that the smaller each primary 
visual module is (in terms of the fraction of the eyeball image it covers), the 
better this process will work. Thus, segmentation might work even better if we 
had 625 primary visual modules (a 25  25 array). The use of more “complex” 
features, based upon more localized “simple” features (see Chap. 8), and the 
precedence principle is one design approach to achieving some of the benefits of 
more, smaller modules without actually building them. 

Multiple natural questions arise at this point. First, how well does this design 
actually work in practice? In other words, how thoroughly does this segmenta-
tion process null modules coding other objects and how reliably are the modules 
that code the attended object retained? The short answer is that I don’t know. 
The only evidence I have is based upon experiments done in my lab with a very 
simple image environment (images of capital Latin alphabetical characters mov-
ing about, on a plane, with slowly randomly changing spatial and angular veloci-
ties). In this case, a segmentation scheme of this basic type worked very well. 

In reality, probably not all fixation point objects will segment cleanly. Some-
times irrelevant modules will not be nulled, and relevant modules will be. How-
ever, because of the nature of development process for the secondary and terti-
ary visual module symbol sets, which is described next, such errors will not 
matter; as long as these lapses occur randomly and as long as the general quality 
of the segmentation is fairly good. We will proceed on the assumption that these 
conditions are satisfied. 

The goal for the secondary module symbols is twofold. First, each such sym-
bol should be somewhat pose insensitive (i.e., if it responds strongly to an object 
at one pose it will respond strongly to the same object at nearby poses). Also, 
each secondary module symbol should represent a larger spatial “chunk” of an 
object than any primary symbol. Such symbols are said to be more holistic than 
primary module symbols. Tertiary layer module symbols are to be even more 
holistic than secondary layer symbols. 

For secondary and tertiary layer development, sequences of camera images 
containing the same (operationally relevant) visual object are used. At the be-
ginning of each sequence, we assume that the gaze director has selected a fixa-
tion point on the object. In the subsequent frames of the sequence, we check to 
see that, in each, one point near the initial fixation point is also given a high 
score by the gaze director. If this is true for a significant sequence of frames (say, 
10–20 or more), then these nearby points on the subsequent frames are desig-
nated as the fixation points for those frames and this sequence of eyeball images 
is added to our training set for layers two and three. It is assumed that this set of 
sequences provides good statistical coverage of the set of all operationally rele-
vant objects, and that each object is seen in many different operationally charac-
teristic poses in the sequences. It is also assumed that the poses of the fixated 
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object in each sequence are dynamically changing. (NOTE: This dynamic varia-
tion in pose is needed for training, but is not a requirement for operational use, 
where objects can be stationary, and yet can still usually be described with  
a single look). 

As shown in Fig. 7.10, the secondary layer modules receive knowledge links 
from primary layer modules. The arrangement of these links is that a secondary 
module symbol can only receive a link from symbols lying on primary modules 
surrounding the position of the secondary module in the second layer module 
array (i.e., like the primary module array, the secondary array is envisioned as 
also representing, with a regular “tiling,” the eyeball image content of the at-
tended object, but with each secondary module representing a larger “chunk” of 
this object than a primary layer module – since the secondary layer has fewer 
modules than the primary layer). These knowledge links connect every symbol 
belonging to each primary module within the “field of view” of a secondary mod-
ule to every symbol of that secondary module. For each such forward knowledge 
link, a link between the same two symbols in the reverse (secondary to primary) 
direction is also created. All of these links start out with zero strength. 

As mentioned in Chap. 8, not all knowledge bases need to have graded p( | ) 
strengths. For many purposes in cognition, it is sufficient for knowledge links to 
simply be present (essentially with strength 1) or absent (with effective “strength” 
0). These inter-visual-level knowledge links are of this binary character. 

During each secondary layer training episode, sequences of, say, four to six 
consecutive eyeball images of the same fixation point on a dynamically pose-
changing object of interest (extracted at random from one of the training set 
sequences) is used in order. As described above, as each eyeball image in the 
sequence is entered, the above segmenting process is applied to it – yielding 
expectations on a subset of the primary layer modules. After the first eyeball 
image of the first training episode sequence has been so represented, a symbol is 
formed in each secondary module and that symbol is bidirectionally connected 
from and to each of the primary layer symbols to which it is connected (by set-
ting the relevant knowledge link strengths to 1). The second eyeball image of the 
sequence is then entered and segmented. The same secondary module symbols 
created using the first eyeball image of the sequence are then connected from 
and to all of the primary symbols of this processed second eyeball image for 
which connections exist. And so forth for the remaining eyeball images of the 
sequence used on this first training episode. On subsequent training episodes we 
proceed in exactly the same manner. 

Clearly, one symbol is typically going to be added to each secondary module 
on each image sequence training trial. We stop training when the vast majority 
of new secondary symbols turn out to be equivalent to existing symbols – as 
measured by noting that, of those secondary modules which are receiving 
knowledge link inputs from primary symbols, each such secondary module 
already has a symbol that simultaneously receives links from at least one expec-
tation symbol of each non-null primary module from which that secondary 
module receives a knowledge base. In other words, training is stopped when the 
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vast majority of segmented eyeball images can be well represented by secondary 
symbols which have already been created. 

Once training has been stopped, we then use the same training set again for 
consolidating the symbols. This involves using the primary symbols represent-
ing each eyeball image as inputs to the secondary modules to which they con-
nect by strengthened connections. Whenever multiple symbols of a secondary 
module receive links from one primary symbol of each primary module from 
which that secondary module receives links, then those secondary module sym-
bols are merged. Merging simply means that all of the primary to secondary 
links that went to each of the symbols being merged now go to the merged sym-
bol (and vice versa for the secondary to primary links). What merging does is 
combine symbols which represent intersecting pose-space trajectories for the 
same object; thus increasing the pose insensitivity of the merged symbol. 

Once the secondary layer modules are built and merged (and the knowledge 
bases between the primary and secondary layers frozen), the last step is to train 
the knowledge bases between the secondary layer modules. This is done by en-
tering single eyeball images from the training set, segmenting and representing 
each image using the primary layer (as during training), carrying out a W on 
each secondary module, and recording the symbol co-occurrence counts for 
each secondary layer knowledge base. 

When all of this is done, the secondary to tertiary knowledge bases (and their 
inverses) are built using the same method as described above for the primary to 
secondary knowledge bases, except that this time, each training episode uses the 
entire set of eyeball images of each training set sequence. The resulting tertiary 
module symbols are then merged and the tertiary layer inter-module knowledge 
bases are built. This completes development of the vision module. 

7.5.4  How Is the Visual Module Used? 

After all of the modules and knowledge bases of the visual module of Fig. 7.10 
are built, the module is ready for use. This sub-section briefly sketches how it 
can be used. 

Given a new frame of imagery in which the gaze controller has found a fixa-
tion point, the primary layer of the visual module segments and represents the 
attended object with expectations, just as during the later phases of training and 
education. The symbols of the non-null expectations of primary modules then 
transmit to other primary modules and to secondary layer modules via the es-
tablished knowledge bases. The other primary layer and the secondary layer 
modules then create expectations in response to C1Fs. The secondary visual 
layer expectation symbols then transmit to other secondary modules without 
expectations (if any there be) and to tertiary modules, again using the knowl-
edge links established during training, and C1Fs establish expectations on all 
relevant modules. Finally, the knowledge links of the third layer are used to 
transmit from the tertiary expectations to any modules without expectations, 
followed by a final round of C1Fs. 
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The expectations formed by this initial “feedforward” interaction represent 
all of the symbols that are known (i.e., established by the knowledge) to be com-
patible with the combinations of the symbols in the primary module expecta-
tions. At this point, a multiconfabulation process is launched involving all non-
nulled modules on all layers and all knowledge bases linking those modules. 
This multiconfabulation process hones all the expectations until each of the 
involved secondary and tertiary modules has at most one symbol left (which is, 
of necessity, active). This collection of symbols is the vision module’s represen-
tation of the attended visual object. 

This tertiary visual object representation has three important properties. 
First, it has significant pose insensitivity. With high probability, if you changed 
the pose of the object somewhat, almost the same set of symbols would be ob-
tained as the object’s representation. 

Second, the object has been completed, meaning that the representation has 
removed the effects of occluding objects that blocked the view of some portions 
of the object (of course, the visible portions of the object must be sufficient for 
completion by this method). 

Third, the representation of the object at the lower levels contains details. For 
example, if the object is a truck being viewed from the front, the front grille and 
headlamps will typically be visible and will be represented at the primary level, 
whereas the representation of the object at the tertiary level will not have these 
details. It will be more abstract (many more specific truck images would invoke 
this same, or a very similar, representation). 

7.5.5  Linking the Visual Module with the Language Module 

Once the visual module is built, what good is it? By itself, not much. It only be-
comes useful when it is linked by knowledge with other cognitive modules. This 
sub-section presents a brief sketch of an example of how, via instruction by  
a human educator, a vision module could be usefully linked with a language 
architecture. 

A problem that has been widely considered is the automated text annotation of 
video describing objects within video scenes and some of those object’s attributes. 
For example, such annotations might be useful for blind people if the images be-
ing annotated were taken by a camera mounted on a pair of glasses (and the anno-
tations were synthesized into speech provided by the glasses to the wearer’s ears 
via small tubes issuing from the temples of the glasses near the ears). 

Figure 7.13 illustrates a simple concept for such a text annotation system. 
Video input from the eyeglasses-mounted camera are operated upon by the gaze 
controller and objects that it selects are segmented and represented by the al-
ready-developed visual module, as described in the previous sub-section. The 
objects that were used in the visual module development process were those that 
a blind person would want to be informed of (curbs, roads, cars, people, etc.). 
Thus, by virtue of its development, the visual module will search each new frame 
of video for an object of operational interest (because these were the objects 
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sought out by the human educator whose examples were used to train the gaze 
controller perceptron) and then that object will be segmented and, after multi-
confabulation, represented by the architecture on all of its three layers. 

To build the knowledge links from the visual architecture to the text architec-
ture, another human educator is used. This educator looks at each fixation point 
object selected by the vision architecture (while it is being used out on the street 
in an operationally realistic manner), and, if this is indeed an object that would 
be of interest to a blind person, enters a few sentences describing that object. 
These sentences are designed to convey to the blind person useful information 
about the nature of the object and its visual attributes (information that can be 
extracted by the human educator just by looking at the visual representation of 
the object). 

To train the links from the vision architecture to the language architecture 
(every visual module is afforded a knowledge base to every phrase module), the 
educator’s sentences are entered, in order, into the word modules of the sen-
tence architecture (each of which represents one sentence – see Fig. 7.13); each 
sentence is parsed into phrases (see Sect. 7.4); and these phrases are represented 
on the sentence summary module of each sentence. Counts are accumulated 
between the symbols active on the visual architecture’s tertiary modules and 

 

Fig. 7.13. Image text annotation. A simple example of linking a visual architecture with a 
(text) language architecture. See text for description 
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those active on the summary modules. If the educator wishes to describe specific 
visual sub-components of the object, they may designate a local window in the 
eyeball image for each sub-component and supply the sentence(s) describing 
each such sub-component. The secondary and tertiary module symbols repre-
senting the sub-components within each image are then linked to the summary 
modules of the associated sentences. Before being used in this application, all of 
the internal knowledge bases of the language architecture have already been 
trained using a huge text training corpus. 

After a sufficient number of education examples have been accumulated (as 
determined by final performance – described below), the link use counts are 
converted into p( | ) probabilities and frozen. The knowledge bases from the 
visual architecture’s modules to all of the sentence summary modules are then 
combined (so that the available long-range context can be exploited by a sen-
tence in any position in the sequence of sentences to be generated). The annota-
tion system is now ready for testing. 

The testing phase is carried out by having a sighted evaluator walk down the 
street wearing the system (yes, the idea is that the entire system is in the form of  
a pair of glasses!). As the visual module selects and describes each object, knowl-
edge link inputs are sent to the language module. These inputs are used, much as 
in the example of Sect. 7.3: as context that drives formation of complete sentences. 
Using multiconfabulation, the language architecture composes one or more 
grammatical sentences that describe the object and its attributes (see Chap. 2 and 
the DVD video presentation for examples of whole-sentence generation). 

The number of sentences is determined by a meaning content critic sub-
system (not shown in Fig. 7.13) which stops sentence generation when all of the 
distinctive, excited, sentence summary module symbols have been “used” in one 
or more of the generated sentences. 

This sketch illustrates the monkey-see/monkey-do principle of cognition: 
there is never any complicated algorithm or software. No deeply principled 
system of rules or mathematical constraints. Just confabulation and multicon-
fabulation. It is a lot like that famous cartoon where scientists are working at  
a blackboard, attempting, unsuccessfully, to connect up a set of facts on the left 
with a desired conclusion on the right, via a complicated scientific argument 
spanning the gap between them. In frustration, one of the scientists erases  
a band in the middle of the argument and puts in a box (equipped with input 
and output arrows) labeled “And Then a Miracle Occurs.” That is the nature of 
cognition. 

7.6  Discussion 

This chapter has reviewed a “unified theory of cognition” which purports to 
explain all aspects of this vast subject with one type of knowledge and one in-
formation-processing operation. The hope is that this discussion has convinced 
you that this approach to cognition is worthy of more extensive investigation. 
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Only after language, sound, and vision systems such as those described here 
have been built, and widely evaluated and criticized, will a sense begin to emerge 
that the mechanization of cognition is truly possible. I am hopeful that the ar-
guments and discussion presented here are sufficiently compelling to make such 
a research program sensible.  



 

8  Confabulation Neuroscience II9 

8.1  Introduction 

This chapter sketches the author’s confabulation theory of animal cognition. 
The discussion is focused on the biological implementation of cognition in hu-
man cerebral cortex and thalamus (hereinafter often referred to jointly as tha-
lamocortex). 

The enormous diversity of animal life, currently ranging in size from single 
cells (the smallest animals which have ever lived) to blue whales (the largest), 
and ranging in adaptation across a huge range of biomes, obfuscates its unity. 
All animal cells function using very similar basic biochemical mechanisms. The-
se mechanisms were developed once and have been genetically conserved across 
essentially all species. Mentation is similar. The basic mechanism of cognition is, 
in the view of this theory, the same across all vertebrates (and possibly inverte-
brates, such as octopi and bees, as well). 

The term cognition, as used in this chapter, is not meant to encompass all as-
pects of mentation. It is restricted to (roughly) those functions carried out by the 
human cerebral cortex and thalamus. Cognition is a big part of mentation for 
certain vertebrate species (primates, cats, dogs, parrots, ravens, etc.), but only  
a minor part for others (fish, reptiles, etc.). Frog cognition exists, but is a minor 
part of frog mentation. In humans, cognition is the part of mentation of which 
we are, generally, most proud, and most want to imitate in machines. 

An important concept in defining cognition is to consider function; not de-
tailed physiology. In humans, the enormous expansion of cerebral cortex and 
thalamus has allowed a marked segregation of cognitive function to those or-
gans. Birds can exhibit impressive cognitive functions (Pepperberg 1999; Weir  
et al. 2002). However, unlike the case in humans, these cognitive functions are 
probably not entirely confined to a single, neatly delimited, laminar brain nu-
cleus. Even so, confabulation theory hypothesizes that the underlying mathe-
matics of cognition is exactly the same in all vertebrate species (and probably in 
invertebrates), even though the neuronal implementation varies considerably.10 

                                                                 
9 This chapter is based on the original publication Hecht-Nielsen R (2006) The mechanization of 

cognition. In: Bar-Cohen Y (ed) Biomimetics. CRC Press, Boca Raton, FL, pp 57 128, and re-
printed from the original with kind permission of the publisher, CRC Press. 

10
 This is much as in electronics: the same logic circuit can be implemented with electromechanical 

relays, in silicon CMOS circuits, using vacuum tubes, or even using fluidics devices. While these 
implementations are physically dissimilar, their functions are mathematically identical. 
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Although not enough is known to create a definitive list of specific human 
cognitive functions, the following items would certainly be on such a list: 

Language 
Hearing 
Seeing 
Somatosensation 
Action (movement process and thought process) origination 

This chapter focuses upon the implementation of cognitive knowledge links, 
confabulation, and action command origination by the human cerebral cortex 
and thalamus. It is assumed that the reader is familiar with the concepts, termi-
nology, and mathematics of elementary confabulation (e.g., as discussed in 
Chaps. 3 and 4) and with elementary human neuroanatomy and neurophysiol-
ogy [e.g., as presented in (Mai et al. 2004; Mountcastle 1998; Nicholls et al. 2001; 
Nolte 1999; Paxinos and Mai 2004; Steward 2000)]. The theory hypothesizes that 
all human cognitive functions, including those listed above, are implemented 
using the basic confabulation machinery sketched in this chapter. To keep this 
chapter focused, the manner in which confabulation can be used to carry out 
specific cognitive functions (such as those listed above) will not be discussed 
here, as this is essentially the material covered in Chap. 7. 

To keep the size of this chapter reasonable, and to avoid speculations about 
fine details, the treatment will avoid extensive discussion at the level of individ-
ual neurons, synapses, and axonal signals. For example, only simplified gross or 
summary aspects of interneuronal signaling processes and neurodynamic proc-
esses will be discussed. Yet the theory contends that the fine details jibe with 
these slightly larger-scale functional descriptions. Multiconfabulation (dynami-
cally interacting confabulations taking place contemporaneously in multiple 
modules), which the theory hypothesizes is the dominant mode of use of con-
fabulation in human cognition (see Chaps. 3, 5, and 6), will only be briefly men-
tioned, as a detailed treatment would go beyond the introductory scope of this 
sketch of the theory’s biological implementation. At the current time, the theory 
presented in this chapter is the only existing detailed explanation of the opera-
tion of cerebral cortex/thalamus, and of human cognition. 

8.2  Summary of the Theory 

The fundamental hypotheses of the theory are summarized in this section. Sub-
sequent sections elaborate (see also Chaps. 3 and 5). 

All information-processing involved in human cognition is hypothesized to 
be carried out by many thousands of separate thalamocortical modules, each 
consisting of a particular small localized patch of cortex (possibly consisting of 
disjoint, non-adjacent, sub-patches) and a particular, uniquely paired, small 
localized zone of thalamus which are reciprocally connected axonally. These 
thalamocortical modules (of which human thalamocortex has thousands) are 
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hypothesized to each implement a list of (typically thousands of) discrete sym-
bols (which is stable over time, and can be added to) and to carry out a single 
symbolic information-processing operation called confabulation. Each symbol is 
represented by a specific (bipartite) collection of neurons within the module. 
These collections are all about the same size within any single module; but this 
size varies considerably, from tens to hundreds of neurons per symbol – a gene-
tically determined value, between modules located in different parts of the cor-
tex. Any pair of such neuron collections of the same module, representing two 
different symbols, typically have a few neurons in common. Each neuron which 
participates in such a collection typically participates in many others as well. 

Each module is hypothesized to be controlled by a single graded (i.e., analog-
valued) excitatory control input, exactly in analogy with an individual muscle 
(each muscle has a single graded excitatory control input that, by its value ac-
ross time, specifies the muscle’s contraction force history). The theory hypothe-
sizes that properly phased and timed sequences of such thought-control inputs 
to each member of an ensemble of cortical modules causes them to carry out  
a thought process. These thought processes are “data-independent,” much like 
computer operations such as numerical addition and Boolean XOR. It is hy-
pothesized that vast numbers of such thought processes (and movement proc-
esses) are learned by rehearsal training and stored in a hierarchical organization 
within knowledge bases between modules of cerebral cortex. 

Confabulation is implemented in parallel by the neurons of a module and is 
often completed in a few tens of milliseconds. This is a “winners-take-all” style 
of dynamical parallel competitive interaction between symbols that does not 
require a “referee” or “controller” to be in charge. The states of the involved 
neurons evolve dynamically and autonomously during confabulation via the 
massively parallel mutual interactions of the involved neurons. The state of each 
involved neuron is either excited or active (a small minority of neurons), or 
almost completely inactive (the vast majority). The term active (implying a mo-
mentary, maximally communicating state) is deliberately undefined as it in-
volves neuronal signaling details which are not yet known, as does the term 
excited (implying a highly, but not maximally, communicating state). 

If the outcome of a confabulation is a single symbol, the neurons representing 
that symbol will automatically be made active and all other neurons of the mod-
ule are inactive (not communicating). However, if multiple symbols result from 
a confabulation (the outcome is dependent upon multiple factors, including the 
time profile of the module control signal – see below), these will be at different 
levels of excitation (but not active) and all other symbols will be inactive. Those 
few neurons which end up in the excited or active state represent the symbol(s) 
which “won” the confabulation competition. These symbols are termed the con-
clusions of that confabulation operation. Confabulations frequently end with no 
excited or active neurons – a conclusion termed the null symbol – which signi-
fies that no viable conclusion was reached. This ability to decide that “I don’t 
know” is one of the great strengths of cognition. 
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The theory hypothesizes that the only knowledge stored and used for cogni-
tion within thalamocortex takes the form of (indirect, parallel) unidirectional 
axonal connections between the population of neurons within one module used 
to represent one symbol and neurons used to represent a symbol in another 
module. Each such link between a pair of symbols is termed an item of knowl-
edge. The average human is hypothesized to possess billions of such items of 
knowledge. 

The theory hypothesizes that items of knowledge are immediately established 
on a temporary basis when a novel, meaningful, co-occurrence of symbol pair 
activity occurs during a period of wakefulness (assuming that those symbols are 
equipped with the necessary axonal paths with which a link can be established). 
If this short-term memory link is selected for deliberate rehearsal during the next 
period of sleep, it gets promoted to the status of a medium-term memory. If this 
medium-term memory link is revisited on near-term subsequent sleep periods it 
then gets promoted to a long-term memory, which will typically last as long as 
the involved tissue remains patent and not re-deployed. 

It is hypothesized that each time a thalamocortical module carries out a con-
fabulation which concludes with the expression of a single active symbol (as 
opposed to no symbols or multiple excited symbols), an action command asso-
ciated with that symbol is immediately issued by a specialized cortical compo-
nent of that module (this is the theory’s conclusion  action principle). Action 
commands cause muscle and thalamocortical thought module control signals to 
be sent. In other words, every time a thought process successfully reaches a sin-
gle conclusion, a new movement process and/or thought process is launched 
(some of which may undergo additional evaluation before being finally exe-
cuted). This is the theory’s explanation for the origin of all non-autonomic ani-
mal behavior. 

As with almost all cognitive functions, actions are organized into a hierarchy; 
where individual symbols belonging to higher-level modules typically each rep-
resent a time-ordered sequence of multiple lower-level symbols. 

Evolution has seen to it that symbols which, when expressed alone, launch ac-
tion commands which could conflict with one another (e.g., carrying out a throw-
ing motion at the same time as trying to answer the telephone) are grouped 
together and collected into the same module (usually at a high level in the action 
hierarchy). That way, when one such action symbol wins a confabulation (and 
has its associated lower-level action commands launched), the others are silent – 
thereby automatically deconflicting all actions. This is why all aspects of animal 
behavior are so remarkably focused in character. Each complement of our mov-
ing and thinking “hardware” is, by this mechanism, automatically restricted to 
doing one thing at a time. Dithering [rapidly switching from one decisive action 
(behavioral program) to another, and then back again] illustrates this perfectly. 

The thought processes at the lowest level of the action hierarchy are typically 
carried out unconditionally at high speed. If single symbol states result from 
confabulations which take place as part of a thought process, these symbols then 
decide which actions will be carried out next (this happens both by the action 
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commands the expression of these symbols launch, and by the influence of these 
symbols – acting through knowledge links – on the outcomes of subsequent 
confabulations, for which these symbols act as assumed facts). Similarly for 
movements, as ongoing movements bring about changes in the winning symbols 
in confabulations in somatosensory cortex – which then alter the selections of 
the next action symbols in modules in motor and pre-motor cortex. This ongo-
ing, high-speed, dynamic contingent control of movement and thought helps 
account for the astounding reliability, and comprehensive, moment-by-moment 
adaptability, of animal action. 

All of cognition is built from the above-discussed elements: modules, knowl-
edge bases, and the action commands associated with the individual symbols of 
each module. The following sections of this chapter discuss more details of how 
these elements are implemented in the human brain. See Chaps. 3 and 5 for 
some citations of past research that influenced this theory’s development. 

8.3 Implementation of Modules 

Figure 8.1 illustrates the physiology of thalamocortical modules. In reality, these 
modules are not entirely disjoint, nor entirely functionally independent, from 
their physically neighboring modules. However, as a first approximation, they 
can be treated as such, which is the view which will be adopted here. 

Figure 8.2 shows more details of the functional character of an individual 
human module. The cortical patch of the module probably uses certain neurons 
in layers II, III and IVa to represent the symbols of the module. (Note: layer IVa 
is also sometimes identified as part of layer III in the neuroscience literature – 
thanks to Soren Solari for this observation.) Each symbol (of which there are 
typically thousands) is represented by a roughly equal number of neurons, rang-
ing from tens to hundreds (this number deliberately varies, by genetic com-
mand, with the position of the cortical patch of the module on the surface of 
cortex). The union of the cortical patches of all modules is the entire cortex, 
whereas the union of the thalamic zones of all modules constitutes only a por-
tion of thalamus. 

Symbol-representing neurons of the module’s cortical patch can send signals 
to the glomeruli of the paired thalamic zone via neurons of layer VI of the patch 
(as illustrated on the left side of Fig. 8.2). These downward connections each 
synapse with a few neurons of the thalamic reticular nucleus (NRT) and with  
a few glomeruli. The NRT neurons themselves (which are inhibitory) send axons 
to a few glomeruli. The right side of Fig. 8.2 illustrates the connections back to 
the cortical patch from the thalamic zone glomeruli (each of which also synapses 
with a few neurons of the NRT). These axons synapse primarily with neurons in 
layers III and IVa – some of which are, presumably, members of the symbol-
representing neuron population. As mentioned above, no attempt to discuss the 
details of this module design will be made, as these details are not yet adequately 
established and, anyway, are irrelevant for this introductory sketch. Instead,  
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a discussion is now presented of a simple mathematical model of an attractor 
network to illustrate the hypothesized dynamical behavior of a thalamocortical 
model in response to proper knowledge link and operation command inputs. 

The theory hypothesizes that each thalamocortical module carries out a single 
information-processing operation: confabulation. This occurs whenever appro-
priate knowledge link inputs and the operation command input arrive at the 
module at the same time. The total time required for the module to carry out 
one confabulation operation is roughly 100 ms. Ensembles of mutually interact-
ing confabulations (instances of multiconfabulation – see Chaps. 6 and 7) can 
often be highly overlapped in time. By this means, the “total processing time” 

 

Fig. 8.1. Thalamocortical modules. All cognitive information-processing is carried out by 
distinct, modular, thalamocortical circuits termed neuronal attractor networks, of which 
two are shown here. Each module (of which human cortex has many thousands) consists 
of a small localized patch of cortex (which may be comprised of disjoint, physically sepa-
rated, sub-patches), a small localized zone of thalamus, and the reciprocal axonal con-
nections linking the two. Each module implements a large stable set of attractive states 
called symbols, each represented by a specific collection of neurons (all such collections 
within a module are of approximately the same size). Neuron overlap between each pair 
of symbols is small, and each neuron involved in representing one symbol typically 
participates in representing many symbols. One item of knowledge is a (parallel, two-
stage synfire) set of unidirectional axonal connections collectively forming a link be-
tween the neurons representing one symbol within one module (e.g., the green one 
shown here) and neurons representing one symbol on a second module (e.g., the blue 
one shown here). The collection of all such links between the symbols of one module 
(here the green one), termed the source module, and that of a second (here the blue 
one), termed the target module, are termed a knowledge base (here represented by a red 
arrow spanning the cortical portions of the green and blue modules) 
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exhibited by such an ensemble of confabulations can be astoundingly short – 
often a small multiple of the involved axonal and synaptic delays involved, and 
not much longer than a small number of individual confabulations. This ac-
counts for the almost impossibly short “reaction times” often seen in various 
psychological tests. 

 

Fig. 8.2. A single thalamocortical module: side view. The module consists of a full-depth 
patch of cortex (possibly comprised of multiple separate full-depth disjoint sub-patches 
– not illustrated here), as well as a paired zone of thalamus. The green and red neurons 
in cortical layers II / III / IV illustrate the two collections of neurons representing two sym-
bols of the module (common neurons shared by the two collections are not shown, nor 
are the axons involved in the neuronal attractor network function used to implement 
confabulation). The complete pool of neurons within the module used to represent 
symbols contains many tens, or even hundreds, of thousands of neurons. Each symbol-
representing neuron collection has tens to hundreds of neurons in it. Axons from cortical 
layer VI to NRT (thalamic reticular nucleus) and thalamus are shown in dashed blue. 
Axons from thalamic glomeruli to NRT and cortical layers III / IVa are shown in dashed 
red. Axons from NRT neurons to glomeruli are shown in pink. An axon of the operation 
command input, which affects a large subset of the neurons of the module, and which 
arrives from an external sub-cortical nucleus, is shown in green. The theory only specifies 
the overall information-processing function of each cortical module (implementation of 
the list of symbols, confabulation, and origination/termination of knowledge links). 
Details of module operation at the cellular level are not known 
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Fig. 8.3. Simple attractor network example. The left, x, neural field has N neurons, as does 
the right, y, neural field. One Willshaw stable state pair, xk and yk, is shown here (actually, 
each xk and yk typically has many tens of neurons – e.g., Np = 60 for the parameter set 
described in the text – of which only 10 are shown here). Each neuron of each state 
sends connections to all of the neurons of the other (only the connections from one 
neuron in xk and one neuron in yk are shown here). Together, the set of all such connec-
tions for all L stable pairs is recorded in the connection matrix W. Notice that these con-
nections are not knowledge links; rather, they are internal connections between xk and 
yk, the two parts of the neuron population of symbol k within a single module. Also, 
unlike knowledge link connections (which, as discussed in Sect. 8.4, are unidirectional 
and for which the second stage is typically very sparse), these interpopulation connec-
tions must be reciprocal and dense (although they need not be 100% dense – a fact that 
you can easily establish experimentally with your model) 

The mathematical model discussed below illustrates the dynamical process 
involved in carrying out one confabulation. Keep in mind that this model might 
represent module neurodynamics between the cortical and thalamic portions of 
the module, strictly cortical neuron dynamics, or even the overall dynamics of  
a group of smaller attractor networks [e.g., a localized version of the “network of 
networks” hypothesis of Sutton and Anderson (Sutton and Anderson 1995; Sut-
ton and Anderson in: Hecht-Nielsen and McKenna 2003)]. 

In 1969 Willshaw and his colleagues (Willshaw et al. 1969) introduced the 
“non-holographic” associative memory. This “one-way” device (“retrieval key” 
represented on one “field” of neurons and “retrieved pattern” on a second), 
based on Hebbian learning, is a major departure in concept from the previous 
(linear algebra-based) associative memory concepts (Anderson 1968, 1972; Ga-
bor 1969; Kohonen 1972). The brilliant Willshaw design (an absolutely essential 
step towards the theory presented in this chapter) is a generalization of the pio-
neering Steinbuch learnmatrix (Steinbuch 1961a, 1961b, 1963, 1965; Steinbuch 
and Piske 1963; Steinbuch and Widrow 1965; Widrow et al. 2005), although  
Willshaw and his colleagues did not seem to be aware of this earlier develop-
ment. For efficiency, it is assumed that the reader is familiar with the Willshaw 
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network and its theory (Amari 1989; Kosko 1988; Palm 1980; Sommer and Palm 
1989). A related, centrally important, idea is the “Brain State in a Box” attractor 
network architecture of Anderson (Anderson et al. 1977; and Chaps. 3 and 5). 

In 1987 I conceived a hybrid of the Willshaw network and the Amari–Hop-
field “energy function” attractor network (Amari 1974; Amit 1989; Hopfield 
1982, 1984). In effect, this hybrid network was two reciprocally connected Will-
shaw networks; however, it also had an energy function. Karen Haines and I 
theoretically investigated the dynamics of this network (Haines and Hecht-
Nielsen 1988) (in 1988 computer exploration of the dynamics of such networks, 
at scales sufficiently large to explore their utility for information-processing, was 
not feasible). We were able to show theoretically that this hybrid had four im-
portant (and unique) characteristics. First, it would, with very high probability, 
converge to one of the Willshaw stable states. Second, it would converge in  
a finite number of steps. Third, there were no “spurious” stable states. Fourth, it 
could carry out a “winner take all” kind of information-processing. This hybrid 
network could thus serve as the functional implementation of (in the parlance of 
this chapter) some easy cases of confabulation. However (see Chaps. 3 and 5), its 
convergence capabilities turned out to be too limited to make it a general solu-
tion. This was the first result on the trail to the theory presented here. It took 
another 16 years to discover that, by having antecedent support knowledge links 
deliver excitation to symbols (i.e., stable states) of such a module, this simple 
one-winner-takes-all information-processing operation (confabulation) is suffi-
cient to carry out all of cognition. 

By 1992 it had become possible to carry out computer simulations of recipro-
cal Willshaw networks of interesting size. This immediately led to the rather 
startling discovery that, even without an energy function (i.e., carrying out neu-
ron updating on a completely local basis, as in Willshaw’s original work), even 
significantly “damaged” (the parlance at that stage of discovery) starting states 
(Willshaw stable states with a significant fraction of added and deleted neurons) 
would almost always converge in one “round-trip” or “out-and-back cycle.” 
This made it likely that this is the functional design of cortical module circuits. 

As this work progressed, it became clear that large networks of this type were 
even more robust and would converge in one cycle even from a small incom-
plete fragment of a Willshaw stable state. It was also at this point that the issue 
of “threshold control” (Willshaw’s original neurons all had the same fixed “fir-
ing” threshold – equal to the number of neurons in each stable state) came to 
the fore. If such networks were operated by a threshold control signal that rose 
monotonically from a minimum level, it could automatically carry out a global 
“most excited neurons win” competition without need for communication be-
tween the neurons. The subset of neurons which becomes active first then inhib-
its others from becoming so (at least in modules in the brain; but not in these 
simple mathematical models, which typically lack inhibition). From this came 
the idea that each module must be actively controlled by a graded command 
signal, much like an individual muscle. This eventually led to the realization that 
the control of movement and the control of thought are implemented in essentially 
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the same manner, using the same cortical and sub-cortical structures (indeed, 
the theory postulates that there are many combined movement and thought 
processes which are represented as unitized symbols at higher levels in the ac-
tion hierarchy – e.g., a back dive action routine in which visual perception must 
feed corrections to the movement control in order to enter the water vertically). 

To see what attractor networks of this unusual type are all about, the reader is 
invited to pause in their reading and build (e.g., using C, LabVIEW, MATLAB, 
etc.) a simple working example using the following prescription. If you accept 
this invitation, you will see first-hand the amazing capabilities of these networks 
(which will help you appreciate and accept the theory). While simple, this net-
work possesses many of the important behavioral characteristics of the hypothe-
sized design of biological modules. 

We will use two N-dimensional real column vectors, x and y, to represent the 
states of N neurons in each of two “neural fields.” For good results, N should be 
at least 10,000 (even better results are obtained for N above 30,000). Using  
a good random number generator, create L pairs of x and y vectors {(x1,y1), 
(x2,y2), … , (xL,yL)} with each xi vector and each yi vector having binary (0 and 1) 
entries selected independently at random; where the probability of each compo-
nent being 1 is p. Use, for example, p = 0.003 and L = 5,000 for N = 20,000. As you 
will see, these xi and yi pairs turn out to be stable states of the network. Each xk 
and yk vector pair, k = 1, 2, … , L represents one of the L symbols of the network. 
For simplicity, we will concentrate on the xk vector as the representation of sym-
bol k. Thus, each symbol is represented by a collection of about Np “active” 
neurons. The random selection of the symbol neuron sets and the deliberate 
processes of neuronal interconnection between the sets correspond to the devel-
opment and refinement processes in each thalamocortical module that are de-
scribed later in this section. 

During development of the bipartite stable states {(x1,y1), (x2,y2), … , (xL,yL)} 
(which happens gradually over time in biology, but all at once in this simple 
model), connections between the neurons of the x and y fields are also estab-
lished. These connections are very simple: each neuron of xk (i.e., the neurons of 
the x field whose indices within xk have a 1 assigned to them) sends a connection 
to each neuron of yk, and vice versa. This yields a connection matrix W given by: 

 N 

T

k k 

 i = 1 

 W = U     y x , (8.1) 

where the matrix function U sets every positive component of a matrix to 1 and 
every other component to zero. Given these simple constructions, you are now 
ready to experiment with your network. 

First, choose one of the xk vectors and modify it. For example, eliminate a few 
neurons (by converting entries that are 1 to 0s) or add a few neurons (by con-
verting 0s to 1s). Let this modified xk vector be called u. Now, “run” the network 
using u as the initial x field state. To do this, first calculate the input excitation Ij 
of each y field neuron j using the formula I = Wu.; where I is the column vector 
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containing the input excitation values Ij, j = 1, 2, … , N. In effect, each active 
neuron of the x field (i.e., those neurons whose indices have a 1 entry in u) sends 
output to neurons of the y field to which it has connections (as determined by 
W). Each neuron j of the y field sums up the number of connections it has re-
ceived from active x field neurons (the ones designated by the 1 entries in u) and 
this is Ij. 

After the Ij values have been calculated, those neurons of the y field which ha-
ve the largest Ij values (or very close to the largest – say within 3 or 4 – this is  
a parameter you can experiment with) are made active. As mentioned above, 
this procedure is a simple, but roughly equivalent, surrogate for active central-
ized control of the network. Code the set of active y field neurons using the vec-
tor v (which has a 1 in the index of each active y field neuron and zeros every-
where else). Then calculate the input intensity vector WTv for the x field (this is 
the “reverse transmission” phase of the operation of the network) and again 
make active those neurons with largest, or near-largest, values of input intensity. 
This completes one cycle of operation of the network. Astoundingly, the state of 
the x field of the network will be very close to xk, the vector used as the dominant 
base for the construction of u (as long as the number of modifications made to 
xk when forming u was not too large). 

Now expand your experiments by letting each u be equal to one of the x field 
stable states xk with many (say half) of its neurons made inactive plus the union 
of many (say, 1 10) small fragments (say, 3 8 neurons each) of other stable x 
field vectors, along with a small number (say, 5 10) of active “noise” (randomly 
selected) neurons (see Fig. 8.4). Now, when operated, the network will converge 
rapidly (again, often in one cycle) to the xk symbol whose fragment was the larg-
est. When you do your experiments you will see that this works even if that larg-
est fragment contains only a third of the neurons in the original xk. 

Again, notice that to achieve the “neurons with the largest, or near-largest, 
input excitation win” information-processing effect, all that is needed is to have 
an excitatory operation control input to the network which uniformly raises all 
of the involved neurons’ excitation levels (towards a constant fixed “firing” 
threshold that each neuron uses) at the same time. By ramping up this input, 
eventually a group of neurons will “fire,” and these will be exactly those with the 
largest or near-largest input intensity. Localized mutual inhibition between 
cortical neurons (which is known to exist, but is not included in the above sim-
plified model) then sees to it that there are no additional winners, even if the 
control input keeps rising. Note also that the rate of rise of the control signal can 
control the width of the band of input excitations (below maximum) for which 
neurons are allowed to win the competition: a fast rate allows more neurons 
(with slightly less input intensity than the first winners) to become active before 
inhibition has time to kick in. A slow rate of rise restricts the winners to just one 
symbol. Finally, the operation control input to the network can be limited to be 
less than some deliberately chosen maximum value, which will leave no symbols 
active if the sum of the all neuron’s input excitation, plus the control signal, are 
below the fixed threshold level. Thus, an attractor network confabulation can 
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yield a null conclusion when there are no sufficiently strong answers. Sect. 7.1 of 
the previous chapter discusses some of these information-processing effects; 
which can be achieved by judicious control of a module’s operation command 
input signal. 

 

Fig. 8.4. Weak symbol convergence property of the simple attractor network example. 
The initial state (top portion) of the x neural field is a vector u consisting of a large por-
tion (say, half of its neurons) of one particular xk (the neurons of this xk are shown in 
green), along with small subsets of neurons of many other x field stable states. The net-
work is then operated in the x to y direction (top diagram). Each neuron of u sends out-
put to those neurons of the y field to which it is connected (as determined by the con-
nection matrix W). The y field neurons which receive the most, or close to the most, 
connections from active neurons of u are then made active. These active neurons are 
represented by the vector v. The network is then operated in the y to x direction (bot-
tom diagram), where the x field neurons receiving the most, or close to the most, con-
nections from active neurons of v are made active. The astounding thing is that this set 
of active x field neurons is typically very close to xk, the dominant component of the 
initial u input. Yet all of the processing is completely local and parallel. As will be seen 
below, this is all that is needed to carry out confabulation. In thalamocortical modules 
this entire cycle of operation (which is controlled by a rising operation command input 
supplied to all of the involved neurons of the module) is probably often completed in 
roughly 100 ms. The hypothesis of the theory is that some sort of attractor network be-
havior of this kind implements confabulation in human thalamocortical modules – the 
universal information-processing operation of cognition 
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An important difference between the behavior of this simple attractor net-
work model and that of thalamocortical modules is that, by involving inhibition 
(and some other design improvements), the biological attractor network can 
somehow successfully deal with situations where even hundreds of stable x field 
vector fragments (as opposed to only a few in the simple attractor network) can 
be suppressed to yield a fully expressed dominant fragment xk. 

The development process of thalamocortical modules is hypothesized by the 
theory to take place in steps (which are usually completed in childhood; al-
though under some conditions adults may be able to develop new modules). 

Each module’s set of symbols is used to describe one attribute of objects in 
the mental universe. Symbol development starts as soon as meaningful (i.e., not 
random) inputs to the module start arriving. For “lower level” attributes, this 
self-organization process sometimes starts before birth. For “higher level” at-
tributes (modules), the necessary inputs do not arrive (and module organization 
does not start) until after the requisite lower-level modules have organized and 
started producing assumed fact outputs. 

The hypothesized process by which a module is developed is now sketched. 
At the beginning of development, a sizable subset of the neurons of cortical 
layers II, III, and IV of the module happen by chance to preferentially receive 
extra-modular inputs and are stimulated repeatedly by these inputs. These neu-
rons develop, through various mutually competitive and cooperative interac-
tions, responses which collectively cover the range of signal ensembles the mod-
ule’s input channels are providing. In effect, each such feature detector neuron 
is simultaneously driven to respond strongly to one of the input signal ensem-
bles it happens to repeatedly receive, while at the same time, through competi-
tion between feature detector neurons within the module, it is discouraged from 
becoming tuned to the same ensemble of inputs as other feature detector neu-
rons of that module. This is the classic insight that arose originally in connection 
with the mathematical concepts of vector quantization (VQ) and k-means. These 
competitive and cooperative VQ feature set development ideas have been exten-
sively studied in various forms by many researchers from the 1960s through 
today [e.g., see (Grossberg 1976; Carpenter and Grossberg 1991; Kohonen 1984, 
1995; Nilsson 1965, 1998; Tsypkin 1973; Zador 1963)]. The net result of this first 
stage of attractor network circuit development is a large set of feature detector 
neurons (which, after this brief initial plastic period, become largely frozen in 
their responses – unless severe trauma later in life causes recapitulation of this 
early development phase) that have responses with moderate local redundancy 
and high input range coverage (i.e., low information loss). These might be called 
the simple feature detector neurons. 

Once the simple feature detector neurons of a module have been formed and 
frozen, additional secondary (or “complex”) feature detector neurons within the 
module then organize. These are neurons which just happen (the wiring of cor-
tex is locally random and is essentially formed first, during early organization 
and learning, and then is soon frozen for life) to receive most of their input from 
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nearby simple feature detector neurons (as opposed to primarily from extra-
modular inputs, as with the simple feature detector neurons themselves). 

In certain areas of cortex (e.g., primary visual cortex) secondary feature de-
tector neurons can receive inputs from primary feature detector neurons “belong-
ing” to other nearby modules. This is an example of why it is not correct to say 
that modules are disjoint and non-interacting (which, nonetheless, is exactly 
how we will treat them here). 

Just as with the primary neurons, the secondary feature detector neurons also 
self-organize along the lines of a VQ codebook – except that this codebook sits 
to some degree “on top” of the simple cell codebook. The net result is that sec-
ondary feature neurons tend to learn statistically common combinations of 
multiple co-excited simple feature detector neurons; again, with only modest 
redundancy and with little information loss. 

A new key principle postulated by the theory relative to these populations of 
feature detector neurons, is that secondary (and tertiary – see below) feature 
detector neurons also develop inhibitory connections (via growth of axons of 
properly interposed inhibitory interneurons that receive input from the secon-
dary feature detector neurons) that target the simple feature detector neurons 
which feed them. Thus, when a secondary feature detector neuron becomes high-
ly excited (partly) by simple feature detector neuron inputs, it then immediately 
shuts off these simple neurons. This is the theory’s precedence principle. In effect, 
it causes groups of inputs that are statistically “coherent” to be re-represented as 
a whole ensemble, rather than as a collection of “unassembled” pieces. For ex-
ample, in a visual input, an ensemble of simple feature detector neurons together 
representing a straight line segment might be re-represented by some secondary 
feature detector neurons which together represent the whole segment. Once acti-
vated by these primary neurons, these secondary neurons then, by the prece-
dence principle, immediately shut off (via learned connections to local inhibitory 
interneurons) the primary neurons that caused their activation. 

Once the secondary feature detectors of a module have stabilized they too are 
then frozen and (at least in certain areas of cortex) tertiary feature detectors 
(often coding even larger complexes of statistically meaningful inputs) form 
their codebook. They too obey the precedence principle. For example, in pri-
mary visual cortical modules, there are probably tertiary feature detectors which 
code long line segments (probably both curved and straight) spanning multiple 
modules. Again, this is one example of how nearby modules might interact – 
such tertiary feature detectors might well inhibit and shut off lower-level feature 
detector neurons in other nearby modules. Of course, other inhibitory interac-
tions also develop, such as the line “end stopping” that inhibits reactions of line 
continuation feature detectors beyond its end. In essence, the interactions 
within cortex during the short time span of its reaction to external input 
(20 40 ms) are envisioned by this theory as similar to the “competitive and co-
operative neural field interactions” postulated by Stephen Grossberg and Gail 
Carpenter and their colleagues in their visual processing theories (Carpenter 
and Grossberg 1991; Grossberg 1976, 1987; Grossberg et al. 1997), without their 



 8.3 Implementation of Modules 207 

concept’s problem of impossibly slow “field” interactions. When external input 
(along with an operate command) is provided to a developed module, the above 
brief interactions ensue and then a single symbol (or a small set of symbols, 
depending upon the manner in which the operate command to the module is 
manipulated) representing that input is expressed. The process by which the 
symbols are developed from the feature detector neuron responses is now 
briefly discussed. 

Once the feature detector neurons (of all orders) have had their responses 
frozen, the next step is to consider the sets of feature detector neurons which 
become highly excited together across the cortical module due to external in-
puts. Because the input wiring of the feature detector neurons is random and 
sparse, the feature detector neurons function somewhat like VQ codebook vec-
tors with many of their components randomly zeroed out (i.e., like ordinary VQ 
codebook vectors projected into randomly selected low-dimensional sub-spaces 
defined by the relatively sparse random axonal wiring feeding the feature detec-
tor neurons of the module). In general, under these circumstances, it can be 
established that any input to the module (again, whether from thalamus, from 
other cortical modules, or from other extracortical sources) will cause a roughly 
equal number of feature detector neurons to become highly excited. This is easy 
to see for an ordinary VQ codebook. Imagine a probability density function in  
a high-dimensional input space (the raw input to the module). The feature detec-
tor responses can be represented as points spread out in a roughly equiprobable 
manner within this data cloud (at least before projection into their low-dimen-
sional sub-spaces), (Kohonen 1995). Thus, given any specific input, we can 
choose to highly excite a roughly uniform number of highest appropriate prece-
dence feature detector points that are closest to that input vector. 

In effect, if we imagine a rising externally supplied operation control signal 
(effectively supplied to all of the feature detector neurons that have not been shut 
down by the precedence principle) as the sum of the control signal and each neu-
ron’s excitation level (due to the external inputs) climbs, the most highly excited 
neurons will cross their fixed thresholds first and “fire” (there are many more 
details than this, but this general idea is hypothesized to be correct). If the rate of 
rise of the operate signal is constant, a roughly fixed number of not-inhibited 
feature detector neurons will begin “firing” before local inhibition from these 
“early winners” prevents any more winners from arising. This leaves a fixed set 
of active neurons of roughly a fixed size. The theory presumes that such fixed sets 
will, by means of their co-activity, and the mutually excitatory connections that 
develop between them, tend to become established and stabilized as the module’s 
internal attractor network circuit connections gradually form and stabilize. Each 
such neuron group, as adjusted and stabilized as an attractor state of the module 
over many such trials, becomes one of the symbols in the module. 

Each final symbol can be viewed as being a localized “cloud” in the VQ exter-
nal input representation space composed of a uniform number of close-by co-
active feature detector responses (imagine a VQ where there is not one winning 
vector, but many). Together, these clouds cover the entire portion of the space in 
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which external inputs are seen. Portions of the VQ space with higher input vec-
tor probability density values automatically have smaller clouds. Portions with 
lower density have larger clouds. Yet each cloud is represented by roughly the 
same number of vectors (neurons). These clouds are the symbols. In effect, the 
symbols form a Voronoi-like partitioning of the occupied portion of the external 
input representation space (Kohonen 1984, 1995); except that the symbol cloud 
partitions are not disjoint, but overlap somewhat. 

Information theorists have not spent much time considering the notion of 
having a cloud of “winning vectors” (i.e., what this theory would term a symbol) 
as the outcome of the operation of a vector quantizer. The idea has always been 
to only allow the single VQ codebook vector that is closest to the “input” win 
(that deviations from this tradition have not been extensively studied is an ex-
ample of the stifling influence of Shannon worship, in this instance his tenden-
tious source coding theory, on the information theory community). From a theo-
retical perspective, the reason clouds of points are needed in the brain is that the 
connections which define the “input” to the module (whether they be sensory 
inputs arriving via thalamus, knowledge links arriving from other portions of 
cortex, or yet other inputs) only connect (randomly) to a sparse sampling of 
each symbol’s neurons. As mentioned above, this causes the feature detector 
neurons’ vectors to essentially lie in relatively low-dimensional random sub-
spaces of the VQ codebook space. Thus, to comprehensively characterize the 
input (i.e., to avoid significant information loss) a number of such “individually 
incomplete,” but mutually complementary, feature representations are needed. 
So, only a cloud will do. Of course, the beauty of a cloud is that this is exactly 
what the stable states of a thalamocortical module must be, in order to achieve 
the necessary confabulation “winner-takes-all” dynamics. 

A subtle point the theory makes is that the organization of a module is de-
pendent upon which input data source is available first. This first-available 
source (whether from sensory inputs supplied through thalamus or active sym-
bol inputs from other modules) drives development of the symbols. Once devel-
opment has finished, the symbols are largely frozen (although they sometimes 
can change later due to symbol disuse and new symbols can be added in re-
sponse to persistent changes in the input information environment). Since al-
most all aspects of cognition are hierarchical, once a module is frozen, other 
modules begin using its assumed fact outputs to drive their development. So, in 
general, development is a one-shot process (which illustrates the importance of 
getting it right the first time in childhood). Once the symbols have been frozen, 
the only synaptic modifications which occur are those connected with knowl-
edge acquisition, which is the topic discussed next. 

8.4 Implementation of Knowledge 

As discussed in the previous chapters, all of the knowledge used in cognition 
(e.g., for vision, hearing, somatosensation, contemplation, thinking, and moving) 
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takes the form of unidirectional weighted links between pairs of symbols (typi-
cally, but not necessarily, symbols residing within different modules). This sec-
tion sketches how these links are hypothesized to be implemented in human 
cortex (all knowledge links used in human cognition reside entirely within the 
gray and white matter of cortex). 

Figure 8.5 considers a single knowledge link from symbol  in a particular cor-
tical source module (module) to symbol  in a particular target or answer module. 
The set of all knowledge links from symbols of one particular source module to 
symbols of one particular target module are called a knowledge base. The single 
knowledge link considered in Fig. 8.5 belongs to the knowledge base linking the 
particular source module shown to the particular target module shown. 

When the neurons of Fig. 8.5 representing symbol  are active (or highly ex-
cited if multiple symbols are being expressed, but this case will be ignored here), 
these  neurons send their action potential outputs to millions of neurons resid-
ing in cortical modules to which the neurons of this source module sends  
axons (the gross statistics of this axon distribution pattern are determined ge-
netically, but the local details are random). Each such active symbol-
representing neuron sends action potential signals via its axon collaterals to tens 
of thousands of neurons. Of the millions of neurons which receive these signals 
from the  neurons, a few thousand receive not just one such axon collateral, 
but many. These are termed transponder neurons. They are strongly excited by 

 

Fig. 8.5. A single knowledge link in the human cerebral cortex. See text for discussion 
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this simultaneous input from the  neurons, causing them to send strong output 
to all of the neurons to which they in turn send axons. In effect, the first step of 
the link transmission starts with the tens to hundreds of active neurons repre-
senting symbol  and ends with many thousands of excited transponder neu-
rons, which also (collectively) uniquely represent the symbol . In effect, trans-
ponder neurons momentarily amplify the size of the  symbol representation. It 
is hypothesized by the theory that this synfire chain (Abeles 1991) of activation 
does not propagate further because only active (or highly excited) neurons can 
launch such a process, and while the transponder neurons are excited, they are 
not active or highly excited (i.e., active, or highly excited, neurons – a rare state 
that can only exist during and following a confabulation information-processing 
operation – are the only ones that can unconditionally excite other neurons). 
However, as with transponder neurons, if a neuron receives a high-enough 
number of simultaneous inputs from active neurons – even through unstrength-
ened synapses, and in the absence of any operation command input – it will 
become excited. Finally, excited neurons can excite other neurons if those other 
neurons reside in a module which is simultaneously also receiving operation 
command signal input (this is what happens when knowledge is used and when 
short-term memory learning takes place, as will be discussed below). 

The wiring of the cortical knowledge axons is (largely) completed in child-
hood and then remains (at least for our purposes here) essentially fixed for life. 
Again, the gross statistics of this wiring are genetically determined, but the local 
details are random. 

A relatively small number (say, 1 25% – a genetically controlled percentage 
that deliberately varies across cortex) of the target module neurons representing 
symbol  will just happen to each receive many synaptic inputs from a subset  
of the transponder neurons (Fig. 8.5 illustrates the axonal connections from  

 transponder neurons for only one of these few  neurons). These particular  
 neurons complete the knowledge link. If all of the neurons representing sym-

bol  are already active at the moment these synaptic inputs arrive, then (in the 
event that they have not been previously permanently strengthened) the trans-
ponder neuron synapses that land on this subset of them will be temporarily 
strengthened (this is called short-term memory). During the next sleep period, if 
this causal pairing of symbols  and  is again deliberately rehearsed, these 
temporarily strengthened synapses may be more lastingly strengthened (this is 
medium-term memory). If this link is subsequently rehearsed more over the next 
few days, these synapses may be permanently strengthened (this is long-term 
memory). It is important to note that the synapses from the  neurons to the  

 transponder neurons are generally not strengthened. This is because the 
transponder neurons are not meaningfully active at the time when these inputs 
arrive. Only deliberate usage of a link with immediately prior co-occurrence  
of both source symbol and target symbol activity causes learning. This was, 
roughly, the learning hypothesis that Donald Hebb advanced 58 years ago  
(Hebb 1949). 
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Note again that the transponder neurons that represent a symbol  will al-
ways be the same, independent of which target module(s) are to be linked to. 
Thus,  transponder neurons must send a sufficiently large number of axons to 
all of the modules containing symbols to which symbol  might need to connect. 
The theory posits that genetic control of the distribution of axons (nominally) 
ensures that all of the potentially necessary knowledge links can be formed. 
Obviously, this postulated design could be analyzed, since the rough anatomy 
and statistics of cortical axon fascicles are known. Such an analysis might well be 
able to support this hypothesis, or raise doubts that it is capable of explaining 
cortical knowledge. 

Cognitive functions where confabulations always yield zero or one candidate 
conclusions (because at most one symbol has anything close to enough knowl-
edge links from the assumed facts) do not need precisely weighted knowledge 
links. In cortical modules which only require such confabulations, knowledge 
links terminating within that module are hypothesized by the theory to be essen-
tially binary in strength: either completely unstrengthened (i.e., as yet unused) 
or strong (strengthened to near maximum). Such modules together probably 
encompass a majority of cortex. 

However, other cognitive functions (e.g., language) do require each knowledge 
link to have a strength that is directly related by some fixed function to p( | ). 
The theory’s hypothesis as to how these weightings arise is now sketched. 

Although the mechanisms of synaptic modification are not yet well under-
stood (particularly those connected with medium-term and long-term memory), 
research has established that “Hebbian” synaptic strengthening does occur 
(Cowan et al. 2001). This presumably can yield a transponder neuron to target 
symbol neuron synapse strength directly related to the joint probability p( ) 
(i.e., roughly, the probability of the two involved symbols being co-active). In 
addition, studies of post-synaptic neurotransmitter depolarization transduction 
response (i.e., within the neuron receiving the synaptic neurotransmitter output, 
separate from the transmitting synapse itself) by Marder and her colleagues 
(Marder and Prinz 2002, 2003) and by Turrigiano and her colleagues (Desai et al. 
2002; Turrigiano and Nelson 2000, 2004; Turrigiano et al. 1998) suggests that the 
post-synaptic apparatus of an excitatory cortical synapse (e.g., one landing on  
a target symbol neuron) is independently modifiable in efficacy, in multiplica-
tive series with this Hebbian p( ) efficacy. This “post-synaptic signalling effi-
cacy” is expressed as a neurotransmitter receptivity proportional to a direct 
function of the reciprocal of that target neuron’s average firing rate; which is 
essentially p( ). The net result is implementation by this Marder–Turrigiano–
Hebb learning process (as I call it) of an overall link strength directly related to 
p( )/p( ), which, by Bayes’ law, is p( | ). Presumably, somehow, this overall 
graded link strength is implemented in the final long-term memory. Thus, it is 
plausible that biological learning processes at the neuron level can accumulate 
the knowledge needed for confabulation. See Chap. 3 for more discussion of 
knowledge link implementation. 
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8.5 Implementation of Confabulation 

Since only a small subset of the neurons representing target module symbol  
are excited by a knowledge link from source module symbol , how can con-
fabulation be implemented? This section, which presents the theory’s hypothe-
sized implementation of confabulation, answers this question and shows that 
these “sparse” knowledge links are an essential element of cortical design. Coun-
terintuitively, if these links were “fully connected,” cortex could not function. 

Figure 8.6 schematically illustrates how confabulation is implemented in a tha-
lamocortical (answer) module. The four boxes on the left are four cortical mod-
ules, each having exactly one assumed fact symbol active (symbols , , , and  
respectively). Each of these active symbols is represented by the full complement 
of the neurons which represent it, which are all active (illustrated as a complete 
row of filled circles within that assumed fact symbol’s module, depicted in the 
figure in colors green, red, blue, and brown for , , , and  respectively). As will 
be seen below, this is how the symbol(s) which are the conclusions of a confabula-
tion operation are biologically expressed (namely, all of their representing neu-
rons are active and all other symbol-representing neurons are inactive). 

In Fig. 8.6 the neurons representing each symbol of a module are shown as 
separated into their own rows. Of course, in the actual tissue, the neurons of 

 

Fig. 8.6. The implementation of confabulation in human cerebral cortex. See text for 
explanation 
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each symbol are scattered randomly within the relevant layers of the cortical 
portion of the module implementing the module. But for clarity, in Fig. 8.6 each 
symbol’s neurons are shown collected together into one row. The fact that the 
same neuron appears in multiple rows (each symbol-representing neuron typi-
cally participates in representing many different symbols) is ignored here, as 
this small pairwise overlap between symbol representations causes no significant 
interference between symbols. 

The answer module for the elementary confabulation we are going to carry 
out (based upon assumed facts , , , and , just as described in Chaps. 3 and 4) 
is shown as the box on the right in Fig. 8.6. Each assumed fact symbol has know-
ledge links to multiple symbols of the answer module, as illustrated by the col-
ored arrows proceeding from each source module to the answer module. The 
width of each such knowledge link arrow corresponds to the link strength, i.e., 
the value of its p( | ) probability. Each assumed fact symbol in this example 
(other possibilities exist, but will be ignored here) is assumed to be the sole con-
clusion of a previous confabulation on its module. Thus symbols , , , and  
are all active (maximally transmissive). 

The symbols of the answer module which receive one or more links from the 
assumed facts are denoted by , 1, 2, 3, and so forth and, for clarity, are grou-
ped in Fig. 8.6. As discussed in the previous section, the actual percentage of 
neurons of each target symbol which receive synaptic inputs from the assumed 
fact’s transponder neurons is approximately the same for all symbols (this is  
a function of the roughly uniform – at least for each individual answer module – 
binomial statistics of the locally random cortico-cortical axons implementing 
each knowledge link). And, as mentioned earlier, this percentage is low (from 
1% to 25%, depending on where the module is located in cortex). 

As shown in Fig. 8.6, symbol 1 receives only one link (it is a medium-
strength link from assumed fact symbol ). In accordance with Fig. 8.5, only  
a fraction of the neurons of the answer module which represent symbol 1 are 
actually being excited by this input link. These are shown as green circles with  
above them (again, for clarity, the target symbol neurons which happen to re-
ceive input excitation from a particular assumed fact, which are actually ran-
domly located, are grouped together on the left in each row, and labeled above 
with the symbol of that assumed fact). Note that, in the case of this group of 
green neurons of symbol 1 receiving input from assumed fact symbol , that  
a medium-sized font  is shown above the group, reflecting the fact that the 
knowledge link delivering this assumed fact excitation has only medium 
strength p( 1| ). Similarly, the neurons representing symbol 2 are also receiv-
ing only one medium-strength link; namely, from assumed fact symbol . 

Only two of the answer module symbols shown in Fig. 8.6, namely  and L 
are receiving links from all four assumed facts. However, note that the links 
impinging on the neurons of symbol  are stronger than those impinging on 
symbol L. Now this discussion of the biological implementation of confabula-
tion will pause momentarily for a discussion of synapses. 
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Despite over a century of study, synapse function is still only poorly under-
stood. What is now clear is that synapses have dynamic behavior, both in terms 
of their responses to incoming action potentials and in terms of modifications to 
their transmission efficacy (over a wide range of time scales). For example, some 
synapses seem to have transmission efficacy which “droops” or “fades” on suc-
cessive action potentials in a rapid sequence (such are sometimes termed de-
pressing synapses – this has nothing to do with the clinical condition of depres-
sion). Other synapses (termed facilitating) increase their efficacies over such  
a sequence; and yet others exhibit no change. However, it has been learned that 
even these categorizations are too simplistic and do not convey a true picture of 
what is going on. That clear picture awaits a day when the actual modulations 
used for information transmission, and the “zoo” of functionally distinct neu-
rons and synapses, are better understood. Perhaps this theory can speed the 
advent of that day by providing a comprehensive vision of overall cortical func-
tion, which can serve as a framework for formulating scientific questions. 

Even though little is known about synapses, it is clear that many synapses are 
weak (unstrengthened), quite likely unreliable, and marginally capable of signal-
ing (confabulation theory claims that over 99% of synapses must be in this cate-
gory; see Sect. 8.7 below). This is why it takes a pool of highly excited or active 
neurons representing a symbol (such neurons possess the ultimate in neural 
signaling power) to excite transponder neurons (each of which receives many 
inputs from the pool). No lesser neural collection is capable of doing this 
through unstrengthened synapses (which is why cortical synfire chains have 
only two stages). However, it is also known that some synapses (this theory 
claims that these represent fewer than 1% of the total of cortical excitatory syn-
apses, see Sect. 8.7) are much stronger. These stronger synapses (which the the-
ory claims are the seat of storage of all cortical knowledge) are physically larger 
than unstrengthened synapses and are often chained together into multiple-
synapse groups that operate together (see Fig. 8.7). One estimate (Henry 
Markram, personal communication) is that such a strengthened synapse group 
can be perhaps 60 times stronger than the common unstrengthened synapse (in 
terms of the total depolarizing effect of the multi-synapse on the target cell at 
which they squirt glutamate neurotransmitter). These strong synapses are 
probably also much more reliable. Figure 8.7 illustrates these two hypothesized 
types of cortical excitatory synapses used for cognitive knowledge storage. 

The theory hypothesizes that synapses which implement knowledge links (as 
in Fig. 8.5) are always strengthened greatly in comparison with unstrengthened 
synapses. When the knowledge link requires that a transponder-neuron-to-
target-symbol-neuron synapse code the graded probability p( | ) (as opposed 
to just a binary “unstrengthened” or “strong”), the dynamic range of such  
a strengthened synapse is probably no more than a factor of, say, 6. In other 
words, if the weakest strengthened synapse has an “efficacy” 10 times that of an 
unstrengthened synapse, the strongest possible synapse will have an efficacy of 
60. Thus, we must code the smallest meaningful p( | ) value as 10 and the 
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strongest as 60 (remember that 0 < p0 < p( | )  1, where p0 is the smallest “mea-
ningful” antecedent support probability value). 

In our computer confabulation experiments (e.g., those reported in Chaps. 4 
and 6), the smallest meaningful p( | ) value (define this to be a new constant 
p0) turns out to be about p0 = 0.0001, and the largest p( | ) value seen is almost 
1.0. As it turns out, the smaller p( | ) values need the most representational 

                                                                 
11 This is easy to see: Consider the simplified attractor you built and experimented with above. It 

always converged to a single pure state xk (at least when the initial state u was dominated by xk), 
meaning that all of the neurons which represent xk are active and all other neurons are inactive. 
However, each of the neurons of xk also belongs to many other stable states xi, but this does not 
cause any problems or interference. You may not have seen this aspect of the system at the time 
you did your experiments – go check! You will find that even though the overlap between each 
pair of x field stable states is relatively small, each individual neuron participates in many such 
stable states. The properties of this kind of attractor network are quite astounding, and they do 
not even have many of the additional design features that thalamocortical modules possess. 

 

Fig. 8.7. Synapse strengthening – the fundamental storage mechanism of cortical knowl-
edge. A A weak, unreliable, unstrengthened vestigial synapse making a connection from 
a transponder neuron axon to a target neuron dendrite. The theory hypothesizes that 
roughly 99% of human cortical synapses with this connectivity are vestigial. B the same 
synapse after learning (i.e., the progression from short-term memory to medium-term 
memory to long-term memory has been completed). Now, the synapse has blossomed 
into three parallel synapses, each physically much larger than the original one. This 
multi-synapse (perhaps what has been recently termed a ribbon synapse) is more reliable 
and has an efficacy ranging from perhaps 30 to 50 times that of the original unstrength-
ened synapse (learning always yields a great increase in efficacy – the theory posits that 
there are no such knowledge storage synapses which are only slightly strengthened)11 
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precision, whereas little error is introduced if the larger p( | ) values are more 
coarsely represented. Clearly, this is a situation that seems ripe for using loga-
rithms! The theory indeed proposes that non-binary strengthened synapses in 
human cortex have their p( | ) probabilities coded using a logarithmic scale 
[i.e., y = logb(cx) = a + logb(x), where a = logb(c)]. This not only solves the limited 
synaptic dynamic range problem mentioned above, but it is also a key part of 
making confabulation work (as we will see below)! 

So, given the above estimates and hypothesis, let us determine the base b of the 
logarithms used for synaptic knowledge coding in the human cerebral cortex, as 
well as the constant c [actually, we will instead estimate a = logb(c)]. To fix ideas, 
say we want p( | ) = 0.0001 to be represented by a synaptic strength of 10, and we 
want p( | ) = 1.0 to be represented by a synaptic strength of 60. In other words, 
we need to find positive constants a and b such that (see Chaps. 3, 4, and 5): 

a + logb (0.0001) = 10 (8.2) 

and 

a + logb (1.0) = 60. (8.3) 

Clearly, from Eq. 8.3, a = 60 (since the log of 1 is zero for every b). Then 
Eq. 8.2 yields b = 1.2023. Thus, when a highly excited transponder neuron repre-
senting source symbol  delivers its signal to a neuron of answer module sym-
bol , the signal delivered to that neuron will be proportional to a + logb(p( | )) 
(where the constant of proportionality is postulated to be the same for all target 
neurons of a single module, and where nearby modules typically have very simi-
lar proportionality constants). 

You might wonder why the signal delivered is not the “product” of the trans-
ponder neuron output signal and the synaptic efficacy [as was common in clas-
sical “neural network” models such as the Perceptron (Hecht-Nielsen 2004)]. 
Well, it is! However, exploring this aspect of the theory would quickly take us 
beyond the scope of this introductory sketch (see the Methods appendix of 
Chap. 6 for an example). Since transponder neurons coding a single active sym-
bol (assumed fact) on a module, essentially anywhere in cortex, always fire at the 
about the same signal level (namely, the maximum possible) when they are im-
plementing a link, we can consider this link input signal as constant. Thus, for 
the purposes of discussing elementary confabulation (the process of reaching 
conclusions based upon sets of assumed facts), we need not worry about this 
issue here. Another issue that can be ignored is the influence of the many non-
strengthened synapses impinging on target module symbol neurons. This effect 
can be ignored because the inputs due to this prolific, but unreliable, source is 
very uniformly distributed across all neurons of all symbols and so it affects 
them all equally. In other words, this input acts as a low-variance, roughly con-
stant, uniform “background noise.” One possibility (that seems worthy of further 
investigation) is that this “loud” uniform blanket of carefully designed (by evolu-
tion) background noise might be an important part of the neuronal attractor 
network mechanism modules use to carry out confabulation. See Kosko (2006) 
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and Patel and Kosko (2007) for discussions of how such a noise blanket can 
dramatically improve neuronal calculational precision and accuracy. 

The main conclusion of the above argument is that those neurons that repre-
sent answer module symbol  which happen to receive a sufficient number of  
transponder neuron inputs to allow them to respond will all have about the 
same response to that input; namely a response proportional to a + logb(p( | )). 

Recall from the discussion of Fig. 8.6 above that the number of neurons of 
each answer module symbol which receive sufficient synaptic inputs from the 
transponder neurons of a source symbol  are about the same for each knowl-
edge link and each symbol. You may wonder why only  neurons having this 
maximum number of synapses from  transponders will respond. It has to do 
with the events of the confabulation process. As the operate command input 
rises, these “sufficient” neurons will become active first. In the operation of the 
module (which is very fast) only those neurons with a sufficient number of in-
puts from an assumed fact will be able to participate in the dynamical conver-
gence process. Another good question is why the variance in this number of 
synapses turns out to be small. This is because the binomial statistics of random 
transponder neuron axons make it such that neurons with unusually large num-
bers of synapses are extremely unlikely. Otherwise put, binomial (or Poisson) 
probability distributions have “thin tails.” Thus, the set of all  neurons which 
have strengthened synapses – the ones which participate in the (strength-
weighted) excitation of  – are those that lie in a narrow range at the high end of 
the Poisson density right before it plummets. 

The binomial statistics of the locally random cortical connections also keep 
the number of target symbol neurons with near-maximum complements of 
input synapses very close to being constant for all symbols. Let this number of 
neurons be K. Then the total excitation of the K neurons which represent answer 
module symbol  that are receiving input from  symbol transponders (where  
is one of the assumed facts) is proportional to K[a + logb(p( | )] (again, with  
a universal constant of proportionality that is the same for all the symbols of one 
module). 

Finally, since the subsets of -representing neurons which receive inputs 
from different links typically do not overlap, the total excitation of the entire set 
of neurons representing answer module symbol  (assuming that  is receiving 
knowledge link inputs from assumed facts , , , and ) is approximately pro-
portional to (again, with a universal constant of proportionality) the total input 
excitation sum I( ): 

I( )  K · [a + logb(p( | ))] + K · [a + logb(p( | ))] 
 + K · [a + logb(p( | ))] + K · [a + logb(p( | ))] 
 = 4K · a + K · logb[p( | ) · p( | ) · p( | ) · p( | )]. (8.4) 

Recall from the discussion of Sect. 8.2 that when the answer module attrac-
tor network is operated (and yields only one winning symbol), all of the neu-
rons representing the winning symbol (which will be the one with the highest 
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total input excitation) are left in the active state and all other symbol neurons 
are left inactive. By virtue of the above formula, we see that this winning sym-
bol will be the symbol  with the highest confabulation product p( | ) · p( | ) · 
p( | ) · p( | ) value (e.g., in the specific case of Fig. 8.6 this will be symbol ). 
This is the theory’s explanation for how thalamocortical modules can carry out 
confabulation. 

Since not all symbols of the answer module of Fig. 8.6 receive knowledge links 
from all four assumed facts , , , and , what will be the input excitation sums 
on symbols that receive fewer than four link inputs (total excitation level of the 
entire ensemble of neurons representing that symbol in the answer module)? 
For example, consider an answer module symbol  which receives links only 
from assumed facts  and . The total input excitation sum I( ) of the set of 
neurons which represent  will be: 

I( )  K · [a + logb(p( | ))] + K · [a + logb(p( | ))] 
 = 2K · a + K · logb[p( | ) · p( | )]. (8.5) 

Thus, given that each individual term in the first lines of Eqs. 8.4 and 8.5 lies 
between K · 10 and K · 60, the value of I( ) (Eq. 8.5) could, in extreme cases, be 
larger than that of I( ) of Eq. 8.4 [although in most cases I( ) will be smaller and 

 will not be the winning symbol]. In any event, the symbol with the highest I 
value will win the confabulation. 

Note that in cognitive functions which employ binary knowledge (every 
knowledge link transponder neuron synapse is either unstrengthened or is 
“strong”), I( ) is roughly proportional to the number of links that symbol  
receives. Thus, in these cortical areas, confabulation devolves into simply choos-
ing the symbol with the most knowledge link inputs. Although it is not discussed 
in this chapter, this is exactly what such cognitive functions demand. 

The seeming problem identified above of having symbols which are missing 
one or more knowledge links win the confabulation competition is not actually  
a problem at all. Sometimes (e.g., in early visual processing) this is exactly what 
we want, and at other times, when we want to absolutely avoid this possibility, 
we can simply carry out multiple confabulations in succession. Also, some por-
tions of cortex probably have smaller dynamic ranges (e.g., 30 50 instead of 
10 60) for strengthened synapses, which also helps solve this potential problem. 

As discussed in Sect. 7.1, in mechanizing cognition we explicitly address this 
issue by appropriately defining a constant called the bandgap. 

In summary, the theory claims that the above-sketched biological implemen-
tation of confabulation meets all information-processing requirements of all 
aspects of cognition; yet it is blazingly fast and can be accurately and reliably 
carried out with relatively simple components (neurons and synapses) which 
operate independently in parallel. 
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8.6 Action Commands 

At the end of a confabulation operation there is often a single symbol active. For 
example, the triangular red cortical neurons (belonging to layers II, III/IVa) 
shown in Fig. 8.2 represent one particular symbol of the module which is now 
active following a confabulation. Of course, in a real human thalamocortical 
module, such an active symbol would be represented by tens to hundreds (de-
pending on the location of the module in cortex) of “red” neurons, not the few 
shown in the figure. 

A key principle of the theory is that at the moment a single symbol of a mod-
ule achieves the active state at the end of a confabulation operation, a specific set 
of neurons in layer V of the cortical portion of that module (or of a nearby mod-
ule – this possibility will be ignored here) become highly excited. The outputs of 
these cortical layer V neurons (shown in brown in Fig. 8.2) leave cortex and 
proceed immediately to sub-cortical action nuclei (of which there are many, 
with many different functions). This is the theory’s conclusion  action princi-
ple. In effect, every time cognition reaches a definitive single conclusion, a be-
havior is launched. This is what keeps us moving, thinking, and doing, every 
moment we are awake. 

The layer V neurons which become highly excited when a symbol wins a con-
fabulation cause a very specific set of actions to be executed (or at least to be 
considered for execution, depending on the function of the action nucleus that 
receives the layer V efferents). This is the origin of all non-reflexive and non-
autonomic behavior – each successful (one winning symbol) confabulation cau-
ses the launch of a set of associated action commands. These actions can be part 
of a movement process, part of a thought process, or both. 

During development, the genetically determined program for creating the 
brain is, barring problems, executed. This program causes the development of 
axons from neurons in layer V of each cortical module portion which proceed to 
genetically directed sub-cortical action nuclei (of which there are tens). In other 
words, genetics can ensure that a module has the layer V neurons it needs to 
launch those actions which that particular module should be empowered to 
execute. Thus, each of us has a range of behavioral potentialities which are in 
this sense pre-determined. This is probably one important mechanism by which 
various talents and personality traits are transferred from parents to children. 
This is part of the “nature” portion of the human equation. 

Given the behavioral potentialities established by the genetically directed wir-
ing of the axons of the layer V neurons of a module to action nuclei, the big ques-
tion is how exactly the correct ones of these layer V neurons end up getting 
“wired” from the population of neurons representing each symbol. Given the 
exact specificity of effect each layer V neuron produces, there is no room for error 
in this wiring from each symbol to the action commands it should launch. Since 
the local geometrical arrangement of the symbol representing neurons and ac-
tion-command neurons within their respective layers is random, and their local 
axonal wiring is largely random, this wiring from symbol representing neurons to 
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layer V action-command-generating neurons cannot be genetically determined. 
These associations must be learned and they must be perfect. Figure 8.8 illus-
trates the theory’s hypothesized mechanism for implementing these precise sym-
bol to action associations. This figure will be referred to extensively below. 

The learning of symbol to action command associations is almost certainly  
a totally different learning process from that used in development of module 
symbol sets or in the establishment of knowledge links. This symbol to action 
association learning process is hypothesized to take place primarily during 
childhood, but probably can also occur, when needed, during adulthood. Cogni-
tive module development, cognitive knowledge acquisition, and symbol to ac-
tion command association learning together make up the most “glamorous” 
parts of the “nurture” portion of the human equation (there are a number of 
other, quite different, learning processes that go on in other parts of the brain, 
e.g., learning that we should use the toilet). 

Notice that in Fig. 8.2, every cortical layer of a module is mentioned except 
layer I (the most superficial). Layers II, III, and IV are primarily involved in sym-
bol representation, precedence principle interactions among feature detector 
neurons, and the receipt of afferents from thalamus. Layer V is where the action 
command output neurons reside, and layer VI is where the cortical efferents to 

Fig. 8.8. Learning and using the precise associations from symbols to action commands. 
Keep in mind that the neuron populations involved in these associations, illustrated here 
as small sets, are, in the brain, extremely large sets (tens of thousands of neurons in 
every case). See text for explanation of the figure 
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thalamus arise. The theory hypothesizes that layer I is where the wiring between 
the symbol-representing neuron sets and the layer V action command output 
neurons takes place (and quite possibly some of the wiring for the module’s at-
tractor network function as well). It is well known (Paxinos and Mai 2004) that 
the neurons of layer V (typically these are of the pyramidal category) have apical 
dendrites that ascend to layer I and then branch profusely. Further, neurons of 
layers II, III, and IV typically send large numbers of axon collaterals to layer I 
(and also frequently have apical dendrites too – but these will not be discussed 
here). Further, the basal ganglia [BG – a complicated set of brain nuclei known to 
be involved in multiple types of action learning (Paxinos and Mai 2004)], and 
specifically the BG sub-structure known as the striatum, sends signals in great 
profusion to layer I of cortex via the thalamus (see Fig. 8.8). This radiation is 
principally concentrated in frontal cortex (where most behaviors seem to origi-
nate), but other cortical areas also receive some of these inputs. 

Given the random nature of cortical wiring, the only way to establish correct 
symbol to action associations is via experimentation. This experimentation is 
carried out (starting with the simplest actions and then constructing an action 
hierarchy). At the beginning of development of each module, the first item on 
the agenda is development of the module’s symbols (which was discussed in 
Sect. 8.3). As this module development process begins to produce stable sym-
bols, the problem of associating these to actions is addressed. 

At first, action-command neurons are randomly triggered when a particular 
single symbol is being expressed by the module (i.e., that symbol was the lone 
outcome of a confabulation operation by the module). As this occurs, the BG 
monitor the activity of this module (via efferents from layer III and layer V – see 
Fig. 8.8). When a randomly activated action command happens to cause an ac-
tion that the BG judge to be particularly “good” (meaning that a reduction in  
a drive or goal level was observed – which the BG know about because of their 
massive input from the limbic system), that action is then associated with the 
currently expressed symbol via the mechanism of Fig. 8.8. 

(Note: Reductions in drive and goal states are almost never immediate follow-
ing an action. They are usually delayed by seconds or minutes, sometimes by 
hours. One of the hypothesized functions of the BG (Miyamoto et al. 2004) is that 
they develop a large number of predictive models, called critics (Barto et al. 
1983), that learn [via delayed reinforcement learning methods (Sutton and Barto 
1998)] to accurately predict the eventual goal-or-drive-state-reduction “value” or 
“worth” of an action at the time the action is suggested or executed. It is by using 
such critic models that the BG are hypothesized by confabulation theory to im-
mediately assess the worth of action commands produced by layer V outputs.) 

When an action command that is randomly launched is indeed judged wor-
thy of association from the currently expressed symbol of a module, a special 
signal (the green arrow in Fig. 8.8) is sent (via thalamus) from the striatum of 
the BG to cortical layer I of the module. This green signal causes the synapses 
(blue circles) connecting axon collaterals of the neurons representing the cur-
rently expressed symbol (these neurons are shown in red in Fig. 8.8 and reside in 
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layer II, III, or IVa) with the apical dendrites of the now-validated action-
command neurons of layer V (shown in brown in Fig. 8.8) to be incrementally 
strengthened. Essentially every neuron representing the expressed symbol gets 
its direct synaptic connections with the action-command neurons incrementally 
strengthened. 

Notice how different the situation of Fig. 8.8 is from that of knowledge links. 
In a knowledge link, the source symbol must first amplify its signal by briefly 
recruiting thousands of transponder neurons to retransmit it. Even then, when 
the knowledge link signals arrive at the target module, only a relatively small 
fraction of each target symbol’s neurons receive a sufficient number of inputs to 
complete the link. In Fig. 8.8, we presume that almost all of the expressed sym-
bol’s representing neurons synapse directly with the apical dendrites of each 
layer V action-command neuron. The reason this is a sensible hypothesis is that 
layer I is well known to be fed extensively with axons from the nearby neurons 
below it (i.e., neurons of the module that represent symbols), and to be pro-
fusely supplied with dense apical dendrites from layer V neurons. 

The synapses from symbol-representing neurons to action-command neurons 
are hypothesized to be quite different from those used in knowledge links. In 
particular, these synapses can slowly and gradually get stronger (if repeatedly 
strengthened over many trials over time), and can slowly and gradually get wea-
ker (if not strengthened very often, or not at all, over time). This is why “skill 
knowledge” decays so fast (in comparison with cognitive knowledge, which lasts 
for very long periods of time, even if not used). A major benefit of this dynamic 
synapse characteristic is that occasionally erroneous strengthening of synapses 
(e.g., when a random action-command set includes some irrelevant commands 
along with some effective ones) will, in general, not cause problems (as long as the 
vast majority of strengthenings are warranted). This is very different from cogni-
tion, where correction of erroneous knowledge is often impossible (and then the 
only solution is to specifically learn to not use the erroneous knowledge). 

The universal truism that “practice makes perfect” is thus exactly correct 
when it comes to behavior. And for a difficult skill (e.g., landing a jet fighter on 
an aircraft carrier at night) to be usable, that practice must have been recent. 
The associations from symbols to action-command sets are constantly being 
reshaped during life. If we live in a highly stable information environment we 
might not notice much change in our behavioral repertoire over many years. If 
we are subjected to a frequently and radically changing information environ-
ment, our behavior patterns are constantly changing. In some respects, people 
who undergo such changes are being constantly “behaviorally re-made.” The 
workings of the neuronal network of Fig. 8.8 are now briefly discussed. 

Clearly, the size of the set of specific layer V action-command neurons which 
need to be triggered by the expression of a particular symbol is arbitrary. One 
symbol’s association might involve activating a set of five specific layer V neu-
rons, another might involve activating 79, and yet another might activate no 
layer V neurons. Keep in mind that each individual neuron in the population of 
tens to hundreds of neurons which together represent one particular symbol in  
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a module also participates in many other such representations for other sym-
bols. So, this association must be between the population representing a symbol 
and a specific set of layer V neurons. 

This requirement suggests a unidirectional Willshaw-type associative net-
work structure wherein the “retrieval keys” all have almost exactly the same 
number of neurons (which is exactly what the symbol representation neuron 
sets are like); but where the “output” neurons activated by each key have an 
arbitrary number of neurons. This is exactly what a Willshaw structure can do – 
the retrieval keys (“stable states”) xk must be random and must each have almost 
the same number of neurons, but there can be as many or as few “output neu-
rons” in the associated yk as desired, with no restriction, and the individual neu-
rons making up each xk population can appear in many other such populations. 
These are fundamental mathematical properties of the basic Willshaw design 
and are likely to apply to a wide class of similar systems. [Note: If you don’t see 
this, consider again the computer experiments you performed in Sect. 8.3 above. 
You will see that it does not matter how many yk neurons there are for each xk, as 
long as we are not implementing the second, y field to x field, part of the cycle 
(this is not well known, because, for analytical simplicity, the original Willshaw 
model used the same number of neurons in both the xk and yk vectors). Further, 
as long as the xk keys are random and have almost exactly the same numbers of 
active neurons, the reliability of the yk neuron responses is extremely high.] 

However, as mentioned earlier, unlike the situation in knowledge links (whe-
re only a few of the target symbol neurons receive connections from the trans-
ponder neurons of a source symbol), in this case, almost all of the neurons of 
each active symbol must connect to each of the desired action-command neu-
rons. Partial connectivity will not work here, since there is no feedback to im-
plement a “convergence” process. However, the enormous local connectivity 
within layer I is hypothesized to make achieving a sufficient level of this connec-
tivity no problem. 

By incorporating inhibitory neurons into its intrinsic design, such a one-way 
Willshaw network (with inhibition added) will only respond with a yk when its 
input is a newly active single symbol (multiple symbols will fail to yield any 
association output because they induce excessive inhibition, which shuts down 
all of the layer V neurons). This is hypothesized to be why action commands are 
only issued when a confabulation produces a single winning symbol. Also, when 
considering what action to take for a given xk input, only those layer V neurons 
having a sufficient input excitation will respond (much like in confabulation 
competitions). In other words, even near the beginning of learning, when behav-
ioral symbol to action associations are all weak, the layer V response will be 
based upon this “competitive” criterion, not a fixed threshold. 

That a vast majority of cortex would be involved in issuing thought action 
commands, as opposed to movement action commands, makes sense because 
there are many more modules (and knowledge bases) than muscles. [It is not 
discussed here, but each knowledge base may also need to receive an “enable” 
command in order to function – if this is true, this function probably involves 
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the large “higher order” (Sherman and Guillery 2001) portion of the thalamus 
that is not included in the thalamocortical modules.] So it probably requires  
a much larger portion of cortex to producing such thought process control ac-
tion commands (muscle action commands come mostly from layer V of mod-
ules located within the relatively small primary motor area of cortex). 

Most action commands represent “low-level housekeeping functions” that are 
executed reflexively whenever a single symbol (often one of a large set of sym-
bols that will elicit the same action-command set) is expressed on a module. For 
example, if a confabulation in a module that is recalling a stored action sequence 
(such modules are typically located in frontal cortex) ends in the expression of  
a single action symbol, then that module must be immediately erased and pre-
pared for generating the next sequence symbol. This is an action command that 
is issued along with the expression of the current action sequence symbol. Over-
riding such reflexive thought progressions is possible, but generally involves 
shutting off tonic cortical arousal (one of multiple adjuncts to the module opera-
tion command input) in a general cortical area via action commands issued to 
brainstem thought nuclei. The result is a momentary freezing of the halted func-
tion as a new thought process stream is inaugurated. This is what happens when 
we see that we are about to step on dog poop. It takes a only fraction of a second 
for us to recover from the suspension of the ongoing action and activate an al-
ternative. Further, since muscle tone and rhythmic actions such as walking are 
nominally controlled by other brain nuclei (not cortex and thalamus), all the 
cortex typically needs to do (once the prior action sequence has been sus-
pended) in such instances is issue a momentary set of corrective alteration ac-
tion commands which are instantly executed as a momentary perturbation to 
the ongoing (sub-cortically automated) process, which then typically resumes. 

It is important to note that the details of how sequences of “action” symbols – 
each representing (via its symbol to action command association) a particular 
specific set of action commands that will be launched every time that symbol is 
the sole conclusion of a confabulation – are learned, stored, and recalled are the 
same as with all other cognitive knowledge. However, unlike many other types of 
knowledge (e.g., event knowledge or factual knowledge), only the action symbol 
replay knowledge is rehearsed and solidified at night. The action symbol to ac-
tion command associations can only be learned and refined via awake rehearsal. 
This accounts for the fact that anyone learning a new skill will frequently find 
themselves (either through vague memories of dreams upon waking, or via re-
ports from their sleep partner) carrying out “silent practice” of those skills in 
their sleep. These do not involve launching the involved actions (a function that 
is normally suppressed during sleep), but simply running through the involved 
action symbol sequences. Such activities can help solidify the symbol sequences 
and this often yields improved skill performance the next day. 

Quite a bit of experience has been gained with learning and recalling action 
symbol sequences in my year-long UCSD ECE-270 graduate course. For  
example, a checker-playing system that learns by expert-guided rehearsal has 
been demonstrated. However, issues surrounding the replay of action sequence 
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hierarchies are complicated and not within the scope of an introductory book 
(e.g., provisions for automatic real-time, moment-by-moment modification of 
an ongoing lower-level action sequence replay in response to the exact current 
state of the world, with no modification at the higher level – a process called 
instantiation – must be introduced). Therefore, action symbol sequence learn-
ing and recall are not discussed in this book. 

In summary, confabulation theory proposes that the unidirectional symbol 
pair links used in confabulation are the only knowledge learned and stored in 
cortex that is used in cognition. However, as described in this section, there is  
a second kind of knowledge learned and stored in cortex: the associations be-
tween each symbol and the action commands that its expression as a confabula-
tion conclusion should launch. This knowledge is not really part of cognition. It 
is the mapping from decisive cognitive conclusions (single active symbols result-
ing from confabulations) to behaviors. Thus, the ultimate end product of cogni-
tion is the origination of action commands, some of which are unconditionally 
executed immediately and others, termed suggested actions, must be approved 
(vetted) by the basal ganglia before they can be executed. 

8.7  Discussion 

The theory’s hypothesized cortical implementation of knowledge links has some 
important universal properties. First, the locally random wiring of the cortical 
axons can be established during development and then frozen; essentially for life 
(although there may be a very slow replenishment of some types of neurons 
throughout life that helps keep the brain functional as neurons slowly die; but 
this has not been established – the vast majority of neurons probably live a very 
long time, perhaps for the full life span of the individual). Knowledge links, by 
means of a parallel, two-step synfire chain communication process through the 
random cortical signaling network, can be immediately formed, as appropriate, 
between almost any two symbols in any two modules that genetics have pro-
vided connection possibilities for. A link can be temporarily established in-
stantly (via the short-term memory mechanism) and then, if it is warranted, the 
link can be progressively transformed into permanent knowledge during the 
subsequent few sleep periods. 

The price of this ability to instantly learn almost anything without need for 
rewiring (to carry out such wiring by growing new axons would take days and 
would require the involved axons to have unbelievable navigation abilities) is 
probably a vast over-wiring of cortex. A prediction of the theory is that only 
roughly 1% of cortical synapses are actually used to store knowledge (i.e., have 
been strengthened). The rest are there to provide the capacity for instant arbi-
trary learning. Thus, the old saw that “we only use 10% of our brain” is proba-
bly wrong on the high side; 99% of unstrengthened synapses are hypothesized 
to simply be sitting around waiting to be needed. This may seem wasteful, but 
unstrengthened cortical knowledge synapses and axon collaterals are small,  
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and humans have about 1014 1015 of them (Mountcastle 1998; Nicholls et al. 
2001; Nolte 1999; Steward 2000). Clearly, the survival value of instant arbitrary 
learning vastly outweighs whatever inefficiency is incurred. This hypothesis 
helps explain one of the most puzzling findings of neuroscience: the vast major-
ity of synapses that have ever been individually evaluated [e.g., by manipulating 
them, and monitoring their effects on the target cell, using multiple patch 
clamps (Cowan et al. 2001)] have turned out to be very unreliable and only 
marginally functional. This is exactly what you would expect to find if 99% of 
synapses are in a state of minimal existence, awaiting the possible moment that 
they will be needed. 

Humans live for roughly 3  109 seconds. So, for example, if we acquire an  
average of one item of knowledge during every second of life (86,400 knowledge 
items per day), and if an average of 300 transponder neuron synapses are used 
to implement each knowledge item, far less than 1% of all synapses will ever be 
used (of course, not all cortical synapses are available for knowledge storage, 
but most probably are, so this conclusion is still probably correct). Thus, the 
theory proposes that the potential amount of cognitive knowledge that can be 
stored is huge. 

In my laboratory’s computer implementations of confabulation, a startling 
fact (which is consistent with the above numbers) has emerged: a staggeringly 
large number of knowledge items is needed to do even simple cognitive func-
tions. The theory postulates that the average human must possess billions of  
items of knowledge. This has many startling and profound implications and, 
assuming that the theory gains acceptance, many philosophical and educational 
views of humans (and other animals) will likely be completely altered. For  
example, the theory implies that children (and adults too!) probably accumulate 
tens of thousands, or more, new individual items of knowledge every day. Thus, 
the process of reconsidering each day’s short- and medium-term memories and 
converting selected ones into a more permanent form is a huge job. It is no 
wonder that we must sleep a third of the time. 

To appreciate the vast storage capacity of your cerebral cortex, imagine for  
a moment that you are being asked a long series of detailed questions about the 
kitchen in your home. Describe all of the spoons and where they are kept; then 
the forks, then the drinking glasses, and so on. Describe how you select and 
employ each item; where and when you obtained it; and some memorable occa-
sions when it was used. Obviously, such a process could go on for tens of hours 
and still turn up lots of new kitchen information. Now consider that you could 
probably answer such detailed questions for thousands of mental arenas. Hu-
mans are phenomenally smart. 

Another cortical property which the theory’s hypothesized design of cortex 
imparts is an insensitivity to occasional random neuronal death. If a few of the 
transponder neurons which represent a particular symbol randomly die, the 
remaining knowledge links from this symbol continue to function. Newly created 
replenishment neurons (which may slowly arise throughout life) which turn out 
to have the appropriate connectivity (once they have spread out and connected 
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up and reached maturation), can be incorporated into such a weakened link to 
replace lost neurons, assuming the link is used from time to time. 

If a link is not used for a long time, then as the transponder neurons of its 
source symbol slowly get redeployed (see below) or die, the axons to the target 
symbol neurons of the link will not be replenished and the link will become 
gradually weaker (other links having the same source symbol, which are used, 
will not suffer this fate because they will be replenished). Eventually, the unused 
link will become so weak that it cannot function by itself. Sometimes, when  
a link has become weak, but is not completely gone, it can be used if accompa-
nied by additional assumed fact inputs to the same target symbol – a faded-
memory recall trick known popularly as mnemonics. This is the theory’s expla-
nation for why we forget long-disused knowledge. 

Another aspect of the hardware failure tolerance of cortex is the primary rep-
resentation of each symbol within its own module. With tens or hundreds of 
neurons representing each symbol, the module’s symbols too have some redun-
dancy and failure tolerance. 

When new inputs to a cortical module arise which do not fit any of the existing 
symbols well, and continue to appear repeatedly, new symbols can be formed, 
even in adulthood. Depending on how close to capacity the involved module is, 
these new symbols may or may not displace existing symbols. This module re-
building process is often used to add new symbols to modules when we learn  
a subject in more depth (e.g., when we take Calculus III after having already 
taken Calculus I and Calculus II). Total rebuilding of a module typically only 
occurs in the event of trauma (e.g., stroke), where the entire information input 
environment to the module has dramatically changed. Total rebuilding takes 
weeks and requires lots of practice with the new symbols. This is why recovery of 
function after a stroke takes so long and why intensive and immediate physical 
and mental therapy based upon practice and use is so important. Aspects of 
childhood development are being recapitulated on an abbreviated schedule. 

Modules also slowly incorporate replenishment neurons into existing symbol 
representations that are used. As with forgetting of knowledge, long-disused 
symbols eventually have their sets of representing neurons redeployed (see be-
low) or eroded beyond functionality. A person who spoke French as a child, but 
who has not used French at all for 40 years, will likely have many of their French 
word representation symbols eroded beyond recovery. 

The only instance of deliberate fast knowledge erasure in human cortex is re-
deployment, where a source symbol in a module, which used to be linked to  
a particular set of target symbols in other modules, suddenly has an entirely new 
ensemble of links to new target symbols arise for it, and these new links persist 
(and the old ones are disused). For example, when we move to a new home, it 
may be necessary to learn that the alarm clock is now on the left side of the bed, 
not the right. What happens in this instance is that the sets of transponder neu-
rons representing the involved source symbol have a finite limit to the number 
of highly strengthened synapses that they can have at any time (this probably 
has to do with a total individual cellular limit on synthesis of certain consumable 
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biochemicals – the critical ones of which are produced only in the neuron’s so-
ma and dendrites, where the ribosomes reside). [NOTE: The ultimate limit to 
knowledge storage capacity is probably not total synapses; it is the number of 
strengthened (knowledge link) synapses that each transponder neuron can sup-
port at one time. There are probably people (e.g., perhaps the author) who have 
spent their entire lives studying and who reached this capacity limit long ago for 
many symbols.] As the transponder neuron synapses implementing the many 
new links are learned and strengthened, many of the old, now unused, links 
must be immediately sacrificed (their synapses shrivel to the unstrengthened 
vestigial state). Within a few weeks, we instinctively reach left. The old knowl-
edge has been effectively erased. The synapses of many of the old knowledge 
links have shriveled (but not all of them; some remnant knowledge links often 
remain – you can experience this, for instance, by revisiting one of your old 
haunts and trying to carry out formerly familiar patterns, like skipping down 
stairs at a childhood residence). Fragments of your former knowledge will still 
be there. Please be careful in conducting these experiments. 

Redeployment is a critical cognitive capability that allows us to adapt to envi-
ronmental change quickly. It is also hypothesized to be the only mechanism of 
deliberate forgetting in cognition. 

Finally, it is important to note that any global theory of human cerebral cortex 
and thalamus is bound to be vastly oversimplified. For example, it is well known 
(Paxinos and Mai 2004) that different areas of cortex have some layers dramati-
cally attenuated (e.g., layer IV in certain areas of frontal cortex). Other areas have 
layers that are dramatically elaborated (e.g., in primary visual cortex, layer IV 
becomes tripartite). These local modifications almost certainly must have signifi-
cant meaning for the nuances of function. However, the theory proposes that 
these are all relatively small variations of the same overall grand theme. 

The central notion of the theory – that cognition, that greatest engine of ani-
mal ennoblement, is universally mechanized by one information-processing 
operation (confabulation) employing a single form of knowledge (antecedent 
support), with each singular conclusion reached launching an associated set of 
action commands – seems to me to now be secure. The concreteness and speci-
ficity of this theory guarantee that it is falsifiable.  
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