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The Neuroscience of Language

On Brain Circuits of Words and Serial Order

A realistic model of language should specify the mechanisms under-
lying language use and comprehension. A neurobiological approach
has been shown to be an effective means toward this end. The Neu-
roscience of Language provides results of brain activation studies,
patients with brain lesions, and hints from computer simulations of
neural networks to help answer the question: How is language orga-
nized in the human brain?

At the book’s core are neuronal mechanisms that is, the nerve cell
wiring of language in the brain. Neuronal models of word and serial-
order processing are presented in the form of a computational and
connectionist neural network. The linguistic emphasis is on words
and elementary syntactic rules. The book introduces basic knowledge
from disciplines relevant in the cognitive neuroscience of language.
Introductory chapters focus on neuronal structure and function, cog-
nitive brain processes, the basics of classical aphasia research and
modernneuroimaging of language, neural network approaches to lan-
guage, and the basics of syntactic theories. The essence of the work
is contained in chapters on neural algorithms and networks, basic
syntax, serial-order mechanisms, and neuronal grammar. Through-
out, excursuses illustrate the functioning of brain models of language,
some of which are simulations accessible as animations on the book’s
accompanying web site.

This self-contained text and reference puts forth the first system-
atic model of language at a neuronal level that is attractive to lan-
guage theorists but that is also well grounded in empirical research.
The Neuroscience of Language bridges the gap between linguistics
and brain science, appealing to advanced students and researchers in
neuroscience, linguistics, and computational modeling.

Friedemann Pulvermüller is a senior scientist at the Medical Research
Council Cognition and Brain Sciences Unit in Cambridge.
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Preface

How is language organized in the humanbrain?This bookprovides results of
brain activation studies, facts from patients with brain lesions, and hints from
computer simulations of neural networks that help answer this question.
Great effortwas spent to spell out theputativeneurobiological basis ofwords
and sentences in terms of nerve cells, or neurons. The neuronal mechanisms –
that is, the nerve cell wiring of language in the brain – are actually in the
focus. This means that facts about the activation of cortical areas, about
the linguistic deficits following brain disease, and the outcome of neural
network simulations will always be related to neuronal circuits that could
explain them, or, at least, could be their concrete organic counterpart in the
brain.

In cognitive neuroscience, the following questions are commonly asked
with regard to various higher brain functions, or cognitive processes, includ-
ing language processes:

(1) Where? In which areas of the brain is a particular process located?
(2) When? Before and after which other processes does the particular

process occur?
(3) How? By which neuron circuit or which neuron network type is the

particular process realized?
(4) Why? On the basis of which biological or other principles is the par-

ticular process realized by this particular network, at this particular
point in time, and at these particular brain loci?

The ultimate answer to the question of language and the brain implies ans-
wers to these questions, with respect to all aspects of language processing.
The aspects of language relevant here include the physical properties of
speech sounds and the sound structure of individual languages as specified
by phonetics and phonology, the meaning and use of words and larger units

xi



xii Preface

of language as specified by semantics and pragmatics, and the rules under-
lying the serial ordering of meaningful language units in sentences or larger
sequences as specified by syntax.All of these aspects are addressed, although
an emphasis is put on words and elementary syntactic rules.

Lesion studies and brain imaging studies have revealed much important
information relevant for answering “Where” questions of type (1), about the
relevant brain loci. Fast neurophysiological imaging could also shed light
on the temporal structure of language processes in the millisecond range,
thereby answering “When” questions of type (2). Type (3) “How” questions
about the underlying mechanisms are sometimes addressed in neural net-
work studies, butmany ideas – inparticular, ideas about syntactic structures –
are still formulated in terms so abstract that it is difficult to see possible con-
nections to the neuronal substrate of the postulated processes. A common
excuse is that we do not know enough about the brain to specify the mecha-
nisms of grammar, and of language in general, in terms of neurons. I never
found this to be a very good excuse. Only if we theorize about concrete
language circuits can we ever understand them. Therefore, this book puts
forward concrete, or neuronal, models of word and serial-order processing.
The introduced models are linked to general neuroscientific principles, and
are thereby used to answer aspects of “Why” questions of type (4) as well.

This book came about because my abstract theorizing about neuron cir-
cuits that could realize aspects of language was initiated by various discus-
sions with Valentino Braitenberg and Almut Schüz, with whom I had the
pleasure of collaborating at the Max Planck Institute of Biological Cyber-
netics in Tübingen, Germany. This was before and at the very start of the
so-called Decade of the Brain, with much less data in hand than is available
today. However, when collecting brain imaging data myself in subsequent
years, I found it necessary to have a brain-based model of language as a
guideline for designing experiments. I also found the concepts and mecha-
nisms developed and envisaged earlier quite helpful for the interpretation
and explanation of new results. In the context of neuroimaging studies, I
should mention Werner Lutzenberger, my most important teacher in the
neurophysiological domain. I thank Almut, Valentino, and Werner for the
countless discussions about theory and data that laid the foundation for this
book.

However, many more colleagues and friends contributed substantially.
Robert Miller was a critical reader of many manuscripts preceding this text
and provided me with indispensable knowledge, particularly neuroanatomi-
cal in nature. Stefano Crespi-Reghizzi, an expert in automata theory and
computational approaches to language, was kind enough to teach me the
basics from these disciplines, thereby preventing me from serious mistakes.
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Helmut Schnelle, a theoretical linguist and one of the few who seriously
attempt at connecting syntax and the brain, provided me with a very de-
tailed and equally helpful critique of an earlier version of this book. Com-
parison with his approach to the representation of serial order in the brain
helped me greatly when formulating putative grammar mechanisms. Detlef
Heck checked some of the neurophysiology and neuroanatomy sections and
helped me avoid errors there. William Marslen-Wilson read the entire book
with the eyes of a psycholinguist, and provided me with probably the most
detailed critique of an earlier version of this book, thereby initiating sev-
eral improvements. I am indebted to them all for their substantial help. I
also thank numerous other colleagues who commented on text passages or
ideas, including Joe Bogen, Michel Caillieux, Thomas Elbert, Gerd Fritz,
Joaquin Fuster, Sarah Hawkins, Risto Ilmoniemi, Risto Näätänen, Dennis
Norris, Lee Osterhout, Günther Palm, Brigitte Rockstroh, Arnold Scheibel,
John Schumann, and, of course, my closest colleagues, Ramin Assadollahi,
Olaf Hauk, Bettina Neininger, Yury Shtyrov, and, most importantly, my wife
BettinaMohr, notonlybecause sheperformed thefirst experiment thatmade
me feel that the kind of model put forward here might be on the right track,
but also because she continuously gave me the radical and respectless cri-
tique that is a necessary condition for scientific progress. Finally, I apologize
to my son Johannes David for the untold goodnight stories and unplayed
games that fell victim to writing the present pages.

Friedemann Pulvermüller
Cambridge, July 2001





The Neuroscience of Language

On Brain Circuits of Words and Serial Order





CHAPTER ONE

A Guide to the Book

The neuroscience of language is a multidisciplinary field. The reader’s pri-
mary interest may therefore lie in various classical disciplines, including psy-
chology, neuroscience, neurology, linguistics, computational modeling, or
even philosophy. Because readers with different backgrounds may be inter-
ested in different parts of this book, Chapter 1, Section 1.3 gives an overview
of the book contents and the gist of each chapter. In Section 1.1, the general
structure of the book is explained; subsequently, paths through the book
are recommended for readers with different backgrounds and interests in
Section 1.2.

1.1 Structure and Function of the Book

The fourteen chapters of this book are mainly designed to convey one single
message: It is a good idea to think about language in terms of brain mecha-
nisms – to spell out language in the language of neurons, so to speak. Making
this point is not a new proposal. One can find similar statements in classi-
cal writings; for example, in Freud’s monograph on aphasia (Freud, 1891)
and other publications by neurologists in the late nineteenth century, and, of
course, in modern brain-theoretical and linguistic publications (Braitenberg,
1980; Mesulam, 1990; Schnelle, 1996a). However, a systematic model of lan-
guage at the level of neurons as to date is not available, at least, not an
approach that would be both grounded in empirical research while at the
same time attacking a wide range of complex linguistic phenomena.

Apart from the main message, this book puts forward two principle
proposals: First, that words are represented and processed in the brain
by strongly connected distributed neuron populations exhibiting specific
topographies. These neuron ensembles are called word webs. Second, that
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2 A Guide to the Book

grammar mechanisms in the brain can be thought of in terms of neuronal
assemblies whose activity specifically relates to the serial activation of pairs
of other neuron ensembles. These assemblies are called sequence sets. The
proposal about word webs is presented in Chapter 4 and the one about se-
quence sets in Chapter 10. One may therefore consider Chapters 4 and 10
the core chapters of this book.

As it happens, new proposals elicit discussion, which, in turn, makes re-
finement of the original proposals desirable. The word web proposal is being
refined in Chapters 5 and 8, and the proposal on grammar mechanisms is
further developed in Chapters 11 and 12. As stressed in the Preface, several
colleagues contributed to the refinements offered. The evolution of some
of the ideas is documented in a recent discussion in the journal The Be-
havioral and Brain Sciences (Pulvermüller, 1999b). Summaries of ideas put
forward here can be found in related review papers (Pulvermüller, 2001,
2002).

Apart from presenting the two main proposals, the book is designed to
give the reader an introduction to basic knowledge from disciplines relevant
in the cognitive neuroscience of language. Chapter 2 offers an introduction
to neuroscience and cognitive brain processes. Chapter 3 introduces basics
about classical aphasia research and modern neuroimaging of language. Two
more introductory chapters follow approximately in the middle of the book.
Chapter 6 features neural network approaches to language, and Chapter 7
introduces basics of syntactic theories. These introductory chapters were
written to make the book “self-contained,” so that ideally speaking no prior
special knowledge would be required to understand it.

Interspersed between the chapters are five excursuses, labeledE1 through
E5, which illustrate the functioning of brain models of language. In each
excursus, one or more simple simulations are summarized that address an
issue raised in the preceding chapter. Computer simulations of the main syn-
dromes of aphasia (Excursus E1) are included along with simulations of the
processingof simple (ExcursusE2) andgraduallymore complex (Excursuses
E3–E5) sentences in brain models of grammar. Some of the simulations are
available as animations accessable through the Internet.

1.2 Paths Through the Book

Clearly, the reader can choose to read through the book from beginning
to end. However, because not all issues covered by the book may be in
the inner circle of one’s personal “hot topics,” it may be advantageous to
have available alternatives to this global strategy. One alternative would
be to take a glance at the main chapters (4 and 10) or at the introductory
chapter concerning the topic one is particularly keen on. However, one may
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Table 1.1. Routes through the book recommended to readers primarily
interested in neuroscience, linguistics, or neuronal modeling, respectively.
Chapter numbers and headings are indicated. Headings are sometimes
abbreviated. Excursuses are referred to by the letter E plus a number
and by abbreviated headings. For further explanation, see text.

Neuroscience Route Linguistics Route Modeling Route

2 Neuronal structure 4 Words in the brain 4 Words in the brain
and function

3 Aphasia and 7 Basic syntax 5 Regulation, overlap,
neuroimaging web tails

4 Words in the brain 8 Synfire chains 6 Neural networks
E1 Double dissociations 9 Sequence detectors E1 Double dissociations
5 Regulation, overlap, 10 Neuronal grammar E2 Basic bits of neuronal
web tails grammar

8 Synfire chains 11 Neuronal grammar E3 Web response to a
and algorithms sentence

9 Sequence detectors 12 Refining neuronal E4 Lexical ambiguity
grammar

13 Neurophysiology of 14 Linguistics and the E5 Center embedding
syntax brain

wish to dive deeper into the matter while still primarily following one’s
interests.

For this latter purpose, three paths through the book are offered for a
reader primarily interested in neuroscience, linguistics, and neurocomputa-
tional modeling. If one chooses one of these options, one should be aware
that the routes are not self-contained and consultation of other chapters
may be relevant occasionally. To facilitate detection of relevant information
in other chapters of the book, multiple cross-references have been added
throughout.

The three paths through the book are presented in Table 1.1. Please con-
sult the overview, Section 1.3, for details about chapter contents.

It is difficult to decide what to recommend to a reader primarily interested
in psychology. Because psychology is a rather wide field, the best recom-
mendation may depend primarily on the subdiscipline of interest. Readers
interested in neuropsychology and psychophysiology can be recommended
to follow the neuroscience route, whereas those interested in cognitive psy-
chology may tend more toward modeling aspects. The neuroscience route
would also be recommended to the reader focusing on neuroimaging or
neurology. A philosopher may be most interested in the open questions that
accumulate in Chapters 5, 12, and 14.
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1.3 Chapter Overview

1.3.1 Chapter 1: A Guide to the Book

The main purpose of the book and its structure are explained briefly. Recom-
mendations are given concerning how to use the book if one is interested
primarily in its neuroscience, linguistics, ormodeling aspects. The gist of each
book chapter is summarized briefly.

1.3.2 Chapter 2: Neuronal Structure and Function

Chapter 2 introduces basics about the anatomy and function of the neuron
and the cortex. Principles of cortical structure and function are proposed
that may be used as a guideline in cognitive brain research. The concept
of a distributed functional system of nerve cells, called functional web, is
introduced and discussed in the light of neurophysiological evidence.

1.3.3 Chapter 3: From Aphasia Research to Neuroimaging

Basics about aphasias, language disorders caused by disease of the adult
brain, are summarized. Aphasia types and possibilities on explaining some
of their aspects are being discussed. The issue of the laterality of language to
the dominant hemisphere – usually the left hemisphere – is mentioned, and
theories of laterality and interhemispheric interaction are covered. Basic
insights in the functional architecture of the cortex as revealed by modern
neuroimaging techniques are also in the focus. The conclusion is that some,
but not all, insights from classical aphasia research about the localization
of cortical language functions can be confirmed by neuroimaging research.
However, language processes seem to be much more widely distributed than
previously assumed. The question about the cortical locus ofword semantics,
as such, has found contradicting answers in recent imaging research.

1.3.4 Chapter 4: Words in the Brain

The proposal that words are cortically represented and processed by dis-
tributed functional webs of neurons is elaborated and discussed on the basis
of recent neuroimaging studies. The data support the postulate that words
and concepts are laid down cortically as distributed neuron webs with dif-
ferent topographies. The strongly connected distributed neuron ensembles
representing words are labeled word webs. Word webs may consist of a
phonological part (mainly housed in the language areas) and a semantic part

d d d
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(involving other areas as well). For example, processing of words with strong
associations to actions and that of words with strong visual associations ap-
pears to activate distinct sets of brain areas. Also, different subcategories
of action words have been found to elicit differential brain responses. This
supports the proposed model.

1.3.5 Excursus E1: Explaining Neuropsychological
Double Dissociations

A simulation is presented that allows for the explanation of neuropsycho-
logical double dissociations on the basis of distributed functional webs of
neurons. The nonlinear decline of performance of the models with lesion
size and its putative neurological relevance are also mentioned.

1.3.6 Chapter 5: Regulation, Overlap, and Web Tails

Chapter 5 deals with open issues remaining from earlier chapters. How could
a regulation device controlling activity in the cortex be organized? How
would words with similar meaning but different form, or words with simi-
lar form but different meaning, be realized in the brain? Would the brain’s
word processor be restricted to the cortex, or canwordwebs have subcortical
“tails”? One postulate is that multiple overlap between cortical representa-
tions exists between word representations.

1.3.7 Chapter 6: Neural Algorithms and Neural Networks

An introduction into neural network models is given. McCulloch and Pitt’s
theory is sketched and perceptron-based simulations are featured. Symbolic
connectionist approaches are also discussed briefly. Among the hot topics
featured are the explanation of word category deficits as seen in neurological
patients and the development of rules in infants’ brains.

1.3.8 Chapter 7: Basic Syntax

A few terms and theoretical approaches to syntax are introduced. Phrase
structure grammars, dependency grammars, and more modern proposals
rooted in these classic approaches are discussed. Syntactic problems such
as those associated with long-distance dependencies and center embeddings
are mentioned. Chapter 7 ends with a list of issues with which grammar
circuits should cope.
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1.3.9 Chapter 8: Synfire Chains as the Basis of Serial Order
in the Brain

One type of serial-order mechanism in the brain for which there is evidence
from neurophysiological research is featured. Called a synfire chain, it con-
sists of local groups of cortical neurons connected in sequence, with loops
also allowed for (reverberatory synfire chain). The synfire model of serial or-
der is found to be useful in modeling phonological–phonetic processes. It is
argued, however, that a synfiremodel of syntaxdoes not appear tobe fruitful.

1.3.10 Chapter 9: Sequence Detectors

A second type of serial-order mechanism exists for which there is evidence
from brain research. It is the detection of a sequence of neuron activations
by a third neuronal element called the sequence detector. The evidence for
sequence detectors comes from various brain structures in various creatures.
It is argued that sequence detectors may operate on sequences of activations
of word webs, and that these may be part of the grammar machinery in the
brain.

1.3.11 Chapter 10: Neuronal Grammar

Neuronal sets are definedas functionalwebswith four possible activity states:
inactivity (O), full activation or ignition (I), sustained activity or reverber-
ation (R) and neighbor-induced preactivity or priming (P). Reverberation
and priming levels can vary. Grammar networks are proposed to be made
up of two types of neuronal sets: word webs and sequence sets. Sequence
sets respond specifically to word sequences. The lexical category of words
and morphemes is represented by a set of sequence sets connected directly
to word webs. Words that can be classified as members of different lexical
categories have several mutually exclusive sets of sequence sets. Activity dy-
namics in the network are defined by a set of principles. A grammar network,
also called neuronal grammar, can accept strings of words or morphemes oc-
curring in the input, including sentences with long-distance dependencies.
The hierarchical relationship between sentence parts becomes visible in the
activation and deactivation sequence caused by an input string.

1.3.12 Chapter 11: Neuronal Grammar and Algorithms

Three types of formulas are introduced that describe a neuronal grammar
network:
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1. Assignment formulas are definitions of connections between input
units and lexical category representations andare analogous to lexicon
or assignment rules of traditional grammars.

2. Valence formulas are definitions of lexical categories in terms of se-
quencing units and have some similarity to dependency rules included
in dependency grammars.

3. Sequence formulas are definitions of connections between sequencing
units and have no obvious counterpart in traditional grammars.

1.3.13 Excursus E2: Basic Bits of Neuronal Grammar

Simple word strings are discussed on the basis of grammar networks com-
posed of sequence sets and word webs. How the network accepts a string
and how the network behaves if it fails to do so is discussed.

1.3.14 Excursus E3: A Web Response to a Sentence

Processing of an ordinary sentence is simulated in a neuronal grammar
architecture. The sentence exhibits six morphemes, subject–verb agreement,
a distributed word, and other interesting properties.

1.3.15 Chapter 12: Refining Neuronal Grammar

A revision of the grammar model is proposed that requires stronger as-
sumptions. The core assumption is that neuronal sets exhibit multiple states
of reverberation and priming. In the new architecture, the relationship be-
tween words and lexical categories is now dynamic.

1.3.16 Excursus E4: Multiple Reverberation for Resolving
Lexical Ambiguity

Implementation of multiple lexical category representations of words using
mutually exclusive sets of sequence sets allows for modeling sentences in
which the same word form is being used twice, as a member of different
lexical categories.

1.3.17 Excursus E5: Multiple Reverberations and Multiple
Center Embeddings

A network with dynamic binding between word and lexical category repre-
sentations and the option to activate each neuronal set is introduced on the
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background of the machinery discussed in Chapters 10 and 11. This more
advanced architecture now models the processing of grammatically complex
sentences that include center embeddings.

1.3.18 Chapter 13: Neurophysiology of Syntax

Grammatically incorrect “sentences” elicit specific physiological brain re-
sponses. Two such physiological indicators of grammatical deviance are dis-
cussed. The neuronal grammar proposal is related to these data, and a pu-
tative neurobiological explanation for them is offered.

1.3.19 Chapter 14: Linguistics and the Brain

Linguistics andbrain sciencemustmerge. This is reemphasized inChapter 14
where putative advantages of a brain-based language theory are highlighted.



CHAPTER TWO

Neuronal Structure and Function

A realistic model of language must specify the mechanisms underlying lan-
guage use and comprehension. What are the relevant mechanisms? It is
certain that it is the human brain that provides the mechanisms realizing
language, and it is almost equally certain that language mechanisms are or-
ganized as nerve cells and their mutual connections. A realistic model of
language, therefore, must specify the putative organic basis of language use
and language comprehension in terms of neurons, neuronal connections,
and neuron circuits. This does not necessarily mean that the model must
specify each and every single neuron that participates, but it does mean that
the circuits believed to underlie language function should be specified as far
as possible and relevant. Rather than saying that a language sound, word,
or syntactic rule is represented in the brain, period, one may wish to learn
in which way such sounds, words, or rules are laid down. Therefore, it is
necessary to introduce known neuronal mechanisms and others that can be
inferred from more recent data.

Chapter 2 gives a brief introduction to neuronal mechanisms, with special
emphasis on those mechanisms that may be relevant for organizing lan-
guage. The chapter first addresses questions about neuronal architecture or
structure (Section 2.1). What is a nerve cell or neuron? What is the global
structure of the cortex, the portion of the brain most important for language?
The idea here is that these anatomic structures are related to the computa-
tions inwhich they are involved.Thebrainmachinery is not just one arbitrary
way of implementing the processes it realizes, as, for example, any hardware
computer configuration can realize almost any computer program or piece
of software. The claim is that, instead, the hardware reveals aspects of the
program. Neuronal structure is information (Braitenberg, 1971). In other
words, it may be that the neuronal structures themselves teach us about as-
pects of the computational processes that are laid down in these structures.

9
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The paragraphs on cortical structure detail a few structural features and
elaborate on their functions as well.

As a next step, additional functional properties of the neuron are high-
lighted – in particular, the question of how information may be stored in
nerve cells and their connections is addressed (Section 2.2). The structural
and functional properties of the neuron and the cortex are summarized by
three conclusions that are used later in the book as axioms or principles for
theorizing about language mechanisms (Section 2.3). A few thoughts follow
about how neurons in the cortex may interact to yield what is sometimes
called the cognitive or higher brain functions (Section 2.4). These terms can
refer to language-related processes, of course, but to other complex percep-
tual and action-related processes as well. Finally, the concept of a functional
web is introduced and grounded in empirical evidence.

2.1 Neuronal Structure

2.1.1 Anatomy of a Nerve Cell

The functional element of the brain and the nervous system is the nerve
cell, or neuron. Figure 2.1 shows an example of one type of neuron, so-called
pyramidal cells. This is the most common neuron type in the largest structure
of the human brain, the cortex. Like most other neuron types, a pyramidal
cell consists of dendrites, a cell body, and an axon. In Figure 2.1, the cell body
is the thick speck in the middle. The thicker lines departing from the cell
body and running sideways and upward are the dendrites, and the thin line
running downward is the axon. The dendrites and the axon branch multiply.
The neuron receives signals from other neurons through its dendrites, and
it transmits its own signals to other neurons through its axon and its many
branches. Whereas the dendrites are short and hardly reach loci 1 mm away
from the cell body, many pyramidal neurons have very long axon branches,
in addition to the short axon branches shown in the figure. The long axon
branch of a neuron can be 10 cm or more long, and its synapses can contact
other neurons in distant cortical areas or subcortical nuclei.

Signals are passed between neurons by contact buttons called synapses.
The synapses delivering incoming – or afferent – signals to the neuron are
located mainly on the dendrites and a few sit on the cell body. The dendrites
of pyramidal cells appear to be relatively thick in Figure 2.1 because they
carry many hillocks, called spines, on which most of the afferent synapses are
located (Fig. 2.2). The spine’s size and shape may be related to the functional
connection between two pyramidal neurons. Outgoing – or efferent – signals
are transmitted through synapses at the very ends of the axon’s branches.
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12 Neuronal Structure and Function

Figure 2.2. (Left) A dendrite with spines covering its surface. (Right) Microphotographs
of spines with different calibers. Most synapses between pyramidal cells are located on
spines. Their shape influences the efficacy of signal transmission between the cells. From
Braitenberg, V., & Schüz, A. (1998). Cortex: statistics and geometry of neuronal connectivity
(2 ed.). Berlin: Springer.

A pyramidal neuron in the human cortex has about 5 × 10,000 (104) incom-
ing synapses and about the same number of efferent synapses (DeFelipe &
Farinas, 1992).

As mentioned, the dendrites of pyramidal cells branch multiply, resulting
in a so-called dendritic tree. This treelike structure differs from the shape
of a typical conifer. It has sideways branches, called basal dendrites, and
in many cases one long upward branch, called the apical dendrite. This
anatomical subdivision in apical and basal dendrites has functional mean-
ing (Braitenberg, 1978b; Braitenberg & Schüz, 1998). Neurons located in
close vicinity appear to contact each other primarily through synapses on
their basal dendrites. Apical dendrites in upper cortical layers carry synapses
contacting distant neurons located in subcortical structures or in other ar-
eas of the cortex. A similar subdivision has been proposed for the axon’s
branches. Some branches are short and contact neighboring neurons. How-
ever, the long axon reaching distant cortical areas has many additional
branches at its end and contacts other neurons there, usually on their apical
dendrites.

Thus, already the microanatomy of the pyramidal neuron suggests a
subdivision of cortical connections into a local and a long-distance system.
The local system is between basal dendrites and local axon collaterals. Be-
cause it is wired through basal dendrites, it has been dubbed the B-system.
The long-distance system is between long axons and the apical dendrites
they contact and is therefore called the A-system. About half of a pyramidal
neuron’s synapses are in the short-distance B-system, and the other half in
the long-range A-system. It has been speculated that the local B-system and
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the wide-range A-system have different functions and play different roles in
cognitive processing (Braitenberg, 1978b).

2.1.2 Basics of the Cortex

The part of the brain most relevant for language is the cerebral cortex.
This fact has been proved by neurological observations, in particular, the
fact that lesions in certain areas of the cortex lead to neurological language
impairment, aphasia, andbymore recent imaging studies. The cortex consists
of two halves called the cortical hemispheres, one of which is usually more
important for language than the other (Broca, 1861).

The cortex is an amply folded layer and, therefore, much of its surface is
not visible when looking at it from outside, but rather buried in the many
valleys or sulci. The cortical parts visible from the outside are the gyri. In
humans, the cortex is only 2- to 5-mm thick. This thin layer of densely packed
neurons rests on a fundament of white matter. The white matter has its color
from the isolating sheaths covering most of the A-system axons of cortical
cells. Compared to the shining white of the white matter, the cortex itself
looks gray because of the many gray cell bodies it contains. The white matter
fundament of the cortex is much more voluminous than the gray matter. This
mere anatomical fact – the thin gray matter layer of cell bodies sitting on a
massive fundament of cables connecting the cell bodies – suggests that the
information exchange between cortical neurons that lie far apart may be an
important function of this structure.

The human cortex includes 1010 to 1011 neurons, about 85 percent of
which are pyramidal cells (Braitenberg & Schüz, 1998). Because each of
these neurons has about 104 synapses, the total number of cortical synapses
is in the order of 1014 or even higher. Apart from pyramidal cells, there
are other cell types. Some of these have inhibitory function. These neurons
are much smaller than pyramidal cells, and make only local connections
and receive input from many adjacent pyramidal cells. The small inhibitory
cells can dampen down cortical activity in case too many of their adjacent
excitatory pyramidal cells become active at one time.

Each hemisphere can be subdivided into some 50 to 100 areas. Figure 2.3
shows a lateral view of the left hemisphere with its most common area sub-
division. These areas have been proposed by Brodmann (1909) and reflect
neuroanatomical properties of the cortical gray matter.

A cruder subdivision of the cortex is in terms of lobes. Figure 2.3 shows the
frontal lobe on its upper left, the parietal lobe at the top, the occipital lobe on
the right, and the temporal lobe at thebottom.Twomajor landmarks indicate
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Figure 2.3. Brodmann’s map of the human cortex. A lateral view on the left hemisphere
is shown and the area numbers are indicated. Solid lines indicate area numbers and bro-
ken lines indicate boundaries between areas. The shaded fields are primary areas. From
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Groβhirnrinde. Leipzig: Barth.

boundaries between lobes.The central sulcus, or fissure, indicatedby thebold
line between Brodmann areas 3 and 4, is the boundary between the frontal
and the parietal lobes, and the Sylvian fissure, running horizontally below
areas 44 and 45 and above area 22, separates the temporal lobe from both
frontal and parietal lobes. The Sylvian fissure is important as a landmark,
because all of the areas most relevant for language are located in its close
vicinity. The areas next to the Sylvian fissure are called the perisylvian areas.
The occipital lobe at the back of the cortex is less easy to define based on
gross anatomical landmarks. Gyri and sulci are sometimes referred to by
specifying their locus within a lobe. In the temporal lobe, for example, an
upper (superior), a middle, and a lower (inferior) gyrus can be distinguished,
and the same is possible in the frontal lobe, where, for example, the inferior
gyrus includes Brodmann areas 44 and 45.

When voluntary movements or actions are being performed, the neces-
sary muscle contractions are caused by activity in the cortex. When stim-
uli cause perceptual experiences, there is also activity in the cortex. The
efferent fibers through which the cortex controls muscle activity and the
afferent fibers transmitting information from the sensory organs to the cor-
tex originate from defined areas. These are the primary and secondary
areas. The primary areas most relevant for language processing are as
follows:
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� Brodmann area 17 in the posterior occipital lobe, where the fibers of the
visual pathway reach the cortex (primary visual cortex)

� Brodmann area 41 in the superior temporal lobe, where the fibers of the
auditory pathway reach the cortex (primary auditory cortex)

� Brodmann areas 1–3 in the postcentral gyrus of the parietal lobe, where
somatosensory input reaches the cortex (primary somatosensory cortex)

� Brodmann area 4 in the precentral gyrus of the frontal lobes, whose ef-
ferent neurons contact motor neurons and control muscle contractions
(primary motor cortex).

These sensory and motor fields are the shaded areas in Figure 2.3. Also
areas adjacent to the primary areas include efferent or afferent cortical con-
nections (e.g., He, Dum, & Strick, 1993). There are additional sensory path-
ways for olfactory and gustatory input that project to brain areas not shown
in the diagram.

Each of the motor and sensory cortical systems is characterized by
topographical order of projections, meaning that adjacent cells in the sen-
sory organs project to adjacent cortical neurons, and adjacent body muscles
are controlled by adjacent neurons in the motor cortex.

The somatotopy of the primary motor cortex is illustrated in Figure 2.4
(Penfield & Roberts, 1959). In this diagram, a frontal section of the cor-
tex along the precentral gyrus is schematized, and the body parts whose
movement can be caused by electrical stimulation of the respective part of
the cortex is illustrated by the homunculus picture. The representations of
the articulators – for example, tongue, mouth, and lips – are adjacent to each
other and lie at the very bottomof the illustration. Superior to them, thehand
representation is indicated, and the representation of the lower half of the
body, including the feet and legs, is further up and in the medial part of the

Figure 2.4. Penfield and Rassmussen (1950) in-
vestigated the organization of the human mo-
tor cortex by stimulating the cortical surface with
weak currents and by recording which body mus-
cles became active as a consequence of stimu-
lation. The body muscles whose contraction was
caused by stimulation of these areas are indicated
by the homunculus picture. The map is consis-
tent with the neuroanatomical projections of the
motor cortex. It illustrates the somatotopic orga-
nization of the primary motor cortex. From
Penfield, W., & Rassmussen, T. (1950). The cere-
bral cortex of man. New York: Macmillan.
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cortex. There are topographically ordered projections between body mus-
cles and loci of the primary motor cortex, and topographically ordered pro-
jections exist in the visual, auditory, and somatosensory cortical systems as
well.

These projections are established early in life. However, they can be al-
tered, for example, as a consequence of brain injuries. Research on cortical
reorganization has shown that the cortical representations can change dra-
matically, for example, as a consequence of deprivation (Buonomano &
Merzenich, 1998; Kujala, Alho, & Näätänen, 2000; Merzenich et al., 1983).
A change of the cortical areas involved in processing a particular input can
even be a consequence of learning. For example, string players and braille
readers show an altered function of somatosensory areas with enlarged cor-
tical representations of the extremities involved in complex sensorimotor
skills (Elbert et al., 1995; Sterr et al., 1998). This shows that the topographic
projections are not fixed genetically, but may vary within certain boundaries.
Because sensory projections to the cortex are being altered following depri-
vation and the acquisition of special skills, the projection map in Figure 2.4 is
probably appropriate only for nondeprived individuals without special skills.
Nevertheless, even after substantial cortical reorganization, the principle of
topographical projections still appears to hold true (Merzenich et al., 1983).

2.1.3 Internal Wiring of the Cortex

Apart from the connections between the cortex and the outside world, it
is relevant to say a few words about the internal wiring of the cortex. The
anatomy of the pyramidal cell makes it clear that there are different types of
connections: short-range and long-range. As mentioned, the local links are
through the B-system, that is, through connections between basal dendrites
and axon collaterals. The short-range connections are between neighbor-
ing neurons whose trees of dendrites and local axon collaterals overlap. The
likelihood of such a contact between two neurons occupying almost the same
cortical space appears to be high. Estimates of the connection probabilities p
of nearby neurons range between 10 percent and 80 percent, depending on
the method used (Braitenberg & Schüz, 1998; Hellwig, 2000; Mason, Nicoll,
& Stratford, 1991). Assuming a maximum of two connections, one in each di-
rection, between any two neurons a group of n neurons can have a maximum
of n(n − 1) direct connections between its members. The estimated num-
ber of connections between n nearby neurons, located, say, under the same
0.5 mm2 of cortical surface, would therefore be p × n(n − 1). This means
that 1,000 neurons selected by chance from a small piece of cortex would
have hundreds of thousands of mutual synaptic links – the exact number
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being in the order of 100,000 to 800,000, depending on the actual parame-
ters chosen. This implies that these neurons can exert a strong influence on
each other, given they activate each other near synchronously. In essence,
the high probability of local B-system links suggests local clusters of neurons
that exchange information intensely and therefore show similar functional
characteristics. Such local clusters, called columns, have been identified, for
example, in the visual system.Acolumn includes neurons below0.1–0.5mm2

of cortical surface. The neurons in a column respond to similar visual stim-
ulus features and can thus be considered to be functionally related (Hubel,
1995). Although this functional relatedness is, in part, due to their common
sensory input, within-column connections are also likely to contribute.

The long-distance A-system connections between pyramidal cells link
neurons in different cortical areas through their long axons and apical den-
drites.However, not every area is connected to every other area. The connec-
tion structure of the human cortex may be inferred from the results of neu-
roanatomical studies in animals, usually cats and macaque monkeys. These
animal studies provide evidence that most primary cortical areas do not con-
tact each other through direct connections (Pandya & Yeterian, 1985). The
primary motor and somatosensory cortices, which lie adjacent to each other,
represent the only exception. Adjacent areas, as a rule, are connected with
very high probability (> 70 percent; Young, Scannell, & Burns, 1995). For
pairs of distant areas, that is, areas with more than one other area between
them, this probability is lower (15–30 percent). Still, however, it is remark-
able that, for example, in the macaque monkey, where nearly seventy areas
were distinguished, most areas would have links to ten or more distant areas
within the same cortical hemisphere.Even in the brain of themouse, inwhich
only twelve local compartments were distinguished, each compartment was
found to send out to and receive projections from five other compartments
on average (Braitenberg & Schüz, 1998). In addition, there are connections
between most homotopic areas of the two hemispheres. Thus, long-distance
links directly connect many, although not all, cortical areas. Another im-
portant feature of corticocortical connectivity is that most between-area
connections are reciprocal; that is, they include neurons in both areas pro-
jecting to the respective other area (Pandya & Yeterian, 1985; Young et al.,
1995).

It is not certain that all of these properties of cortical connectivity inves-
tigated in monkeys and other higher mammals generalize to humans. A de-
tailed picture of cortical connectivity can be obtained only by using invasive
techniques that cannot be applied in humans for ethical reasons, although
important insights come from postmortem neuroanatomical studies in
humans (Galuske et al., 2000; Jacobs et al., 1993; Scheibel et al., 1985). In
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particular, conclusions on the pattern of long-distance connections of the
areas most important for language must be handled with care because these
areas do not have unique homologs in the monkey brain. However, a ten-
tative generalization can be proposed in terms of the position of the areas
relative to primary areas.

One such generalization is the following: The primary auditory cortex and
the primary motor cortex controlling the articulators are not linked directly.
Their connections are indirect, through inferior frontal areas anterior to the
mouth–motor cortex and superior temporal areas anterior, posterior, and
inferior to the primary auditory cortex (Deacon, 1992; Pandya & Yeterian,
1985). Therefore, if two neurons, one situated in the primary cortex control-
ling mouth movements and the other in the piece of cortex receiving direct
input from fibers of the auditory pathway, want to communicate with each
other, they cannot do so directly. They must send their information to relay
neurons that link the two areas. Many such relay neurons are likely present
in the inferior frontal lobe (Brodmann’s areas 44 and 45) and in the superior
temporal lobe (Brodmann’s areas 22 and 42). A similar point made here for
associations between actions and auditory input can also be made for other
between-modality associations. Auditory–visual, somatosensory–visual, and
visual–action associations all require indirect links through relay neurons in
one or more nonprimary areas.

2.2 Neuronal Function and Learning

A neuron receives information, performs calculations on it, and sends out
information to other neurons.Anafferent synapse ononeof its dendrites can
produce an activating or inhibiting effect. If a signal is transmitted through
the synapse, a so-called postsynaptic potential is elicited. There are excitatory
and inhibitory postsynaptic potentials (EPSPs and IPSPs). The postsynaptic
potential is propagated along the dendritic tree toward the cell body. The
signal reaching the cell body is crucial for the neuron’s output. At the so-
called axon hillock, where the axon inserts from the cell body, computations
are being performed to the effect that if this signal is excitatory enough,
an output is created. If the potential increases rapidly or if it exceeds a
threshold value, a conditionusuallymetwhen several incoming signals arrive
simultaneously, a new signal, called the action potential, is likely to be elicited
and thenpropagated along the axon. Theneuron is said to fire when an action
potential is being created. The action potential is an all-or-none response –
either it is elicited or not, anddoes not vary in intensity. It propagateswithout
being attenuated from the cell body to the various efferent synapses at the
ends of the many branches of the axon. In contrast to the action potential
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with its all-or-none characteristics, the postsynaptic potential is an analog
signal that falls off gradually with time and distance along the dendrite.

Synaptic connections between cortical neurons are usually weak (Abeles,
1991). Several simultaneous or near-simultaneous inputs causing strongly
overlapping postsynaptic potentials are therefore necessary to elicit an ac-
tion potential in a neuron. However, the strength of a synaptic link can vary.
Synaptic links become stronger if the synapse is being used frequently. This is
the essence of a postulate put forward, among others, by Donald Hebb, who
said “that any two cells or systems of cells that are repeatedly active at the
same time will tend to become ‘associated,’ so that activity in one facilitates
activity in the other” (1949, p. 70). There is now strong evidence from single-
and multiple-unit recordings proving that this postulate is correct (Ahissar
et al., 1992; Fuster, 1997; Tsumoto, 1992). If connected neurons fire together,
their mutual influence on each other becomes stronger.

Figure 2.5 illustrates the change of synaptic effectiveness caused by coac-
tivation of neurons (Kandel, 1991). A neuron in the hippocampus, a phylo-
genetically old structure belonging to the cortex, was investigated. If a single
input fiber to the neuron was activated for some time, this did not change
connection strength. However, when the single input fiber was repeatedly
activated together with several others so that the target neuron was caused
to fire togetherwith the input, later inputs through the participating synapses
had a much stronger effect. This indicates that these synaptic connections

Figure 2.5. Illustration of long-term potentiation. (a) If a single input fiber (uppermost line)
to a neuron was activated for some time, this did not change synaptic connection strength.
(b) When the single input fiber was activated repeatedly with several others so that the
target neuronwas caused to fire together with the input, later input through the participating
synapses wasmore effective. (c) Activation of the strong input alone selectively increased the
influence of the stimulated neurons, but not that of others. Reprinted with permission from
Kandel, E. R. (1991). Cellular mechanisms of learning and the biological basis of individuality.
In E. R. Kandel, J. H. Schwartz, & T. M. Jessell (Eds.), Principles of neural science (3 ed.,
pp. 1009–31). New York: Elsevier.
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became stronger. The increase of synaptic effectiveness was specific. Ac-
tivation of the strong input alone did selectively increase the influence of
the stimulated neurons, but not that of others. Thus, the strengthening of
synaptic links must have been a consequence of coactivation of the pre-
and postsynaptic neurons and also exhibited some specificity. The Hebbian
speculation receives support from these and similar data.

Thatneuronsfiring togetherwire together is, however, not thewhole story.
Whereas neurons become associated when being activated repeatedly at the
same time, their antiphasic activation results in weakening of their influence
on each other (Tsumoto, 1992). Thus, it appears that it is the correlation of
neuronal firing of connected cells, or a related measure, which is, so to speak,
translated into their connection strength. The correlation c of the firing F of
two neurons α and β can be calculated as a function of their probability to
fire together in the same small time window, op[F(α), F(β)], divided by their
individual likelihood to become active, p[F(α)] and p[F(β)]. For example,
the following formula can be used for calculating the correlation:

c = p[F(α), F(β)]
p[F(α)] ∗ p[F(β)]

If the strength or weight of a synaptic connection between neurons is deter-
mined by the correlation coefficient, this implies (i) that neurons that fire
together frequently (high correlation) becomemore strongly associated, and
(ii) that neurons firing independently of each other (low correlation) will be
less strongly connected. Connection strength between pyramidal neurons in
the cortex is likely strongly influenced by the correlation of their neuronal
firing or a closely related measure.

Modification of the strength of synaptic connections can be related to
biochemical and even structural changes in the neurons (Kandel, 1991), for
example, to the growth and modification of dendritic spines (Braitenberg &
Schüz, 1998). It should also be mentioned that coactivated of neurons may
lead to formation of new synapses and spines (Engert & Bonhoeffer, 1999).
It should therefore be clear that, although the rule proposed by Hebb is im-
portant, it is not the only factor determining functional connectivity in the
cortex.

2.3 Principles and Implications

Thehumancerebral cortex is anetworkofmore than10billionneurons.Each
neuron represents an information processor whose output is a function of
the input from the many other neurons with whom it is interwoven. Based
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on the findings discussed so far, the following principles appear to reflect
universal neuroanatomical and neurophysiological properties of the cortex:

(I) Afferent and efferent projections are ordered.
(a) They reach, or insert from, primary areas (Figure 2.3).
(b) Sensory and motor projections are organized topographically

(Figure 2.4).
(II) Intracortical connections permit mixing of afferent and efferent infor-

mation.
(a) Adjacent neurons are heavily connected and form local clusters.
(b) Primary areas tend not to be linked directly, but through relay

areas.
(c) Adjacent areas are connected with high probability (>70%).
(d) There is a lower but still good chance for connections between

areas farther apart (15–30 percent).
(e) Homotopic areas of the two hemispheres tend to be connected.
(f) Connections between areas tend to be reciprocal.

(III) Synaptic connections between neurons are modified depending on
their activity.
(a) Neurons that fire together strengthen their mutual connections.
(b) Neurons that fire independently of each other weaken their con-

nections.

Clearly, this list of structural and functions features of the cortex is not
complete and more detail could easily be added. However, these basic facts
already make it possible to address more fundamental questions about the
function of the cortex.

The cortex is supplied with information ordered according to modality
and, within each modality, ordered topographically. The cortex itself now
provides multiple indirect links between sensory- and action-related neu-
rons. These links are characterized by great divergence: Each neuron reaches
thousands of others and each area reaches tens of its sister areas. They are
also characterized by great convergence; that is, each neuron receives in-
put from multiple other neurons, and each area receives input from several
other ones. It has been argued by neuroanatomists (Braitenberg, 1978b;
Braitenberg & Schüz, 1998) and neurocomputational modelers (Palm, 1982,
1993a) that this architecture is ideal for mixing and merging information
immanent to sensory- and action-related activity patterns. Because the map-
ping between primary areas is indirect, through relay neurons and areas, it is
possible to store complex relationships between input and output patterns.

The correlation learning principle (III) implies that frequently cooccur-
ring patterns of activity can be stored by way of strengthening of synaptic
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links between the participating neurons. Such synaptic strengthening can
certainly take place between closely adjacent cortical neurons, but there
is reason to assume that such associative learning is also possible between
neurons in distant areas. Even coactivation of neurons in different primary
cortices causing additional neuronal activity of neurons in their connecting
relay areas may be stored by way of increasing synaptic weights between
the simultaneously active units. This suggests that webs of neurons can form
that are distributed over various cortical areas.

In summary, it appears that the cortex can serve the function of merg-
ing multimodal information. This merging of multimodal information is not
done by direct links between primary areas, but necessitates intermediate
neuronal steps.The interveningneuronsbetween sensoryandmotorneurons
in the cortex allow for complex mappings of information patterns between
modalities. Such mappings can be stored by correlation learning.

2.4 Functional Webs in the Cortex

The cortex is a network of neurons characterized by ordered input and
output connections in modality-specific areas, by heavy information mixing
through short- and long-distance connections, and by correlation learning.
Such a device can serve the function of linking neurons responding to spe-
cific features of input patterns and neurons controlling aspects of the motor
output. Because different primary areas are not linked directly, additional
neurons in nonprimary areas are necessary to bridge between the ordered
input and output patterns. The cortical connection structure, characterized
by a high connection probability between adjacent areas and more selective
long-distance links, allows for the formation of functionally coupled but dis-
tributed webs of neurons reaching from the primary areas into higher-order
cortices. Development of these networks, called functional webs, would be
driven by sensorimotor or sensory–sensory coactivation, and would be de-
termined by the available cortical projections indirectly connecting the coac-
tivated neurons in primary areas to each other.

2.4.1 Why Numerous Neurons Should Cooperate

It was pointed out by Donald Hebb (1949), and this may be his most impor-
tant contribution to the understanding of the brain, that synchronously acti-
vatedneurons should link into cell assemblies, and that cell assemblies under-
lie all higher cognitive processes. Hebb’s proposal diverged radically from
earlier neuroscientific approaches to information processing in the brain,
because he postulated that higher brain processes are realized as functional
units above the level of the neuron. Earlier proposals had stated that either
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individual neurons (Barlow, 1972) or mass activity and interference patterns
in the entire cortex (Lashley, 1950) are the basis of cognition. Hebb’s view
may appear as a compromise between these views (Milner, 1996).

While Lashley’s proposal can be ruled out by considering the specific neu-
ropsychological deficits caused by focal brain lesions (Shallice, 1998), one
may ask why large neuron ensembles should become involved in cognitive
processing if single neurons are already capable of performing the relevant
computations. A tentative answer is that individual neurons are too noisy
and unreliable computational devices so that it is advantageous to use sets of
neurons working together in functional units to achieve more reliable infor-
mation processing. If the signal-to-noise ratio of individual neurons is low,
one can obtain a better signal by simultaneously averaging a larger number
of neurons with similar functional characteristics, so that uncorrelated noise
is cancelled (Zohary, 1992). (This does not rule out the possibility that, apart
from their shared function, individual neurons in the ensemble can have
additional specific functions.) It would therefore make good sense if there
were functional units in the cortex that are larger than the neuron but much
smaller than the neuronal populations in the macroscopic cortical gyri and
sulci.

A further argument in favor of functional webs composed of numerous
neurons comes from an estimate of the number of neurons necessary for car-
ryingout the tasks the cortex seems tobeprimarily engaged in.Asmentioned
earlier, the cortex includes >10 billion neurons. The number of to-be-stored
items can be estimated on the basis of the units that need to be stored. To
speak a language well, one needs a vocabulary of fewer than 100,000 words
or meaningful language units, called morphemes, and a limited set of rules
governing their serial order (Pinker, 1994). Given similar numbers of distinct
representations also developed for other cognitive domains, the number of
to-be-organized engrams may be in the order of a few 100,000. If this esti-
mate is correct and each engram is represented by one neuron, one million
individual neurons might be sufficient for representing the various percepts
and motor programs cognitive processes operate on. This raises the question
why there are 100,000 to 1,000,000 times as many neurons as would be nec-
essary, as these considerations would suggest. A possible answer is that the
cortex includes so many neurons, because individual engrams are realized
as populations of neurons of 105 to 106 neurons.

2.4.2 The Need for Connecting Neurons in Distant Cortical Areas

Functional units in the cortex above the level of single cells are the already
mentioned local clusters of neurons beneath approximately 0.1–0.5 mm2

of cortical surface that, in various sensory areas, respond to similar stimuli
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(Hubel, 1995). From the perspective of cognitive science, however, these lo-
cal neuron clusters per se cannot be the substrate of the linkage between
different features of an object. The different features of an object may
characterize input from different modalities, as, for example, the shape,
smell, purr, and smooth fur of a cat. The binding of these features into one
coherent representation could be instantiated by pathways linking the sen-
sory information from different modalities to the same “central” neuron(s).
These critical cells should then be housed in areas where inputs from many
sensory fields converge. It is, however, not necessary to assume a cardinal
cell, or central convergence area.

As noted, Barlow (1972) has postulated such “grandmother” or “cardinal
cells” and Damasio (1989) has proposed that categories of knowledge are
processed not by single neurons, but in single “convergence zones” in the
cortex. Although these proposals are certainly helpful for understanding
aspects of brain function, they do not exhaust the range of possible brain
mechanisms.Theneuroanatomical connectionpatternof the cortex indicates
that links between primary cortices are provided through more than one
route, involving several nonprimary areas. There is, therefore, no need to
assume single specialized areas or neurons for binding of defined entities.
Therefore, a distributed web of neurons that processes a certain type of
information may include a large number of specialized cells distributed over
several cortical areas.

2.5 Defining Functional Webs

A web of neuronal links strongly connecting all neurons involved in the
specific processes triggered by an object in the input may become the cortical
representation of this object. In this case, binding of object features would
be established by mutual links within a distributed functional web, that is,
between neurons in widespread areas including the primary areas. Each
neuron member of the web would therefore contribute to holding the web
together thereby playing an essential role in its functioning. The cat concept
would be realized as a large set of neurons distributed over a small set of
cortical areas. All of these areas would serve as binding sites. A functional
web will be assumed to be a set of neurons

(i) That are strongly connected to each other
(ii) That are distributed over a specific set of cortical areas
(iii) That work together as a functional unit
(iv) Whose major parts are functionally dependent on each other so that

each of them is necessary for the optimal functioning of the web.
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The term functional web is usually preferred to the term cell assembly in
the context of this book. The established term cell assembly is sometimes
avoided because it has been used in so many different ways by different re-
searchers that misunderstandings appear unavoidable (see also Chapter 8).
In contrast, the use of the new term functional web has now been clarified
so that misunderstandings should be unlikely.

To speak about a selection of neurons without implications such as
(1) to (4), the expression neuronal group is sometimes used. The mem-
bers of a neuronal group would therefore not need to be connected to each
other. Established terms such as cell assembly, neural assembly, or neuronal
ensemble are used without the specific implication that (4) is necessarily true.
In addition, it is argued that functional webs can exhibit different types of ac-
tivity states, ignition and reverberation (Section 2.8). This is not a necessary
assumption but is, as is argued, supported by empirical data. In Chapter 10,
more specific types of functional webs are proposed that may be relevant
for grammar processing in the brain.

Whenever one tries to define exactly a given cell assembly or functional
webwithin a simulatedor real neuronal network, this turns out to bedifficult.
In simulations using artificial associative memories (Palm & Sommer, 1995),
one immediately encounters the problem of determining which neurons be-
long to the assembly and which do not. What one finds are neurons that are
connected to many of their fellows by maximal synaptic strength. For these,
it is out of question that they are assembly members. However, there are also
others whose connections to the rest of the assembly is slightly weaker and
whose inclusion in the assembly is therefore uncertain. Correspondingly, in
network simulations and also in neurophysiological observations, some neu-
rons almost always become active together, but others may only be recruited
together with them with lower probability, depending, for example, on the
neuronal sets activated in the past (Milner, 1957). In other words, there are
neurons exhibiting high correlation among each other and others whose cor-
relation with these “core neurons” is smaller. To decide whether a neuron is
part of an assembly or web, critical values for synaptic connectedness or cor-
relation coefficients must be introduced. Definition of such critical values is
always arbitrary. For some purposes, it helps to distinguish the kernel or core
of an assembly from its halo or periphery (Braitenberg, 1978a), but in net-
work simulations, necessarily arbitrary boundaries must also be introduced
for defining these assembly parts.

Cell assemblies and functional webs are necessarily fuzzy concepts. This
does not constitute a principled problem. It is essential to see that fuzziness is
immanent to the assembly concept and that this is problematic in exactly the
same way as it is difficult to determine the boundaries of the sun or the milky
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way. The fuzziness of the boundaries of the respective concepts should not
obscure the fact that there are stars, galaxies, and perhaps functional webs
in the brain that may represent these concepts and words.

Perhaps most importantly in the context of a cell assembly approach to
language, themeaningofwords inordinary languageusealso is characterized
by the lack of sharp boundaries (see Chapter 5; Wittgenstein, 1953). If our
conceptual system is fuzzy, it is probably best to model it using fuzzy mecha-
nisms and to speak about it using words with fuzzy meaning. The anatomical
fuzziness of the boundaries of the individual functional web should not ob-
scure the fact that, functionally, each web is conceptualized as a coherent
unit, a discrete entity.

2.6 Evidence for Functional Webs

Which critical predictions are implied by the idea of distributed functional
webs? If the cat concept is neuronally represented as a distributed web of
neurons that form a functional unit, this has two important implications:

(1) A significant portion of the web’s neurons are active whenever the cat
concept is being processed.

(2) The function of the web depends on the intactness of its member
neurons.

If neurons in the functional web are strongly linked, they should show
similar response properties in neurophysiological experiments. If the neu-
rons of the functional web are necessary for the optimal processing of the
represented entity, lesion of a significant portion of the network neurons
must impair the processing of this entity. This should be largely indepen-
dent of where in the network the lesion occurs. Therefore, if the functional
web is distributed over distant cortical areas, for instance, certain frontal
and temporal areas, neurons in both areas should (i) share specific response
features and (ii) show these response features only if the respective other
area is intact.

Thesepredictions havebeenexamined inmacaquemonkeysusing amem-
ory paradigm in which the animal must keep in mind the shape or color of a
stimulus and perform a concordant matching response after a delay of sev-
eral seconds (delayed matching to sample task). Throughout the memory
period, in which the animal must keep in mind, for example, that the stimu-
lus shown was red, neurons fire at an enhanced level. Their firing is specific in
the sense that they do not respond, or respond less, when a stimulus of a dif-
ferent color is shown. Neurons with this stimulus-specific response pattern
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were found in the prefrontal cortex (Fuster & Alexander, 1971) and in the
inferior temporal lobe (Fuster & Jervey, 1982). Memory neurons in different
cortical areas showed similar dynamics. After their activation, there was a
near-exponential decrease of neuronal activity in many of them. Thus, pre-
diction (i) is met: Neurons in different cortical lobes showed similar response
properties.

Another facet of prediction (i) is that the participating neurons, some of
which may play a genuine role in the control of action (frontal lobe) and
perception (temporal lobe), share their functional properties after the dis-
tributed network has been set up. The neurons in temporal lobes may there-
fore show functional characteristics of neurons involved inperceptionand, as
a result of their strong links to action-related neurons in the frontal lobe, they
mayalso share their functional characteristic of firing in the context of certain
actions. They would, therefore, show multimodal response characteristics.
The same line of thought would apply for neurons in the frontal lobe with a
genuine role in action control and, in addition, a strong linkage to temporal
neurons supplying them with sensory information. Evidence on cells with
multimodal response properties (Fuster, Bodner,&Kroger, 2000;Rizzolatti,
Luppino, & Matelli, 1998; Zhou & Fuster, 2000) strongly support such multi-
modal response characteristics of cortical cells – in particular, neurons in the
premotor and prefrontal cortex. The idea that the cortex is an information
mixing device and the concept of distributed functional webs allowing single
neurons to represent and process merged information from various mo-
tor and sensory modalities receive further support from these data. Mirror
neurons (Rizzolatti & Arbib, 1998; Rizzolatti et al., 1996) that have a role
in controling an action and also respond to the perception of the execu-
tion of this action are important constituents of the postulated functional
webs.

Prediction (ii) was that lesions in frontal areas on the one hand, and
temporal or other posterior cortices on the other hand, should impair both
the perceptual and action-related aspects of higher cognitive processes. This
should not apply for very elementary perceptual processes, such as the per-
ception of basic stimulus features or elementary movements, but should
apply for cognitive processes such as those involved in memory and lan-
guage. In memory experiments (delayed matching to sample tasks) per-
formed with macaque monkeys, neurons in frontal and inferior temporal
areas showing similar stimulus- and action-related activity were investi-
gated. Temporary lesion by cooling of the neurons in frontal areas led to
loss of stimulus specificity of the neurons in the temporal areas, and cool-
ing in the frontal areas also impaired the stimulus specificity of the neu-
rons in the temporal cortex. Thus, temporary lesion of stimulus-specific
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or, more precisely, engram-related neurons in one area led to functional
impairment of the neurons in the respective other area (Fuster, 1997). To-
gether, these data provide evidence that neurons in both temporal and
frontal areas (a) showed the same specific response features and (b) showed
these response features if and only if the respective other area was intact
(Fuster, 1997).

These results obtained in memory experiments with macaque monkeys
are reminiscent of well-known facts from more than 100 years of neurolog-
ical investigation into acquired language disorders, aphasias (Broca, 1861;
Lichtheim, 1885; Wernicke, 1874). These classical studies of aphasia showed
that prefrontal and temporal areas are most crucial for language processing.
They also showed that lesions in either area can lead to aphasia, which in the
majority of cases include deficits in both language production (Lichtheim,
1885) and perception (De Renzi & Vignolo, 1962). Concordant with recent
animal studies investigating the consequences of local cooling of prefrontal
and temporal areas, this suggests mutual functional dependence between
frontal and temporal areas (Pulvermüller & Preissl, 1991).

2.7 A View of Cortical Function

The reviewed facts from basic neuroscience make it likely that the cortex
includes distributed neuron ensembles involving neurons in cortical areas
in different lobes that show similar response properties and whose intact-
ness is necessary for defined cognitive operations. This further advocates
the following view of cerebral cortical function. The cortex is an associa-
tive memory allowing for merging information from different modalities.
Merging of information is driven by correlation of spatiotemporal patterns
of neuronal activity carrying information about sensory perceptions and ac-
tions. These correlated activity patterns occur in action-related frontal and
sensory-related posterior areas of the cortex. The participating neurons are
being bound into strongly connected webs of neurons, functional units that
represent cognitive entities with sensory and action aspects (words, concepts
engrams in general).

This view on cortical function leads to further questions, as follows:

(1) What are the functional dynamics of these distributed neuronal
representations?

(2) Where exactly are they localized, or, formulating the question in a
slightly more adequate manner: Over which cortical areas are these
functional webs distributed, i.e., what is their cortical topography?

(3) How can the internal wiring of the functional webs be specified?
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(4) Is it sufficient to assume that the formation of these networks is driven
by associative learning principles, or do genetically determined factors
play a role as well?

The “What” question (1) about functional dynamics is answered tentatively
in the last section of this chapter and in Chapters 10 and 12. The “Where”
question (2) is addressed in detail in Chapters 4 and 6. The “How” question
(3) receives a tentative answer in Chapter 8 on serial order, and the last
question (4) about the possible role of genetically determined information
is likely impossible to answer, but an attempt is made in Chapters 4 and 14.

2.8 Temporal Dynamics in Functional Webs:
Ignition and Reverberation

On theoretical grounds, one can predict that a strongly connected neuron
population produces overshooting activity if strong stimulation reaches it
from the outside. This would mean that, although only a fraction of the
neuron members of a web are stimulated, all members of the web, or at
least most of them, would nevertheless become active, and activity might
even spread to other networks as well. Restricting considerations here to
the activity dynamics within the functional web, stimulation of a fraction of
its neurons can lead to a full activation of the entire population. This process
has been called ignition (Braitenberg, 1978a). Neural network models using
associative memory models leave no doubt that such a process takes place in
a sufficiently strongly connected and sufficiently strongly stimulatednetwork
of neurons (Palm, 1981, 1982).

If activation of a substantial fraction of the neurons of a functional web
leads to its ignition, one may consider this an undesired consequence of the
architecture of network memories. However, the assembly internal spread
of activity may as well be considered as positive because the activation of
the web, so to speak, completes itself as a result of the strong web-internal
links. If the web of neurons is considered a memory representation of an
object and each neuron to represent one particular feature of this object
memory, the full ignition would be the neuronal correlate of the activation
of the storedobject representation. Such full activation of the objectmemory
could occur if only a fraction of the features of the object are present in the
actual input. This could be a psychologically important process, an organic
correlate of the completion of a gestalt in the perception process. Gestalt
completion can be modeled in associative memories (Willshaw, Buneman,
& Longuet-Higgins, 1969), and there is reason to believe that a similar pro-
cess is relevant in the real brain.
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Thedynamics of a functionalwebwould therefore be characterized by full
ignition of the web after sufficiently strong stimulation by sensory input, or,
as an alternative, after stimulation by cortical neurons outside the functional
web. This latter cortex-internal activation of a web can be considered the
organic basis of being reminded of an object even though it is absent in the
environment.

The ignition process likely takes place within a short period of time after
the functional web has been sufficiently stimulated. An exact definition of
the interval is probably not sufficiently motivated by empirical data, but an
educated guessmight be that the ignition occurswithin 200ms after sufficient
information is present in the input. The issue of temporal dynamics of mem-
ory representations is further discussed in the context of neurophysiological
activity accompanying word processing (see Chapter 4).

When an ignition has taken place, refractory periods of neurons and other
fatigue effects may again reduce the activity level of the functional unit. It is
also possible that a regulation process designed to keep the cortical level of
activity within certain bounds (see Chapter 5) becomes active and reduces
activity by global inhibition or removal of background activity (disfacilita-
tion). In this case, however, activity will not necessarily completely die out
in the ensemble of neurons that just ignited. The strong within-assembly
connections may still allow activity to be retained in the neuron set. This is a
putative neurobiological basis of short-term or active memory (Fuster, 1997,
1998a, 1998b, 2000). The distributed cortical functional web itself would
therefore be the organic side of a long-term (or passive) memory trace, and
the sustainedactivity of the samewebwould realize the short-term(or active)
memory.

Researchers who have found memory-specific neurons in the neocortex
have investigated the dynamics of these cells extensively while the experi-
mental animal must keep a certain piece of information in mind. The animal
saw a stimulus of a certain color and had to push a button of the same color
after a memory period of 20 seconds. Throughout the entire memory pe-
riod, neurons were found that stayed at an enhanced activity level. Some of
these neurons were stimulus specific, therefore responding strongly only if
the to be remembered stimulus exhibited a particular feature. The neuron
did, for example, respond strongly to a yellow stimulus, but did not show any
enhanced activity, or at least responded significantly less, when the stimulus
had a different color, for instance, green or blue (Fig. 2.6). The explanation
is that ensembles of neurons were activated by the input and stayed active
during the memory period. The activity dynamics of the individual mem-
ory cell would be assumed to reflect the activity dynamics of the memory
network. The enhanced activity level of the neuron and web would be the
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result of the reverberation of activity within the functional web. The stimulus
specificity of the neurons suggests memory networks specific to objects or
object features.

This research revealed sometimes complex activity dynamics. As men-
tioned earlier, neurons usually did not stay at a constant enhanced level of
activity; instead, gradual activity changes were found. Many neurons showed
strong activation after stimulus presentation followed by an exponential de-
cline of activity with time throughout the memory period. Figure 2.6 illus-
trates this. The activity during the memory period – in action potentials per
second – is displayed as a function of time when stimuli of different color
had to be memorized. These data can be interpreted as support for the idea
that after the ignition of a cortical neuron ensemble corresponding to the
stimulus, this network stays at an enhanced activity level for several tens
of seconds. It has been proposed that activation of a distributed cortical
neuron ensemble is reflected by coherent oscillatory activity of the partic-
ipating neurons. This claim receives support from both neurophysiological
studies in animals (Kreiter, 2002; Singer et al., 1997) and EEG and MEG
studies in humans (Pulvermüller, Birbaumer, Lutzenberger, & Mohr, 1997;
Tallon-Baudry & Bertrand, 1999).

In summary, neurophysiological data and neurocomputational investiga-
tions suggest complex activity dynamics of functional webs. An initial brief
ignition of the assembly appears to be followed by a reverberatory state in
which the assembly retains activity, although the level of activity may fall off
exponentially with time. This memory interval of reverberatory activity can
last for tens of seconds.



CHAPTER THREE

From Classic Aphasia Research
to Modern Neuroimaging

In this chapter, an introduction to facts known from neurological, neuropsy-
chological, and neuroimaging research on language is given. How the ob-
tained results can be explained and how they fit together is discussed.

3.1 Aphasiology

The scientific study of language proliferated in the second half of the nine-
teenth century. Apart from linguists and psychologists, neurologists focused
on language in the context of the then new findings about “affections of
speech from disease of the brain” (Jackson, 1878). In adults who had been
fully able to speak and understand their native language, a stroke, tumor,
trauma, or encephalitis was sometimes found to severely and specifically re-
duce their language abilities. Such language disturbances were called
aphasias. There was, and still is some discussion as to whether there are
subtypes of aphasia, and a good deal of the research on aphasia was dedi-
cated to developing new classification schemes and arguing why one scheme
should be a better reflection of what appeared to be the truth than another.
The research effort resulted in numerous classification schemes (Caplan,
1987) and also in what appeared to be an extreme position expressed by the
claim that there is only one type of aphasia (Marie, 1906).

This last view can be based on the common features of all – or at least
the large majority of – aphasias. All aphasics have difficulty speaking, al-
though their ability to move their articulators – lips, tongue, pharynx, larynx,
and other muscles in the mouth-nose region – may be well preserved. When
confronted with spoken and written language, all aphasics exhibit some dif-
ficulty. An easy way of finding out whether an individual suffering from
brain disease has an aphasic disturbance is to present him or her with a few
simple commands and assess whether the patient is still able to carry them

33



34 From Classic Aphasia Research to Modern Neuroimaging

out. A test called the Token Test (De Renzi & Vignolo, 1962) includes a list
of commands to manipulate colored tokens of different shape and size. If
a patient has an aphasia, he or she usually shows difficulty understanding
and following commands such as, “Please touch the little yellow circle,” or,
“Please take all the squares except for the red one.” In addition to their
comprehension problems, all aphasics have difficulty producing spoken and
written language output. It has been reported that there are exceptional
patients who would show a deficit only in oral language production, or a
deficit only in comprehending certain aspects of spoken language (Kolk,
van Grunsven, & Keyser, 1985). Apart from these few exceptions, however,
aphasias appear to be multimodal; that is, they include deficits in producing
and comprehending spoken language and additional deficits in reading and
writing as well. The multimodal character of aphasia can be used to argue
in favor of the view that there is only one type of aphasia, aspects of which
happen to be more or less pronounced in different cases.

However, if the focus is on the diversity of the actual problems patients
with acquired language deficits exhibit, it makes sense to distinguish dif-
ferent syndromes of aphasia. The most obvious differentiation is between
aphasics whose primary difficulty is producing language and aphasics who
show a most massive comprehension deficit. Here, a distinction between
motor aphasia and sensory aphasia has been proposed. Today, the terms
Broca aphasia and Wernicke aphasia – referring to these variants of the dis-
ease, respectively, and to the two neurologists who first described them– are
established. Apart from these two aphasic syndromes, a severe form of apha-
sia, global or total aphasia, and a slight disturbance characterized mainly by
word-finding problems, amnesic aphasia or anomia, are sometimes distin-
guished. More fine-grained syndromes of aphasia have been proposed on
the basis of theoretical approaches of language processing in the brain.

In the second half of the nineteenth century, neurologists proposed con-
nectionist theories to summarize and model the effect of brain lesions on
cognitive functions. The main idea underlying these models was that local
processing systems, or centers, specialize in particular cognitive processes.
These were believed to be autonomous processors realized in large portions
of gray matter, such as the superior temporal gyrus or the inferior frontal
gyrus. The centers were thought to be linked through pathways allowing in-
formation exchange between them. The pathways in the models had their
analog in fiber bundles in the white matter of the brain.

The most famous classical neurological model of language goes back to
Broca (1861) and Wernicke (1874) and has been proposed by Lichtheim
(1885). This model is consistent with basic features of aphasia. The main
proposal of Lichtheim’s model was that there are two centers for language
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Table 3.1. Nomenclature of some areas relevant for language processing.
Names of areas are indicated and related to the number code proposed
by Brodmann. (See Fig. 2.3 for the corresponding loci in Brodmann’s area
map.)

Brodmann
Name number Latin name Location

Broca’s area 44 Gyrus opercularis Inferior frontal lobe
45 Gyrus triangularis Inferior frontal lobe

Wernicke’s area 22 Gyrus temporalis Superior temporal
superior lobe

39 Gyrus supramarginalis Inferior parietal lobe
40 Gyrus angularis Temporo–parieto–

occipital junction

processing: one involved in speech production and the other in language
comprehension. The existence of two separate anatomical centers relevant
for language, the areas of Broca and Wernicke, has meanwhile been con-
firmed by many clinical observations. These areas are located in the left
hemisphere in most individuals, Broca’s area in the inferior frontal gyrus,
Brodmann areas 44 and 45; and Wernicke’s area in the superior temporal
lobe, Brodmann area 22. Both are located close to the Sylvian fissure, that
is, in the perisylvian region (Table 3.1).

Figure 3.1 presents Lichtheim’s model of language representation and
processing in the brain. He distinguished three centers, two of which are
devoted exclusively to the processing of aspects of language. The first cen-
ter, the motor language center M, was supposed to store what Lichtheim

Figure 3.1. Lichtheim’s model of language in the
brain. Language was proposed to be realized in
three centers involved specifically in representing
and processing sound patterns of words (Wortk-
langbilder ; acoustic language center A), articu-
latory patterns of words (Wortbewegungsbilder ;
motor language center M), and concepts (Begriffe ;
concept center B). Adopted from Lichtheim, L.
(1885). Über Aphasie. Deutsches Archiv für Klin-
ische Medicin, 36, 204–68.
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called Wortbewegungsbilder, or representations of the articulatory move-
ments performed to pronounce a word. The second center, the auditory
language center A, was thought to store what Lichtheim called Wortklang-
bilder, or images of the sound sequences of words. The third center, which
was hypothesized to play a major role in other mental activities as well, was
called the Begriffszentrum, the center storing concepts, B. Any two of these
three centers were proposed to be connected by pathways allowing for con-
verting a sound sequence directly into a sequence of muscle movements or
a concept into a word and back. The genuine language centers A and M
correspond to the areas of Broca and Wernicke.

Languageprocessesweremodeledbyactivityflowing through the connec-
tionist architecture. For example, word comprehension would be modeled
as the activation of A by acoustic input and the subsequent activation of B
through its connection to A. The cortical process of language production,
however, was mimicked by activity in B, exciting, through the B–M pathway,
the motor center M, and finally causing a motor output. The process of
thoughtless repetition of a word was believed to be possible without activat-
ing B, based on the direct connection between the acoustic and the motor
centers. Aphasias were now modeled as a lesion to one or more centers or
pathways. Broca and Wernicke aphasias, for example, were realized in the
model as lesions of the respective centers M and A.

The nice thing about Lichtheim’s scheme was that it suggested additional
syndromes of aphasia that could be confirmed empirically. Examples are
conduction aphasia, modeled as lesion of the connection from A to M,
a syndrome primarily characterized by difficulty in repeating word se-
quences, and a mirror-image syndrome called mixed transcortical aphasia,
in which repetition is still relatively intact whereas all other language abili-
ties including the ability to understand what is being repeated are severely
impaired.

Although the existence of two centers whose lesion in many cases leads to
severe languagedisturbance couldbe confirmed, it is less clear that these cen-
ters have the specific function Lichtheim and Wernicke attributed to them.
As Lichtheim recognized in 1885, it is incorrect to assume that what has
been labeled the “center for language comprehension” is relevant only for
this single language function. As emphasized earlier, patients with Wernicke
aphasia have difficulty speaking, even if their lesion is restricted to the supe-
rior temporal lobe (Pulvermüller, Mohr, Sedat, Hadler, & Rayman, 1996).
They use words in inappropriate contexts; produce words incorrectly, with
incorrect language sounds in them or language sounds omitted; or even pro-
duce an incomprehensive jargonofmixed-up language sounds. These deficits
are typical for subtypes of sensory or Wernicke aphasia, and cannot be easily
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explained by assuming a selective lesion to a center devoted to language
comprehension. Furthermore, the neurologically caused speech errors fre-
quently made by Wernicke aphasics differ qualitatively from speech errors
made by Broca aphasics, who tend to speak very slowly because they cannot
produce words they intend to use, rather than replacing them with wrong
ones. A lesion in an “auditory language center” cannot account for such
differential output. A similar argument can be made for the comprehension
side, because in Broca aphasia, specific comprehension deficits are partic-
ularly apparent when patients are confronted with certain sentence types,
including, for example, passive sentences (Caramazza&Zurif, 1976). Thus, it
would be incorrect to postulate a cortical center specifically for languagepro-
duction and a second independent center processing auditory language input
exclusively. The two areas most crucial for language processing in the cortex,
the inferior frontal areaofBrocaand the superior temporal areaofWernicke,
appear to be functionally interdependent (see Chapter 2; Excursus E1).

Why are the language areas located where they actually are? It might be
tempting to propose an additional principle, adding to the ones proposed
earlier in Chapter 2; a principle saying that the human cortex is constructed
such that language must be processed in these very areas. As an alternative,
however, it is possible to explain the location of the language centers by
principles already known from neuroanatomy and neurophysiology.

It is clear that production of a language element, for example, a syllable
or word, corresponds to activation of neurons controlling movements of the
articulators. It is likewise evident that such articulations must always activate
neurons in the acoustical cortical system, unless the auditory system is dam-
aged or otherwise dysfunctional. Thus, when uttering a language element,
there must be correlated neuronal activity in the perisylvian motor cortex
and auditory cortex in the superior temporal lobe. Because between-area
connections preferably connect adjacent areas, this neuronal activity can
spread to adjacent fields in the superior temporal and inferior frontal lobes.
These areas are connected by long-distance connections. Thus, a sufficiently
strong correlated activity pattern in primary motor and auditory areas gives
rise to the activation of a specific neuron population spread out over these
inferior frontal and superior temporal areas, including neurons in the lan-
guage areas of Broca and Wernicke. The principles outlined in Chapter 2 are
sufficient for explaining why the major language areas are where they are.

The outlined view of the development of sensory-motor links in language
acquisitionhasbeenestablished for some time (Braitenberg, 1980;Fry, 1966).
It is sometimes called the babbling hypothesis, because during the infant’s
repeated articulation of syllables within the first year of life, this type of asso-
ciative learning may occur for the first time. Strong associative links between
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the two principal language areas predict that these areas are not functionally
independent, but that they become active together and cooperate when they
generate, or respond to, language sounds, words, or sentences. This cooper-
ation postulate contrasts with the view immanent to the Lichtheim scheme
that the frontal and temporal language areas are autonomous centers. Strong
associative links between the areas of Broca and Wernicke may be the basis
of the multimodal character of most aphasias, a feature Lichtheim’s scheme
cannot account for. This issue was touched upon earlier and will be discussed
further in detail in Excursus 1.

One may object to this view by mentioning that in users of sign language,
large lesions in the perisylvian areas also lead to aphasia (Poizner, Bellugi,
& Klima, 1990). Should not the frontal language center for sign languages
be located superior or dorsal to that of spoken language because signing is
done primarily by moving one’s hands rather than the face and articulators?
Recall that the somatotopic organization of the primary motor cortex im-
plies a more dorsal position at least for the neurons directly controlling arm
movements (see Fig. 4.4). However, because many of the lesions seen in deaf
signers with aphasia were rather large and affected both the perisylvian ar-
eas and the more dorsal areas controlling hand movements, they cannot help
decide the issue. There are very few exceptions – for example, the case of a
patient called Karen L., who suffered from a relatively small lesion dorsal
to Broca’s area but which extended into the supramarginal and angular gyri
(Poizner et al., 1990). Poizner and colleagues emphasize that a lesion of this
kind does not usually lead to persistent aphasia including comprehension
deficits, and attribute this patient’s aphasia to the posterior areas affected.
However, it is also possible to relate the deficit to the anterior part of the
lesion dorsal to Broca’s region. The data on aphasia in signers appear to be
consistent with an explanation of the cortical locus of the areas most rele-
vant for language based on correlated neuronal activity and the available
neuroanatomical links.

Unfortunately, neuroimaging data addressing the issue of the cortical
areas involved in sign language processing are controversial at present.
Some colleagues report massive differences in the cortical organization of
spoken and signed language, for example in the pattern of cortical lateral-
ity (Bavelier, Corina, & Neville, 1998; Neville et al., 1998; Newman et al.,
2002). In contrast, others claim that the cortical locus of spoken language
and that of sign language are similar (Petitto et al., 2000). The interpretation
of brain correlates of spoken and sign languages is complicated by cortical
reorganization (Buonomano & Merzenich, 1998). If arms and hands rather
than thearticulators are excessivelyused for communicating, general cortical
reorganization processes may be triggered so that some of the articulators’
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cortical space is taken over by the extremities. This may explain why similar
areas are activated in the frontal lobe when signed and spoken languages
are processed (Petitto et al., 2000). Cortical reorganization may be an im-
portant factor working against clearly separate cortical loci devoted to the
processing of spoken and signed languages.

Whereas the language areas of Broca and Wernicke were for some time
believed to be the only areas crucial for language, neuropsychological work
carried out in the last quarter of the twentieth century proved that also
other areas are necessary for unimpaired language processing. In particular,
lesions in the frontal and temporal lobes, some of which spared the peri-
sylvian language areas, led to difficulty producing or understanding words.
Many of these aphasic deficits were most pronounced for words from partic-
ular categories – nouns, verbs, or more fine-grained semantic subcategories
of words and concepts (Damasio & Tranel, 1993; Humphreys & Forde, 2001;
Warrington & McCarthy, 1983; Warrington & Shallice, 1984). For example,
frontal lesions appear to limit the ability to process verbs (Bak et al., 2001;
Daniele et al., 1994; Neininger & Pulvermüller, 2001), whereas inferior tem-
poral lesions were found to most severely impair the processing of nouns
from certain categories (Bird et al., 2000; Damasio et al., 1996; Warrington
& McCarthy, 1987). Clearly, these language-related deficits remain unex-
plained by the Lichtheim scheme.

3.2 Laterality of Language

Laterality of language is a well-known fact since the first scientific investi-
gation of language loss due to stroke (Broca, 1861), but the causes of this
laterality have not yet been revealed. The postulate that one hemisphere is
dominant for language is based primarily on lesion studies. Only lesions in
the left hemisphere cause aphasias in most individuals. It was pointed out by
English neurologist Hughlings Jackson (1878) that if a lesion of a part of the
brain impairs specific functions, one can by no means conclude that these
functions are localized in the respective brain part. The lesioned area could
have a more general function, as the brain stem has in regulating arousal,
which is necessary for, but not specific to, a specific higher brain function such
as language. In this case, one would perhaps not want to localize language
in the brain part in question, although language impairments result from its
lesion. Likewise, if lesions of a brain part lead to a clinically apparent deficit
regarding a given function, it is always possible that additional areas are also
relevant for this function, but that their lesion does not result in clinically
apparent dysfunction. Such deficits may be absent, for example, because
the clinical tests applied are not sensitive enough to reveal a fine-grained
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dysfunction (Neininger & Pulvermüller, 2001), or because other areas had
meanwhile taken over the damaged area’s function (Dobel et al., 2001; Price
et al., 2001;Weiller et al., 1995). Therefore, Jackson’s early claims are correct:
Loss of function F after lesion in area A does not prove that F is exclusively
housed in A, and the absence of an F-deficit as measured by clinical tests,
after lesion in A does not prove that A has no role in the respective function.
Therefore, lesion data proving language laterality do not argue against the
existence of additional sites in the nondominant hemisphere that are also
relevant for language processing.

Whereas lesions in certain left-hemispheric areas cause severe language
impairments and aphasias, right-hemispheric lesions usually lead to more
subtle language-relateddifficulties affectingprosodic andpragmaticprocess-
ing (Joanette, Goulet, & Hannequin, 1990). In this sense, left-hemispheric
language dominance is almost always present in persons who are right
handed and also in most left-handed individuals (∼80 percent) (Bryden,
Hecaen, & DeAgostini, 1983; Goodglass & Quadfasel, 1954; Hecaen, De
Agostini, & Monzon-Montes, 1981). The remaining individuals are right
dominant, with a few showing no language dominance at all. Therefore, it
is obvious that in the large majority of individuals, language is lateralized to
the left hemisphere.

Language laterality was also reflected in brain physiology revealed by
modern neuroimaging techniques. Stronger brain responses in the left hemi-
sphere in comparison with the right hemisphere were seen across various
tasks using visual or auditory stimuli (Petersen & Fiez, 1993). Because later-
alized activity was elicited already by single language sounds and syllables
(Näätänen et al., 1997; Shtyrov et al., 2000; Zatorre et al., 1992), one may
conclude that phonological processes, or more precisely, acoustic processes
relevant for the distinction of language sounds are crucial for language later-
ality. In many of the neuroimaging studies mentioned, in particular in studies
using magnetoencephalography (MEG), multichannel electroencephalog-
raphy (EEG), or functional magnetic resonance imaging (fMRI), language
laterality was gradual, in the sense that there were activity signs in both
hemispheres and the dominant left hemisphere was more active than the
right (Pulvermüller, 1999b).

Neuropsychological and neurophysiological studies indicate that later-
ality of language is present early in life. Infants suffering from brain le-
sions are more likely to develop a temporary language disturbance after
left-hemispheric lesion than after a lesion to the right hemisphere (Woods,
1983). The great plasticity of the neural substrate allows for recovery in most
cases of early neurological language impairment. EEG recordings in young
infants demonstrated a physiological correlate of language laterality early
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in life, even in the first year (Dehaene-Lambertz & Dehaene, 1994; Molfese,
1972).

In which way does the laterality of language functions relate to struc-
tural asymmetries? Numerous putative anatomical correlates of language
laterality have been reported, even in craniofacial asymmetries during early
ontogenetic stages (Previc, 1991). Neuroanatomical Language laterality was
proposed to be reflected neuroanatomically in the size of language-relevant
areas (Geschwind & Levitsky, 1968; Steinmetz et al., 1991), and the size
(Hayes & Lewis, 1993), ordering (Seldon, 1985), local within-area connec-
tions (Galuske et al., 2000), and dendritic arborization patterns (Jacobs et al.,
1993; Scheibel et al., 1985) of cortical pyramidal neurons. These anatomical
differences may have a causal role in determining which hemisphere be-
comes more important for processing spoken language, although the causal
chains are, as mentioned, not yet understood. However, one may well argue
that some of the structural asymmetries are a consequence of functional dif-
ferences – for example, of more strongly correlated neuronal activity in the
respective areas (see Chapter 2).

Considering the documented anatomical and functional asymmetries, it
becomes important to illuminate the possible causes of left hemispheric lat-
erality of language, and to think about the actual causal chain. According
to one view, specific neuroanatomical differences between the hemispheres
cause laterality of neurophysiological processes important for distinguish-
ing language sounds, or phonemes. Based on an extensive review of the
neuroanatomical literature, Miller (1996) found that the ratio of white to
gray matter volume yields a smaller value for the left hemisphere in compar-
ison to the right hemisphere. The structures most crucial for language, the
frontal and temporal lobes, exhibit a smaller volume of white matter in the
left hemisphere. Thus, a smaller white matter volume appears to be related
to language dominance. The white matter is made up primarily of axons
and their glia sheaths, the long-distance cables connecting cortical neurons.
A smaller white matter volume may indicate that average cortical connec-
tions are thinner, and this implies that these connections conduct action
potentials more slowly (Lee et al., 1986). This line of thought leads Miller to
propose that the left hemisphere includes more slowly conducting fibers. In
local cortical circuits, slow fibers may be advantageous for measuring exact
temporal delays, and measuring exact temporal delays in the order of a few
tens of a millisecond is necessary for making phonemic distinctions such as
between a [t] and a [d]. According to this view, language laterality is phono-
logically related and a direct consequence of neuroanatomical properties of
the human forebrain. However, this theory is, as all other attempts at further
explanation of language laterality, in need of more empirical support.
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In summary, laterality of spoken language is supported by neuropsycho-
logical lesion studies as well as neuroanatomical and neuroimaging results.
Although it is awell-established fact, its explanationbasedonneuroscientific
principles is tentative.Becauseof theobvious need for further explaining this
fact on the basis of more fundamental neuroscientific knowledge, it may ap-
pear safer to postulate an additional principle underlying cortical language
function, which would need to be added to the neuroscientific principles
outlined in Chapter 2.

(IV) Language processes are lateralized to the dominant hemisphere.

Such a principle must be postulated until the causes of the laterality of
language are better understood in terms of more elementary neuroscientific
principles, such as the ones expressed by Principles (I)–(III).

Aspointedout, laterality of languagedoesnot imply that languagemecha-
nisms are housed exclusively in the dominant hemisphere. The possibility ex-
ists that the nondominant hemisphere also contributes to language processes
and, furthermore, that it contributes specifically to central aspects of linguis-
tic processing. The imaging studies on language laterality, such as those men-
tioned previously, show that both hemispheres become active during lan-
guage tasks, but they do not prove that the contribution of the nondominant
hemisphere to language processing is crucial. However, neuropsychological
work made it possible to show that the right hemisphere alone is capable
of word processing. Studies in patients whose cortical hemispheres were
disconnected (split-brain patients) or in whom the dominant hemisphere
was removed (hemispherectomy patients) to cure an otherwise intract-
able epilepsy showed word-processing abilities with their isolated right non-
dominant hemisphere. The nondominant hemisphere could, for example,
reliably distinguish words from meaningless material (Zaidel, 1976, 1985).
This has been shown in so-called lexical decision tasks, in which subjects
must decide whether a written letter string is a word by pressing a button. If
the visual stimulus is presented to the left of fixation, the visual information
is being transferred only to the right hemisphere (because the fibers in the
visual pathway cross). Presentation to the right of fixation stimulates the left
hemisphere. Split-brain and hemispherectomy patients were able to perform
well on lexical decision tasks when words were presented in their left visual
field. Thus, the right hemisphere (which was nondominant for language)
must have processed them. This proves that, apart from the contribution of
the nondominant hemisphere to pragmatic aspects of language (Zaidel et al.,
2000), its neuronal circuits are capable of word processing as well.

Thus, the imaging and neuropsychological data mentioned show that the
nondominant cortical hemisphere is activated during language tasks and is
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capable of some language processing on its own. However, one may still hold
the view that the language mechanisms in the nondominant hemisphere do
notbecomerelevantunless there is dysfunction in themain languagemachin-
ery of the dominant half of the cortex. To prove entirely that nondominant
right-hemispheric processes are necessary for unimpaired language process-
ing, one must show (i) that additional involvement of the right nondominant
hemisphere improves language processing compared to left-dominant hemi-
spheric processing alone, and (ii) that lesions in the right hemisphere can
reduce language processing abilities.

Can the nondominant hemisphere actually assist the dominant hemi-
sphere in word processing? This question was addressed by lexical deci-
sion experiments in which stimulus words and pronounceable pseudo-words
(for example, “moon” vs. “noom”) were presented to the left or right of
fixation of healthy subjects so that information was being transmitted to
the contralateral cortical hemisphere. As an additional condition, identical
words, that is, two copies of the same word, were shown simultaneously
to the left and right of fixation, so that both hemispheres received the in-
formation simultaneously. The results showed clearly that bilateral stim-
ulation led to faster and more reliable processing of words compared to
stimulation of the dominant left hemisphere alone. This bilateral advantage
could not be observed, or was substantially reduced, for meaningless letter
strings or pseudo-words, and it was also absent in split-brain patients (Mohr,
Pulvermüller, Mittelstädt, & Rayman, 1996; Mohr, Pulvermüller, Rayman,
& Zaidel, 1994; Mohr, Pulvermüller, & Zaidel, 1994; Zaidel & Rayman,
1994). These data are consistent with the view that additional information
processing in the nondominant hemisphere can help the dominant hemi-
sphere process words. The right hemisphere seems to play a role in optimiz-
ing word processing (Pulvermüller & Mohr, 1996; Hasbrooke & Chiarello,
1998).

Can lesions in the right nondominant hemisphere lead to linguistic im-
pairments? This question was addressed by confronting patients with words
from different categories in a lexical decision task. The result was that pa-
tients with lesions in different parts of the right hemisphere showed selective
degradation of words from specific categories, such as words related to ac-
tions or words related to visual perceptions. These category-specific deficits
revealed by the lexical decision task show that an intact right nondominant
hemisphere is necessary for unimpaired processing of words from particular
categories (Neininger & Pulvermüller, 2001).

In summary, although language laterality is a well-established pheno-
menon, the nondominant hemisphere contributes to, is sufficient for, and is
also necessary for the optimal processing of language.
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3.3 Neuroimaging of Language

The knowledge of the cortical basis of language processes has increased
greatly. One relevant factor was that new imaging techniques became avail-
able that allowed for visualizing brain activity on much more fine-grained
temporal and spatial scales than was previously possible. The temporal dy-
namics of brain activation can be revealed millisecond by millisecond by
neurophysiological imaging techniques such as EEG and MEG. The acti-
vation loci can be revealed using metabolic imaging techniques, positron
emission tomogrophy (PET), and functional magnetic resonance imaging
(fMRI). With fMRI, voxels of cortical volume as small as one cubic mil-
limeter can be investigated. Thus, the tools became available to scrutinize
the cortical mechanisms of cognition and language in space and time in the
millimeter and millisecond ranges.

Some of the new studies confirmed views resulting from the classical
neurological studiesof aphasia.Forexample, the languageareasofBrocaand
Wernicke were found to become active in various language tasks. Language
comprehension experiments revealed strongest activation in the superior
temporal lobe, and speech production tasks were found to elicit strongest
activation in the inferior frontal cortex. Thus, basic predictions of the classic
language model of Lichtheim could be confirmed (Price, 2000). It has also
been suggested that the area most relevant for the processing of meanings
and concepts associated with words is in the left inferior temporal lobe.
As we will see later, the question about the processing of word meaning
in the brain is a big challenge for modern neuroimaging research; it con-
stitutes one of the most intensely debated topics in the neuroscience of
language.

The advent of modern imaging research has also led to the generation
of data about language-induced cortical activation that cannot be easily ex-
plained by the Lichtheim model and related classic neurological language
theories.Broca’s area, the “motor language center”of theLichtheimscheme,
became active in genuine language perception tasks such as phonetic judg-
ment (Zatorre et al., 1992) or silent reading (Fiez & Petersen, 1998). This
indicates that the function of the anterior “motor” language area is not re-
stricted to language production, but includes aspects of language perception
as well. Correspondingly, Wernicke’s area, the “auditory language center,”
became active during genuine production tasks even when self-perception
of the speech signal was made impossible by adding noise (Paus et al., 1996).
Thus, the posterior “auditory” language area seems to have an additional
role in language production. In conclusion, although the core language ar-
eas were active when language tasks had to be solved, their specific function
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auditory words - fixation verb generation - noun reading

Figure 3.2. Presentation of spoken words led to increased metabolism in perisylvian areas
relative to looking at a fixation cross (Left). In contrast, verb generation activated additional
prefrontal areas and the middle and inferior temporal gyrus. Modified from Fiez, J. A.,
Raichle, M. E., Balota, D. A., Tallal, P., & Petersen, S. E. (1996). PET activation of posterior
temporal regions during auditory word presentation and verb generation. Cerebral Cortex,
6, 1–10.

as centers contributing to either speech production or comprehension be-
came questionable. These neuroimaging results agree with neuropsycho-
logical findings indicating that both classical language areas are necessary
for both languageproduction and comprehension.Bothmain language areas
appear to become active during and to be necessary for language processing,
although neither of them is sufficient for word comprehension or produc-
tion. Most likely, the two classical language centers play a role in both types
of processes.

New experimental paradigms were introduced for imaging studies, be-
cause they were found to induce the most pronounced metabolic or neuro-
physiological changes. An example is the verb generation paradigm in which
subjects are given nouns and must find verbs that refer to actions related to
the referent of the noun. Examples would be “fork” and “eat,” or “horse”
and “ride.” When subjects carried out this task, frontal areas including but
not restricted to Broca’s area and temporal areas overlapping with or adja-
cent to Wernicke’s area were found to become active (Petersen et al., 1989;
Wise et al., 1991).

Figure 3.2 shows the activation pattern in the left hemisphere obtained
in one study in which verbs had to be generated in response to nouns (Fiez
et al., 1996). When words had to be listened to, there was activity in superior
temporal and inferior frontal areas that was absent when subjects had to
fixate a cross. However, when new words had to be generated, there was
much more widespread activation in the frontal and temporal lobes. This
additional activity was also present when word generation was compared
with reading of words. This result was used to argue that word processing
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can relate to the activation of various areas, not just to the classical language
areas of Broca and Wernicke. Although this conclusion is compromised
by difficulties in interpreting results from word generation experiments, it
received support from additional neuroimaging work (for discussion, see
Pulvermüller, 1999).

Whichareas are relevant forprocessingwhichaspect of language?Clearly,
if one must generate a word, this makes one think about possible candidates
and alternatives and their respective adequacy, advantages, and disadvan-
tages. If one must perform a more automatized task such as reading words
or even reading very common words, this requires much less effort; con-
sequently, some of the differences in brain activation between tasks can
be accounted for easily in terms of the difficulty of the experiment. Diffi-
culty is an ambiguous word here, and it may be better to speak about the
degree of focused attention required; the amount of attention that must be
shared between different cognitive entities (for example, a presented word
and a to-be-generated word), the amount of effort that must be invested in
a search (for example, for a new item), and numerous other cognitive pro-
cesses that can become relevant in language-related tasks, including keep-
ing items in memory, comparing items with each other, and rejecting items.
Apart from these aspects, it is not surprising that the modalities involved in
language tasks are related to the activation pattern. For example, a task in
which visual stimuli are to be read and a task in which auditory stimuli must
be processed may more strongly activate the superior temporal or poste-
rior occipital lobe, respectively. A task involving language production may,
compared to a mere comprehension task, induce more neuronal activity in
action-related areas in the frontal lobe. Apart from such more or less trivial
differences that can be expected to occur, and actually do occur, between
language tasks, one may ask whether there are more specific correlates of
languageprocessing, for example, of theprocessing of themeaningof aword,
its semantics.

The question concerning the cortical locus of the processing of word
meaning has been addressed in many imaging studies, and a number of
conclusions have been proposed. In a discussion in Behavioral and Brain
Sciences, researchers involved in neuroimaging and neuropsychological re-
search summarized their opinions about the cortical locus of semantic pro-
cesses. Figure 3.3 presents the outcome of this discussion. Based on PET
and EEG data, Posner and DiGirolamo (1999) argued for semantic pro-
cesses in left inferior frontal areas. Salmelin, Helenius, and Kuukka (1999)
reported MEG evidence that the left superior temporal lobe is relevant
for word semantics. In Tranel and Damasio’s (1999) framework, the role of
the left inferior and middle temporal gyri was emphasized on the basis of
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Figure 3.3. Cortical areas proposed to be related to the processing of word meaning. The
name of the authors postulating the relevance of the respective areas is printed on top of
Brodmann’s area map. Note that different authors attribute the processing of word-related
semantic information to different cortical areas. Modified from Pulvermüller, F. (1999). Words
in the brain’s language. Behavioral and Brain Sciences, 22, 253–336.

both lesion evidence and PET data. Skrandies (1999) reported EEG stud-
ies suggesting that the occipital lobes might be involved in distinguishing
word meanings. Epstein (1999) referred to the neuropsychological model
by Geschwind (1965a, 1965b), according to which the angular gyrus at the
boundary of the parietal, temporal, and occipital lobe relates to semantics.
Finally, the opinion was expressed that action-related areas – primary motor,
premotor, and prefrontal areas – also may be relevant for aspects of word-
meaning processing and representation (Pulvermüller, 1999a). Regarding
word semantics, Posner and DiGirolamo’s (1999) statement “there is some
dispute about the exact areas involved” is clearly correct. As this discussion
shows, modern imaging work has not always led to a satisfactory answer of
long-standing and important questions about the brain–language relation-
ship. In spite of the undeniable progress made possible by empirical results
obtained with newly introduced techniques, it is likely that theoretical ad-
vances are necessary as well. These may help to explain why the processing
of meaning – and other language and cognitive processes – should activate
certain cortical areas but not others, and may, in the best case, help us un-
derstand the diversity of results reported in some areas of the cognitive
neuroscience of language. So far, it appears that many imaging studies sug-
gest that numerous areas outside the classical language areas can become
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Figure 3.4. Freud’s proposal of how a word is organized in the human brain. Multimodal
associations are thought to exist between neuronal elements housed in different cortical
systems. This model was the seed for modern theories of language processing in the brain
(see Chapter 4). Adopted from Freud, S. (1891). Zur Auffassung der Aphasien. Leipzig,Wien:
Franz Deuticke.

relevant for the processing of words and their meanings. This important issue
is discussed further in Chapters 4 and 5.

Manyareasoutside the classical languageareasofBrocaandWernickeare
relevant for language processing. This idea is suggested not only by modern
imaging research, but actually has a long history. In his monograph on apha-
sia, Freud (1891) proposed a neurological language model that competes
with the one put forward by Lichtheim. Word representations are viewed
as multimodal associative networks distributed over various cortical areas
(Fig. 3.4). Unfortunately, this proposal was not well received over 100 years
ago, a fact that forced Freud into a career outside the neurological domain.
However, his ideas appear modern and attractive today. As shown in sub-
sequent chapters (e.g., 4–6), models developed on their basis can explain
important results from neuropsychological and neuroimaging research on
language.

3.4 Summary

In the light of neuropsychological and neuroimaging research, Lichtheim’s
connectionistmodel (Fig. 3.1)was partly confirmed.However, it also became
apparent that this model is too crude to explain many patterns of brain acti-
vation induced by language processing and the more fine-grained aspects of
languagedisorders causedbybrain lesions. It appears likely that the language
centers of Broca and Wernicke are mutually functionally dependent. Fur-
thermore, although these core language areas are certainly important for lan-
guage, they do not appear to represent the only cortical areas contributing to
and necessary for language processing. This is demonstrated by neuroimag-
ing research showing that, in addition to the core language areas, other areas
become active when specific language stimuli are being processed, and by
converging neuropsychological reports about patients with lesions outside
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their core language areas who showed category-specific linguistic deficits.
These studies demonstrate that, in addition to the core language areas of
Broca and Wernicke, there are additional or complementary language areas
that are activated during language processing whose lesion causes deteri-
oration of aspects of language processing. These are not restricted to the
language-dominant hemisphere (the left hemisphere in most right handers),
but include areas in the nondominant right hemisphere as well. For the sake
of clarity, it may appear advantageous to distinguish the core language ar-
eas of Broca and Wernicke in the language-dominant hemisphere from the
complementary language areas in both hemispheres that can also play a role
in aspects of language processing.

Itmaybepossible to explain themutual functional dependenceof the core
language areas and the category-specific role of complementary language ar-
eas. In Chapter 4, a neurobiological model is summarized that attempts at
suchexplanation.Themodel uses concepts introduced inChapter 2 –namely,
the idea concerning functional cortical webs for words and other language
elements. These are proposed to be cortically organized as strongly con-
nected assemblies of neurons whose cortical distributions varies with word
type. For example, concrete words referring to objects and actions are pro-
posed to be organized as widely distributed cell assemblies composed of neu-
rons in sensory and motor areas involved in processing the words’ meanings
(see Chapter 4). In contrast, highly abstract grammatical function words and
grammatical affixes are assumed to be more focally represented in the left-
hemispheric core language areas of Broca and Wernicke (see Chapter 6).
This proposal builds upon the classic model, because neuron sets in core
language areas are believed to be relevant for all types of language-related
processes. However, it offers a dynamic perspective on the “concept area
B” (Fig. 3.1) by proposing that complementary neurons in areas related to
actions and perceptions regularly involved in language use contribute to
category-specific language processes.



CHAPTER FOUR

Words in the Brain

This chapter complements Chapter 3 in providing neuroimaging and neu-
ropsychological data about language. Here, the focus is on words. It is asked
which brain areas become active during, and are relevant for, the processing
of words in general, and that of specific word categories in particular.

An aim of this chapter is to show that the neuroscientific principles dis-
cussed inChapters 2 and3give rise tonew ideas about the representation and
processing of words in the brain. The cortex, a neuroanatomically defined
associative memory obeying the correlation learning principle, allows for the
formation of distributed functional webs. During language acquisition, the
neurobiological principles governing the cortex interact to yield the neuron
machinery underlying language. Distributed functionally coupled neuronal
assemblies, functional webs, are proposed to represent meaningful language
units.Thesedistributedbut functionally coupledneuronal units areproposed
to exhibit different topographies. Their cortical distribution is proposed to
relate to word properties. It is asked how this idea fits into evidence collected
with modern neuroimaging techniques.

4.1 Word-Form Webs

Early babbling and word production are likely caused by neuron activity in
cortical areas in the inferior frontal lobe, including the inferior motor cortex
and adjacent prefrontal areas. The articulations cause sounds, which activate
neurons in the auditory system, including areas in the superior temporal lobe.
The fiber bundles between the inferior frontal and superior temporal areas
provide the substrate for associative learning between neurons controlling
specific speech motor programs and neurons in the auditory cortical sys-
tem stimulated by the self-produced language sounds. The correlation learn-
ing principle implies the formation of such specific associations resulting in

50
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functional webs distributed over the perisylvian cortex, which includes the
inferior frontal and superior temporal core language areas. Figure 4.1a in-
dicates the approximate left-hemispheric distribution of a functional web
envisaged to realize a phonological word form. If neurons in the dominant
left hemisphere are more likely to respond specifically to phonological fea-
tures in the acoustic input, the resulting phonological networks must be
lateralized, in the sense of having more neurons in one hemisphere than in
the other. These lateralized perisylvian neuron ensembles would later pro-
vide the machinery necessary for activating a word’s articulatory program
as a consequence of acoustic stimulation with the same word form. This is
necessary for the ability to repeat words spoken by others.

Interestingly, babbling, the infant’s earliest language-like articulations,
starts around the sixth month of life (Locke, 1989) and is immediately fol-
lowed by the development of electrophysiological indicators of memory
traces for phonemes (Cheour et al., 1998; Näätänen et al., 1997) and the
infant’s ability to repeat words spoken by others (Locke, 1993). These ob-
servations are consistent with the idea that babbling is essential for building
up language-specific neuronal representations, in particular sensori-motor
links that may in turn be essential for the ability of spoken word repetition.
Word production, in the context of repetition or otherwise, may be essential
for the build-up of specific neuronal representations of individual words.

It might be considered a shortcoming of this proposal that only a minor-
ity of word forms are learned by the infant based on single-word repetition
(Pulvermüller, 1999b). How would infants know about which phonemes
actually belong to one word or morpheme if it is spoken in continuous utter-
ances of several words, with many word boundaries unmarked by acoustic
cues? The answer is again implied by the correlation learning principle. The
recurring sound sequences constituting words can be distinguished on statis-
tical grounds from the more accidental sound sequences across word bound-
aries (Brent & Cartwright, 1996; Harris, 1955; Redlich, 1993). Behavioral ev-
idence suggests that young infants distinguish the correlated phoneme and
syllable sequences making up words from more accidental sound sequences
in their acoustic input (Saffran, Aslin, & Newport, 1996). Therefore, it ap-
pears likely that single word input is not necessary to build up word repre-
sentations, but that infants can use the correlation statistics, the transitional
probabilities and/or mutual information of phoneme and syllable sequences
(Shannon & Weaver, 1949), for learning words from continuous speech.
After an auditory word representation has been established by correlation
learning, the repeated articulation of the word made possible by the sen-
sorimotor links set up by babbling would finally establish the word-related
functional web.



Figure 4.1. (a) The functional webs realizing phonological word forms may be distributed
over the perisylvian areas of the dominant left hemisphere. Circles represent local neuron
clusters and lines represent reciprocal connections between them. (b) Word presentation
induced stronger gamma-band responses in the 30 Hz range compared to pseudo-word
presentation, in particular over the left hemisphere. Reverberatory circuits within word
webs may underlie the enhancement of high-frequency responses to words compared to
pseudo-words. (c) The magnetic correlate of the Mismatch Negativity, the MMNm, was
stronger in response to words compared to pseudo-words. Significant differences appeared
already around 150 ms after the word recognition point, suggesting that the activation of
word-related functional webs (lexical access) is an early process. (d) The main generator of
the word-evoked magnetic mismatch response was localized in the left superior temporal
lobe. Adopted from Pulvermüller, F. (2001). “Brain reflections of words and their meaning.”
Trends in Cognitive Sciences, 5, 517–24.
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How would it be possible to prove the existence of functional webs rele-
vant for the processing of words? One view on the nature of functional webs
is that their massive reverberatory circuits produce precisely timed high-
frequency rhythms when active (Pulvermüller, Birbaumer, Lutzenberger,
& Mohr, 1997; Milner, 1974; Tallon-Baudry & Bertrand, 1999; von der
Malsburg, 1995). Based on this assumption, the prediction is that words
in the input activate the corresponding functional webs, thereby eliciting
strong high-frequency rhythms. In contrast, phonologically and orthograph-
ically regular pseudo-words that are not part of the language would fail to
activate a corresponding functional web, and the high-frequency activity in
the perisylvian areas should therefore be relatively low.

This prediction was put to a test using MEG. In fact, a frequency band
around30Hzrevealed significantdifferencesbetweenacousticallypresented
words and pseudo-words. About one-half second after the onset of spo-
ken one-syllable words, high-frequency brain responses were significantly
stronger compared to the same interval following pseudo-words. Figure 4.1b
shows the results of spectral analyses carried out on data recorded close
to the left anterior perisylvian areas and the homotopic areas in the right
hemisphere of a subject listening to words and pseudo-words. Word-induced
high-frequency responses were markedly stronger compared to pseudo-
word-induced activity, both in the single subject whose data are displayed
(12 percent) and in the group average (8.4 percent) (Pulvermüller, Eulitz
et al., 1996). This cannot be due to a global enhancement of the signal be-
cause event-related magnetic fields tended to be weaker for words than for
pseudowords in the time window analyzed. EEG- and MEG-studies con-
firmed that words evoke stronger high-frequency brain activity than compa-
rablewordlikematerial (Eulitz et al., 2000;Krause et al., 1998; Lutzenberger,
Pulvermüller, & Birbaumer, 1994; Pulvermüller, Preissl, Lutzenberger,
& Birbaumer, 1996). An explanation of these results can be based on the
assumption that word presentation activates functional webs, including mul-
tiple reverberatory circuits, that fail to become fully active if pseudo-words
are perceived.

Physiological differences between words and pseudo-words have been
found in numerous studies using both electrophysiological and metabolic
neuroimaging techniques (Creutzfeldt, Ojemann, & Lettich, 1989; Diesch,
Biermann, & Luce, 1998; Hagoort et al., 1999; Price, Wise, & Frackowiak,
1996; Rugg, 1983). Thus, it is uncontroversial that the brain distinguishes
between words and similar but novel and meaningless items. It is, how-
ever, unclear whether such physiological distinction would necessitate that
experiment participants focus their attention on features of the stimuli or
engage in language-related tasks.A further question is atwhich point in time,
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after the information about a word is present in the input, the brain makes
the word–pseudoword distinction, so to speak. If distributed functional webs
underlie word processing, an incoming verbal stimulus should automati-
cally activate its corresponding representation. Given a sufficient number
of input units specializing, for example, in the detection of acoustic stimulus
features are activated, the entire strongly connected web would ignite au-
tomatically as a result of the strong feedforward and feedback connections
holding the network together. This process of ignition (Braitenberg, 1978a)
of the functional web should take place very rapidly, the major factor deter-
mining the latency being axonal conduction delays and temporal summation
of neuronal activity. Axons can bridge large distances in the cortex within
a few milliseconds, and the most common corticocortical fibers that have
diameters of 0.5–1µmcanbe estimated to propagate actionpotentialswithin
10–20 ms over distances of 10 cm (Aboitiz et al., 1992). A strongly con-
nected distributed neuron web should therefore become active shortly after
its initial stimulation, certainly within 100–200 ms, to use a conservative
estimate.

Neurophysiological recordings, rather than the much slower metabolic
neuroimaging techniques, are necessary to determine the point in time when
the brain distinguishes words from pseudo-words. Some studies such as
the studies of high-frequency cortical responses discussed previously have
indicated that word-related brain processes can be detected late, that is,
around 400 ms after the presence of the relevant information in the input.
However, physiological word–pseudo-word differences in the event-related
potential (ERP) of the brain have been found substantially earlier, in the
so-called N1–P2 complex, 100–200 ms after onset of visually presented
stimuli (Rugg, 1983).

In one series of EEG and MEG studies, we could confirm the early pres-
ence of neurophysiological indicators of word and pseudo-word processing.
The Mismatch Negativity (MMN) and its magnetic equivalent (MMNm),
which can be elicited by rare changes in the acoustic environment, were
used. The MMN and MMNm were chosen because they have been found
to reflect the existence of memory traces or engrams in the cortex and be-
cause they are largely independent of the subject’s attention (Näätänen,
2001; Näätänen & Winkler, 1999). In earlier research, the MMN had been
found to reflect the presence of memory traces for phonemes of the subjects’
mother tongue (Näätänen, 2001). In a recent series of EEG and MEG stu-
dies, the neurophysiological correlates of spoken words were compared with
the activity elicited by meaningless pseudo-words (Korpilahti et al., 2001;
Pulvermüller, Kujala et al., 2001; Shtyrov & Pulvermüller, 2002b). To con-
trol for the physical difference, which necessarily distinguishes any word
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from a pseudo-word, two-syllabic items ending in the same second syllable
were chosen. Between the two syllables was the pause characteristic of some
Finnish consonants, so-called double-stop consonants (for example, “kk”).
This pause made it possible to record separate non-overlapping brain re-
sponses to the two individual syllables of a naturally spoken bisyllabic word.
To give an example, the Finnish word “pakko” meaning “compulsion” was
contrasted to the meaningless pseudo-word “takko,” and physically identi-
cal “ko” syllables were used after the pause seperating the “pa” or “ta” on
one side and the critical syllable “ko” on the other. Thus, the same critical
syllable was placed in a word or pseudo-word context, respectively.

When the critical second syllable completed aword, itsMMNandMMNm
were larger compared to when the syllable was placed in a pseudoword con-
text (Fig. 4.1c). The respective difference was most pronounced 100–200
ms after the word recognition point of the lexical items. The word recogni-
tion point is the earliest point in time when the information present in the
acoustic input allows the subject to identify the word with some confidence
(Marslen-Wilson & Tyler, 1980). This suggests that the functional web activ-
ated by a word in the input becomes active quite early. This finding is also
consistent with recent results from dynamic statistical parametric mapping
based on fMRI and MEG (Dale et al., 2000). These results indicate access
of the cortical representation of words within the first 200 ms after stimulus
information is present in the input. (Pulvermüller, Kujala et al., 2001).

The main source of the cortical generator of the MMNm was localized
in the left superior temporal lobe (Figure 4.1d). Whereas this source was
stronger for words than pseudo-words, its anatomical locus did not change
with lexical status.

It thus appears that the brain can distinguish words from pseudo-
words quite early after the relevant information is present in the input.
Still, other physiological word–pseudoword differences – in particular, in
high-frequency activity – tend to occur with longer latencies. This may, in
part, be related to differences between experiments (regarding stimuli, tasks,
etc.), but may as well indicate that different brain processes are reflected by
these measures. Early ERP differences may reflect the initial full activation,
ignition (Braitenberg, 1978a) of memory traces for words, a putative corre-
late of word recognition, whereas differences in high-frequency responses
may reflect continuous reverberatory activity ofword-related functional net-
works, a putative state of active memory (Fuster, 1997).

It is noteworthy that in the studies of the MMN and MMNm elicited
by words (Korpilahti et al., 2001; Pulvermüller, Kujala et al., 2001; Shtyrov
& Pulvermüller, 2002a, 2002b), the early enhancement of these responses to
words was seen, although experiment participants were instructed to direct
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their attention away from the acoustic input and watch a silent movie. To-
gether with results from metabolic imaging studies (Price et al., 1996), the
physiological distinction of words and pseudo-words in these experiments
proves that attention to words is not necessary for activating the words’
cortical memory traces.

In summary, physiological studies provide support for the existence of
word representations in thebrain.Theenhancedhigh-frequency responses in
the gamma band to words are consistent with coordinated fast reverberatory
neuronal activity generated by functional webs.

4.2 Category-Specific Word Webs

Word use in the context of objects and actions leads to associations between
neurons in the cortical core language areas and additional neurons in areas
processing information about the words’ referents. This is implied by the
correlation learning principle and the cortex’s long-range connections be-
tween motor and sensory systems. Functional webs could therefore provide
the basis for the association, in the psychological sense, between an animal
name and the visual image it relates to, or between an action verb and the
action it normally expresses. Strong links within the web can account for
one’s impression that the image is automatically aroused by the word form
presented alone, and that, vice versa, the image almost automatically calls
the name into active memory. The neuron ensembles linking phonological
information and information about the actions and perceptions to which a
word refers are termed word webs here. They would include the phonologi-
cal webs in perisylvian areas and, in addition, neurons in more widespread
cortical areas critically involved in processing perceptions and actions, and,
additional neurons in various cortical sites where sensory and action-related
information converges and is being merged. The type of entity a word usu-
ally refers to should be reflected in the cortical topography of the functional
web that realizes it.

4.2.1 Visually Related and Action Words

The meaning of an animal name, such as “whale” or “shark,” is usually
known from visual experiences, pictures, or films, whereas the meaning of
a tool name, such as “nail” or “fork,” refers to objects one uses for certain
actions. This is not to say that one could not know a whale from interact-
ing with it or forks from looking at them, but it may appear plausible that
in most individuals more relevant information characterizing whales and
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forks is visually or action related, respectively. In principle, to draw firm
conclusions on perceptual and functional attributes of word and conceptual
categories, the perceptual and action associations of the stimuli must be eval-
uated empirically. The lack of such stimulus evaluation is a caveat of many
studies of category-specific brain processes. Behavioral investigations car-
ried out with healthy volunteers revealed that many animal and tool names
show the expected differential elicitation of visual or action associations,
respectively. However, the most striking double dissociation in perceptual
and action attributes was seen between action verbs on the one hand and se-
lected nouns referring to animals or large human-made objects on the other
(Fig. 4.2d) (Pulvermüller, Lutzenberger, & Preissl, 1999). In addition, cat-
egories such as “animal names” were not well defined with regard to the
modality for which most striking associations were being reported. For ex-
ample, whereas words such as “whale” or “shark” are reported to elicit
primarily visual associations, the results for “cat” are less clearcut, for ob-
vious reasons. Thus, the differential associations cut across the categories
suggested by a philosophical approach (e.g., living vs. nonliving), as was ear-
lier found for category-specific neuropsychological deficits (Warrington &
McCarthy, 1987). The sensory/action modalities through which the referent
of a word is known appear to be relevant (Fuster, 1999).

It has been argued that it is a possible limitation of this line of thought
that it can be applied only to communication, where words are being learned
in the context of their referent objects or actions. However, word meanings
can also be picked up from contexts in which the actual referents are absent.
Their meaning is frequently revealed by other words used in the same sen-
tence or piece of discourse. It has been proposed that word meaning can be
defined in terms of the set of other words that frequently co-occur with a
given word (Landauer & Dumais, 1997). This would translate into a different
neurobiological scenario for the learning of word meaning. Given that there
is a stock of words whose meaning has been acquired based on word–object
or word–action contingencies, a new word occurring in good correlation with
such known words would only activate its phonological perisylvian repre-
sentation, because no semantic (reference related) links have been set up.
However, neurons in extraperisylvian space related to the known mean-
ing of common context words would frequently be active together with the
phonological web of the new word. The correlated activity of semantically
related neurons included in the neuronal representations of known context
words and the phonological web of the new word may allow for “piggy
bay” learning of word meaning. Clearly, this implies that the semantically
related neurons will finally be shared between previously known and new
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Figure 4.2. (a) Visual and action associations of words may be mapped by functional webs
extending over perisylvian language areas and additional visual- and action-related ar-
eas in the temporo-occipital and fronto-central areas. The cortical topography of word-
related functional webs of words primarily characterized by visual associationsmay therefore
differ from those of words with strong action associations. (b) Differences in metabolic brain
activation related to the processing of nouns referring to animals and tools in a naming
task. Whereas the tool words more strongly activated a premotor region and an area in the
middle temporal gyrus, animal names most strongly aroused occipital areas. (c) Electrophys-
iological differences between nouns and verbs in a lexical decision task recorded at central
(close to motor cortex) and posterior (above visual cortex) recording sites. Gamma-band
responses in the 30 Hz range were stronger close to the motor cortex for action verbs, and
stronger above visual areas for nouns with strong visual associations. A similar difference was
revealed by event-related potentials submitted to Current Source Density Analysis (CSDA).
(d) Behavioral experiments showed that the stimulus nouns elicited strong visual associa-
tions whereas the verbs were primarily action related. Adopted from Pulvermüller, F. (2001).
“Brain reflections of words and their meaning.” Trends in Cognitive Sciences, 5, 517–24.
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words so that their neuronal representations would overlap in their semantic
parts. This line of thought shows that the learning of word meaning based on
correlated neuronal activity is, by no means, restricted to the word–object
contingency scenario. Word meaning can also be learned from context.

Figure 4.2a sketches the postulated neuronal architectures of functional
webs representing words with strong visual vs. action associations, respec-
tively. The circles in thediagrams symbolize local clusters of neurons strongly
linked by corticocortical fibers. The diagrams illustrate the idea of word webs
that includeneurons reflecting semantic aspects.Moreprecisely, theproposal
is that cortical neurons processing aspects of the words’ typical referents, the
entities they refer to, are woven into the networks. If the referent is an object
usually perceived through the visual modality, neurons in temporo-occipital
areas should be included in the web. If a word refers to actions or objects that
are being manipulated frequently, neurons in fronto-central action-related
areas are assumed to be wired into the cortical representations. This can eas-
ily be extended to other sensory modalities as well (Pulvermüller, 1999b). A
shortcoming of the diagrams is that only one type of association is shown for
each word web. Usually, a word that is primarily visually related is reported
to elicit some action associations as well; conversely, an action-related word
yields some visual associations (cf. Fig. 4.2d). The all-or-nothing aspect one
may infer from the diagrams is therefore unrealistic. To make the diagrams
more realistic, each web should include some additional neurons in the re-
spective other field, although the ensembles’ neuron density in these addi-
tional areas would be lower than in the areas processing the words’ primary
referential aspect (Kiefer & Spitzer, 2001; Pulvermüller, 2001). Further-
more, action associations imply that there are associations to self-perceived
aspects of the action in the somator-sensory or visual modality. The visual
perception of one’s own hand during knocking or writing likely arouses
neurons in movement-related areas of the visual system not activated if, for
example, a stationary visual stimulus is perceived. Therefore, there would
be good reason to add detail to the diagrams, however, at the cost of making
them more complex. Nevertheless, the topographies of functional webs may
differ between semantic word types, and the diagrams may convey the gist
of this idea. (Fig. 4.2a, Fig. 4.3a).

The postulated differential topographies of word webs imply meaning-
related processing differences between word categories. A major source of
evidence for such differences is neuropsychological patient studies in which,
for example, the production or comprehension of nouns and verbs or ani-
mal and tool names was found to be affected differentially by disease of the
brain (Bak et al., 2001; Cappa et al., 1998; Daniele et al., 1994; Miceli, Silveri,
Nocentini, & Caramazza, 1988; Miceli, Silveri, Villa, & Caramazza, 1984;
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Patterson & Hodges, 2001; Warrington & McCarthy, 1983; Warrington &
Shallice, 1984; see also Chapter 3). These dissociations between kinds of
words and conceptual categories can be understood on the basis of the as-
sumption of distributed neuron ensembles reflecting perceptual and struc-
tural attributes, including visual features and the degree of overlap between
exemplars, and the functional attributes, the actions to which the words and
concepts relate (Humphreys & Forde, 2001).

It also may be asked whether the intact human brain demonstrates differ-
ential activation of brain areas when action- or perceptually related words
are being processed. One example of a critical prediction is, if words of one
kindare characterizedby stronger action (visual) associations thanarewords
of another kind, their processing should be accompanied by stronger brain
activity in the relevant action- (sensory-) related areas. Relevant action-
related areas are in the frontal lobe; the areas necessary for object perception
are in the occipital and inferior temporal lobes.

When pictures of animals and tools were presented in a naming experi-
ment, several areas, including occipital and temporal sites and the classical
language areas, were found to increase their activity (Martin et al., 1996).
Category-specific activation was found in the premotor cortex and the mid-
dle temporal gyrus when tools had to be named silently, and in the occipital
and inferior temporal lobe when animals had to be named (Fig. 4.2b). These
results meet the previously noted predictions. One may speculate that the
premotor activation is related to the action associations of tool names, as
the activation in inferior–temporal and occipital areas may be related to
visual attributes of animal names. The additional activation in the middle
temporal gyrus in tool naming may be related to movement associations
elicited by the words involved. Differential cortical activation by action-
and visually related concepts and words were confirmed, in part, by more re-
cent metabolic imaging studies of category-specific processes using PET and
fMRI (Damasio et al., 1996; Grabowski, Damasio, & Damasio, 1998; Martin
& Chao, 2001; Moore & Price, 1999; Mummery et al., 1998; Noppeney
& Price, 2002; Perani et al., 1999; Spitzer et al., 1998; Warburton et al.,
1996), althoughnotall researcher could confirmsuchdifferences (e.g.,Devlin
et al., 2002).

Neurophysiological investigation of noun and verb processing provided
further evidence for category-specific brain processes relevant for language
(Brown & Lehmann, 1979; Koenig & Lehmann, 1996; Molfese, Burger-
Judisch, Gill, Golinkoff, & Hirsch-Pasek, 1996; Preissl, Pulvermüller,
Lutzenberger, & Birbaumer, 1995; Pulvermüller, Lutzenberger et al., 1999;
Pulvermüller, Preissl et al., 1996; Federmeier et al., 2000). In one study
(Pulvermüller, Lutzenberger et al., 1999), differential visual and action
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associations of the nouns and verbs selected were demonstrated by a rat-
ing study performed by all experiment participants. Event-related potentials
(ERPs) and high-frequency cortical responses revealed a physiological dou-
ble dissociation consistent with differential activation of fronto-central and
occipital areas (Fig. 4.2c). The ERP difference was apparent approximately
200 ms after the onset of visual word stimuli, consistent with early acti-
vation of the word webs involved. Topographically specific high-frequency
responses, which were stronger over central areas for verbs and over occipi-
tal areas for nouns, started later (400 ms). In an EEG study of auditory word
processing, the physiological distinction between visually related nouns and
action verbs couldbe replicated, and similar differential activationwas found
between visually and action-related nouns. In contrast, there was no differ-
ence in the topography of brain responses between action verbs and nouns
for whom strong action associations were reported (Pulvermüller, Mohr,
& Schleichert, 1999). These topographical differences in the activation pat-
terns elicited by action-related and visually related words resemble the dif-
ferences observed between written tool and animal names, and between
pictures of animals and tools (Kiefer, 2001). All of these results indicate that
the differential activity pattern evoked by word kinds is not grammatically
related, but rather reflects semantic properties of the stimulus words and
their related concepts. Pulvermüller, Assadollahi, and Elbert (2001) found a
global enhancement of the evoked brain response for a certain subcategory
of nouns, which, according to their behavioral data, had particularly strong
semantic associations to both objects and actions (multimodal semantics).
Control nouns without multimodel semantics failed to elicit the result, again
arguing against an interpretation in terms of grammatical word categories.
Differences in word semantics may also underlie the neurophysiological
differences found between lexically ambiguous and unambiguous words
(Federmeier et al., 2000). This interpretation is suggested because it may
appear plausible that the meaning of ambiguous words is somewhat richer
than that of words with only one meaning. When semantic properties of the
stimulus words were systematically evaluated, we found a linear increase of
an early component of the event-related magnetic field with a measure of
the strength of semantic associations of a word (r = 0.8). Therefore, these
data, along with those mentioned earlier, enforce an account in terms of
word semantics. It may be that the strong associations, in the psychological
sense, of words with mutimodal semantics are realized as strong connections
within particularly widespread and large cortical neuronal assemblies. Ac-
tivation of these particularly widespread and strongly connected networks
may be reflected as an enhancement of the neurophysiological response
(Pulvermüller, 2001).
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4.2.2 Sub-types of Action Words

More fine-grained predictions are possible on the basis of the postulate that
topographies of word webs reflect the words’ referents. Action verbs can
refer to actions performed with the legs (walking), arms (waving), or mouth
(talking). It iswell known that themotor cortex is organized somatotopically,
that is, adjacentbodymuscles are represented inneighboringareaswithin the
motor cortex (He et al., 1993; Penfield & Rassmussen, 1950). Neurons con-
trolling face movements are located in the inferior precentral gyrus, those
involved in hand and arm movements accumulate in its middle part, and
leg movements are controlled by neurons in its dorsomedial portion (see
Chapter 2). The correlation learning principle therefore suggests differen-
tial topographies for cell assemblies organizing leg-, arm-, and face-related
words (Fig. 4.3a). Differential action-related associations of subcategories of
verbs could be demonstrated by behavioral studies (Fig. 4.3b; Pulvermüller,
Hummel, & Härle, 2001).

In an EEG study, we compared face- and leg-related action verbs (“walk-
ing” vs. “talking”). Current source density maps revealed differential acti-
vation along the motor strip. Words of the “walking” type evoked stronger
ingoing currents at dorsal sites, over the cortical leg area, whereas those
of the “talking” type elicited the stronger currents at inferior sites, next to
the motor representation of the face and articulators (Fig. 4.3c; Hauk &
Pulvermüller, 2002; Pulvermüller, Härle, & Hummel, 2000; Pulvermüller,
Hummel, & Härle, 2001). A similar study comparing arm- and leg-related
wordswas performedusing fMRI.Thepreliminary data shown inFigure 4.3d
are consistent with the view that the body parts involved in the actions action
verbs refer to are reflected in the cortical neuron webs these words activate.
Furthermore, the early point in time at which the word category differences
were present in neurophysiological responses indicates that there was no
substantial delay between word form access (perisylvian activation) and the
processing of action attributes (more superior activation, for example in
the case of leg words). This supports the view that information about the
word form and the body parts with which the word-related actions are being
carried out, are woven into the same word-related cortical networks and are
activated near-simultaneously (Pulvermüller, 2001).

4.3 The Time Course of Lexical and Semantic Activation

The lexical status of awritten or spokenword,whether it is aword or not, and
aspects of word semantics appear to crucially determine the brain response.
The differences between semantic word categories can appear early in the
neurophysiological brain response, that is, ∼100–200 ms after stimulus onset
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Figure 4.3. (a) Cortical topographies of functional webs representing different types of
action words may differ. Action words can refer to actions executed by contracting face,
arm, or leg muscles (e.g., to lick, to pick, to kick). Different neuron ensembles in the primary
motor cortex may therefore be woven into the word-related neuron ensembles (cf. Fig. 1b).
(b) Ratings of face, arm, and leg associations confirming differential referential semantics of
three action verb groups. (c) Results from an EEG study. Topographical differences between
brain responses to face- and leg-related verbs. Stronger ingoing currents were seen close
to the vertex for leg-related items (gray spot at the top) and at left-lateral sites, close to the
face representation, for face-related words (dark spot in the middle). (d) Result from a fMRI
study comparing arm- and leg-related verbs (single subject data). Differences were see in
the precentral gyrus of the left hemisphere. Adopted from Pulvermüller, F. (2001). “Brain
reflections of words and their meaning.” Trends in Cognitive Sciences, 5, 517–24.

(e.g., Pulvermüller, Assadollahi et al., 2001; Skrandies, 1998). This latency
range corresponds to the time range where the earliest neurophysiological
differences between words and pseudo-words were found (e.g.,
Pulvermüller, Kujala et al., 2001; Rugg, 1983). Thus, the earliest latencies
at which the lexical status and the semantic category of word stimuli were
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reflected in theneurophysiological response coincidedwitheachother.These
neurophysiological data support psycholinguistic models postulating that
information about a word’s meaning can be accessed near-simultaneously
with information about its form, a proposal motivated by behavioral studies
(Marslen-Wilson & Tyler, 1975; Marslen-Wilson & Tyler, 1980). Likewise,
they are consistent with the view that a word is cortically processed by a
discrete functional unit storing information about the word’s form together
with that about its semantics.

While the semantically and form-related parts of distributed word webs
may be activated early and near-simultaneously, there is evidence that dif-
ferent physiological processes occur in sequence in the same cognitive brain
representations. A stage of access to the representation (ignition of the cell
assembly, see Braitenberg, 1978a) may be followed by sustained reverber-
atory activity (active memory, see Fuster, 1995) of the word web. Whereas
the early access stage may occur within one quarter of a second after the
information in the input allows for recognizing a stimulus word, the rever-
beratory activity related to active memory would follow after more than
250 ms. The early access process may be reflected in early event-related po-
tentials, and the late reverberations may lead to high-frequency responses in
the gamma band. These hypotheses can tentatively explain recent findings
about the time course of neurophysiological responses to words (for further
discussion, see Kiefer, 2001; Pulvermüller, 1999).

4.4 Summary and Conclusions

The brain response to words and word-like material appears to reflect lexical
statusandword semantics.Word/pseudo-wordandwordcategorydifferences
were reported in metabolic and neurophysiological imaging studies. Both
types of differences were found already at 100–200 ms after the information
in the input allowed for recognizing the words, whereas some differences,
for example in high-frequency responses, appeared only with longer delays.
These results can be explained on the basis of the idea that words are repre-
sented and processed by distributed but discrete neuron webs with distinct
cortical topographies. They are somewhat less easily explained by alterna-
tive approaches. If words were represented by single neurons, for example,
the corresponding specific brain activity states could probably not be distin-
guished with large-scale neuroimaging techniques, such as MEG or fMRI.
Also, it is in question how the specific changes observed between words and
pseudowords could be explained if both stimulus types were processed alike
by a distributed network of neurons in which no discrete representations
exist, or by interference patterns over the entire cortex. Furthermore, an
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explanation of word-category differences may turn out to be even more dif-
ficult on the basis of such approaches. Thus, while competing approaches are
challenged by the data discussed, the postulate of discrete functional webs
representing words explains them well.

The results on category differences described here indicate that aspects
of the meaning of words are reflected in the topography of brain activation.
They are also consistent with the view that the referents of particular word
kinds are relevant for determining the brain areas involved in their process-
ing. The data do not explain the entire spectrum of areas found to be active
during category-specific word processing. There are findings about different
semantically related activity patterns that are not readily explained by ele-
mentary neuroscientific principles, such as the principles (I) – (IV) discussed
earlier. For example, the differential activation of the right- vs. the left pari-
etal areas by names of body parts and numerals (Le Clec’H et al., 2000)
cannot be explained by the four principles alone. It is likely that additional
principles of cortical functioning as yet not fully understood are necessary
to account for these data. Furthermore, it must be added that the semantic
category of the stimulus words is by far not the only variable determin-
ing the topography of brain activation. Clearly, the modality of stimulation
(visual or auditory) and the task context in which words must be processed
(e.g., lexical decision, naming, memory) play an additional important role
in determining the set of active brain areas (Angrilli et al., 2000; Mummery
et al., 1998). Moreover, other features of the stimulus material, for example
the length and frequency of words, play an important role (Assadollahi &
Pulvermüller, 2001; Rugg, 1990). The present approach suggests, and the
summarized data indicate, that, if possibly confounding variables are appro-
priately controlled for, category-specific differences are present between
word categories and conceptual kinds across different tasks and stimulus
modalities.

A limitation of the considerations so far is that they are restricted to the
level of single words. In fact, they apply to word stems that include only one
meaningful unit (morpheme). The neurobiological nature of affixes with
grammatical function, for example, has not been addressed. Also, the neu-
robiological basis of grammatical or function words, for example “if”, “is”,
and “it”, has not been specified, and, of course, the complex interaction be-
tween word-related processes during analysis and synthesis of a word chain
is a further open issue. Some of these issues will be covered in later chap-
ters. Chapter 5 will address meaning and form relationships between words,
Chapter 6 function words and inflectional affixes, and Chapters 10 to 13
various grammatical phenomena.



EXCURSUS ONE

Explaining Neuropsychological
Double Dissociations

The cortex may be an associative memory in which correlation learning es-
tablishes discrete distributed functional webs. It is important to ask how this
view relates to clinical observations, in particular to the neuropsychological
double dissociations seen in aphasic patients. Here is an example of such
a double dissociation. Patient A exhibits severe deficits in producing oral
language (Task 1), but much less difficulty in understanding oral language
(Task 2). Patient B, however, presents with the opposite pattern of deficits –
that is, only relatively mild language production deficits, but substantial diffi-
culty in comprehending spoken language.Briefly, PatientA ismore impaired
on Task 1 than Task 2, whereas Patient B is more impaired on Task 2 than
Task 1.

Clearly, the explanation of neuropsychological syndromes and, in partic-
ular, of double dissociations is an important issue for any model of brain
function and, therefore, a brief excursus may be appropriate here. It was
once argued that the existence of a double dissociation demonstrates, or
strongly suggests, the presence of modules differentially contributing to
specific aspects of the tasks involved (Shallice, 1988). A module would be
conceptualized as a largely autonomous information processor (see also
Section 6.2). A standard explanation of a double dissociation, therefore,
is that two modules are differentially involved in the two tasks (1 and 2), and
that one of them is selectively damaged in each of the patients (A and B).

The idea of functional cortical webs may lead the reader to conclude that
the distributed neuronal systems would always deteriorate as a whole when a
lesion takes place, even if only a focal cortical area is affected. The suspicion
may therefore be that double dissociations cannot be explained. This con-
clusion is, however, not justified. Neuropsychological double dissociations
can, in fact, be accounted for by a model composed of distributed functional
webs.
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This excursus explains how a functional web architecture can model a
double dissociation, and why double dissociations do not prove the existence
of modules differentially involved in the tasks on which a double dissociation
is observed. The initial paragraphs present considerations and simulations
regarding the influence of small lesions on the function of an ensemble of
strongly connected neurons.

E1.1 Functional Changes in a Lesioned Network: The Nonlinear
Deterioration of Performance with Growing Lesion Size

How does a brain lesion change the function of a strongly connected neu-
ronal ensemble? If one neuron in an assembly is lesioned, this may have no
effect at all. However, if a certain percentage of its neurons have been le-
sioned or removed, the ensemble becomes unable to serve its functional role
in cerebral life, so that it becomes inappropriate to speak about “full” acti-
vation or ignition when the remaining neurons become active. The smallest
percentage of active neurons (of the intact assembly) necessary for speaking
about an ignition is called the ignition threshold here. In the intact network,
the ignition threshold can be considered the point of no return, the number
of neurons active after which the ignition can no longer be stopped by in-
hibitory input. If thenumberof assemblyneurons survivinga lesion is smaller
than the ignition threshold, the ensemble, by definition, cannot ignite after
stimulation. Therefore, it can be considered to be destroyed. Clearly, not
every lesion leads to destruction of all affected ensembles. If the damage is
moderate, the assemblies still ignite after appropriate stimulation, but the
time needed for the ignition to take place is longer. This can be illustrated
by neural network simulations (Pulvermüller & Preissl, 1991).

Figure E1.1 gives average ignition times tθ and percentage of destroyed
neuronal ensembles d as a function of the lesion size l. In this simulation, the
ignition threshold has been set to 70 percent of the total number of neurons
of the intact ensembles. Importantly, the assemblies tolerate lesions of a
substantial percentage of their neuronswith onlyminor ignition delays.Even
pronounced lesions (e.g., of 15 percent of the neurons) affect performance
only minimally. However, after a certain critical amount of damaged tissue
has been reached, 20 percent in the presented simulations, performance
deteriorates very rapidly if the lesion size increases slightly.

The nonlinear decline of performance of the networks with increasing
lesion size may have implications for the explanation of progressive neu-
rocognitive impairments. Many progressive brain diseases lead to minor
behavioral deficits, although pronounced structural deficits can already be
observed.Minor additional structural deterioration sometimes leads to rapid
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Figure E1.1. The effects of lesions (l) of different sizes on neuron ensembles each including
100 neurons. The ignition threshold was set to 70% – that is, the assembly was called
ignited if 70 of the 100 neurons were active. As a function of lesion size, the average time tθ

needed for an ignition, and the percentagedof destroyed assemblies (which could no longer
ignite) increased. Small lesions did not have a strong effect. In contrast, after removal of
approximately 20% of the neurons, further slight increase of the lesion size caused dramatic
dysfunction, as reflected by the steep raise of both ignition times t∅ and the percentage of
destroyed ensembles d. Reprinted with permission from Pulvermüller, F., & Preissl, H. (1991).
A cell assembly model of language. Network: Computation in Neural Systems, 2, 455–68.
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and pronounced deterioration of behavior. The simulations show that this is
exactly the way a functional web acts when progressively more of its neurons
are being damaged. Small increases of the lesion size cause pronounced
functional impairments only if ignition thresholds are being approached.

E1.2 Broca’s vs. Wernicke’s Aphasias

What is the effect of focal lesions in different parts of the perisylvian lan-
guage cortex in a model of overlapping functional webs distributed over
these cortical areas? Again, the idea is that acoustic, articulatory, and seman-
tic information aboutwords are bound together in functional units exhibiting
specific cortical topographies. This means that these aspects of information
processing are not separate functionally, although, originally, they may pri-
marily have been housed in separate brain areas. How would a network of
several distributed and partly overlapping information processors respond
to focal lesions?

Before associative learning, articulatory programs are controlled by neu-
rons in theprefrontal, premotor, andprimarymotor cortex,whereas acoustic
properties may activate neurons only in the superior temporal lobe stimu-
lated by features of speech sounds, and input related to word semantics
(reference) are possibly exclusively processed in additional brain areas.
After word learning, however, all (or most) of these neurons would be ac-
tivated during comprehension, articulation, and semantic processing of a
word because the functional web has formed. In the same way the neurons
in different areaswere functionally separate before learning had takenplace,
these distant neuron groups may become functionally separate again after
their strong links have been cut by a lesion, or after one part of the assem-
bly has been destroyed. If processes dissociate after the lesion, they may
nevertheless have been linked in the fully functionl brain.

An intact neuronal assembly would include efferent neurons that control
articulatory movements and afferent neurons stimulated by acoustic phono-
logical input. These neuron groups can be considered to lie in the periphery
of the assembly. In the center are neurons in various association cortices
that do not receive direct input from outside the cortex and do not con-
trol its output directly. Their primary purpose is to bind information. These
binding sites can themselves be connected to other areas that do not re-
ceive direct input from outside the cortex, or directly control motor output.
Figure E1.2 schematizes a network of several partly overlapping neuronal
ensembles and the way their elements (local neuron clusters) may be dis-
tributed over perisylvian cortices. The network equivalents of areas in the
temporal lobe are represented at the top and those of the inferior frontal
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Figure E1.2. Structure of a network used for simulating the effect of focal lesions in the peri-
sylvian cortex. Assemblies included neurons in primary and higher-order perisylvian areas.
Lesions in one of the “peripheral” parts of the assemblies (uppermost input or lowermost
output layers) led to unimodal processing deficits in the simulation (in either “word produc-
tion” or “word perception”). Lesions in the middle (the network equivalent of Broca’s and
Wernicke’s areas) caused multimodal but asymmetric deficits (e.g., a strong “production”
deficit with a moderate “comprehension” deficit, or vice versa). The model therefore ac-
counts for a double dissociation of the performance on two language tasks (speech pro-
duction vs. comprehension), and, in addition, for the frequent cooccurrence of deficits re-
garding these tasks. Reprinted with permission from Pulvermüller, F., & Preissl, H. (1991).
A cell assembly model of language. Network: Computation in Neural Systems, 2, 455–68.

cortex are at the bottom. Only the uppermost and lowermost neurons in the
periphery (uppermost or lowermost layers) have efferent or afferent corti-
cal connections. Obviously, this is an elementary model based on several
simplifying assumptions.

Word comprehension is modeled in the circuit as stimulation of the upper
auditory input layer and subsequent ignition of one assembly. Word produc-
tion is modeled by stimulation in the center of one assembly followed by its
ignition plus activation of its motor output neurons in the lowermost layer.
Specific deficits in comprehension or production can now be explained intu-
itively as follows: A lesion in one of the layers or areas of the model destroys
assembly neurons. However, lesions in the periphery, in a primary area, lead
to additional disconnection of the web from its input or output. A moderate
lesion in the uppermost layer may therefore only cause a mild increase of
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ignition times in the simulation of word production, thus leaving word pro-
duction largely ‘intact.’ However, this same lesion may make it impossible
to ignite the assembly through its afferent fibers if word comprehension is
simulated. This impossibility does not necessarily imply that all the assem-
bly’s afferent connections have been cut or that all neurons in the auditory
input layer have been destroyed. Removal of only a few peripheral input
neurons of an assembly can slightly delay its ignition so that its neighbors
may take over and ignite instead of the directly stimulated assembly. This
process corresponds to a failure or error in activating a word-specific neuron
ensemble. One may consider this an implementation of a failure or error in
lexical access.

As illustrated by this example, unimodal processing deficits apparent
only in word comprehension can be explained quite naturally in a model
relying on functional webs. A selective deficit in understanding spoken
words whereas other sounds can still be interpreted, has been named word-
form deafness. What has been said about comprehension can be extended
to speech apraxia on the motor side. Apraxia of speech includes a deficit
in producing word forms correctly. Phonological errors, omissions, hesita-
tion phenomena, and other coordination problems in speech production
predominate, whereas there is no pronounced deficit in word comprehen-
sion. Selective lesion of the motor output layer of the model network in
Figure E1.2 primarily cuts neuron ensembles from their motor output fibers.
This deteriorates the network’s performance on the word production task,
but only minimally shows in simulations of word comprehension. Similar to
patients with apraxia of speech, the networks produce omissions and incor-
rect output in the absence of deficits in word comprehension. The simple
model does not allow for modeling fine-grained aspects of apraxia of speech
and word-form deafness, but it can explain the important double dissoci-
ation seen between the two types of unimodal syndromes, one specifically
affecting word production and the other word comprehension.

The explanation of cases of unimodal deficits, such as apraxia of speech
or word-form deafness, in which two deficits are fully dissociated (each
without the other) is important. It is probably equally important to explain
the fact that symptoms frequently co-occur in certain combinations. Most
aphasias are multimodal deficits involving all language modalities, but each
to a different degree. A simulation may therefore aim at mimicking both
dissociation and co-occurrence of symptoms.

Lesion simulations using cell assembly networks suggest that the closer a
lesion is to the periphery of an assembly, to the primary areas, themore asym-
metrical is the disturbance. As discussed previously, a lesion in the periphery
(i.e., in the input or output layer) of a network, such as the one depicted in
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Figure E1.2, can lead to a unimodal deficit, either in word comphrehension
or word production. However, lesion in the next layers (second from top
or bottom) was found to cause a bimodal but asymmetric disturbance, for
example, strong comprehension deficit but minor production impairment.
Finally, a lesion in the layers in the middle of the network caused an almost
symmetrical pattern of errors. The model allows for predictions on both the
dissociation and co-occurrence of symptoms caused by focal cortical lesions.

When lesions were allowed in only the upper half of the network, the ana-
log of Wernicke’s area in the superior temporal lobe, the network showed
strongly impaired performance on the simulated word comprehension task
and relatively mild impairments when the network was used to simulate
word production. In contrast, a lesion in the lower half of the network – cor-
responding to the inferior frontal region which includes Broca’s area – led to
stronger deficits in the word production task and only milder impairment in
the network’s word comprehension. Thus, the network simulation provides
a model of a double dissociation frequently seen in patients with Broca’s
and Wernicke’s aphasias.

Further specific features of Broca’s and Wernicke’s aphasias were also
present in the model. For example, after lesion in the network’s Broca area,
activity frequently extinguished in the production task, thus simulating in-
ability to produce a word, which is indeed seen in many patients with Broca’s
aphasia. In contrast, lesions on the Wernicke side of the network rarely pro-
duced such lexical omissions but rather yielded activation of not stimulated
(incorrect) ensembles. This nicely corresponds to the frequent use of in-
correct words by patients with Wernicke’s aphasia. (For more details about
these simulations, see Pulvermüller, 1992; Pulvermüller & Preissl, 1991).

These simulations explain one important double dissociation – the differ-
ential degradation of word production and comprehension in Broca’s and
Wernicke’s aphasias on the basis of a simple model of functional webs dis-
tributed over perisylvian areas. Because individual layers of the network can
be likened to areas in the cortex, the network simulation has implications
regarding the location of cortical lesions that cause particular deficits.

Because a distributed model without functional segregation between
modules was able to imitate a double dissociation pattern, it follows that
no modular structure is necessary for explaining this neuropsychological
phenomenon. This point has been made earlier (Plaut & Shallice, 1993;
Pulvermüller & Preissl, 1991) and is now widely agreed on. One should,
however, emphasize that these considerations by no means rule out modu-
lar models of cognition; rather, they show that different views are possible
on the cortical cause of double dissociations.
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The present modeling approach is an elementary one. Clearly, it is desir-
able to provide more detailed simulations of cognitive processes in which
more andmore features of the neuronal substrate are included (e.g., Sommer
& Wennekers, 2000). It is desirable to develop such more detailed neuronal
models of language processes in the brain (e.g., Wermter & Elshaw, 2002),
not only to demonstrate their own functionality but also to model neuropsy-
chological data and the results of metabolic and neurophysiological brain
imaging studies.

Asmentioned inChapter 4, further explanations of fine-grained category-
specific neuropsychological double dissociations can be made on the basis
of the assumption that word webs have distinct cortical topographies. In this
context, two types of explanations are relevant. One relies on the center–
periphery argument made in this section, the other on different assembly
topographies (see Chapter 4). The double dissociation between agramma-
tism (function word impairment, perisylvian lesion) and anomia (content
word impairment, extra-perisylvian lesion) has been discussed in great de-
tail elsewhere (Pulvermüller, 1995), and other word category dissociations
may well be explained along the same lines. Clearly, all of these explana-
tions are related to and rooted in cognitive models (Warrington & Shallice,
1984). Spelling them out in the language of neurons may help improve our
understanding of the relevant mechanisms.



CHAPTER FIVE

Regulation, Overlap, and Web Tails

Chapter 4 offers a neurobiological perspective on word processing in the
brain. The time course and topography of cortical activation during word
processing, in particular during the processing of words of different cate-
gories, is discussed in some detail. The proposal is that there is a cell ensem-
ble or functional web for each and every word, and that words with different
referential meaning may have functional webs characterized by different
topographies.

Looking at words more closely, more questions arise, for example, regard-
ing complex form–meaning relationship. Two words may share their form
(e.g., “plane,” meaning “aircraft” or “flat surface”), or may sound differently
but have largely the same meaning (e.g., “car” and “automobile”). There are
word forms that include other word forms (e.g., the letter sequence “nor,”
including “no” and “or”), and there are words whose meaning includes,
so to speak, the meaning of others (e.g., “animal” and “dog”). These rela-
tionships of homophony (or polysemy), homonymy (or synonymy), inclu-
sion of word forms in other word forms, and hyperonymy (vs. hyponymy)
may pose problems to an approach relying on cortical neuron webs. How
might a neurobiologically realisticmodel of complex form-meaning relation-
ships look? Tentative answers are discussed in the section on overlap of rep-
resentations.

Other aspects largely ignored in earlier chapters relate to the information
about written language and to aspects of meaning that have been charac-
terized as emotional or affective. This information may be related to the
phonological and semantic side of words through connections of the rele-
vant word webs either to subcortical or to additional cortical neurons. A few
remarks are made about the possible circuits in the section on web tails.

A concern comes from considerations on activity dynamics in the cortex.
Associative learningnetworks run into theproblemof associating everything
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with everything if too much learning has taken place, or if too much activity
is allowed to spread. It is argued here that a regulation mechanism is needed
in autoassociative models of network memory and that such a mechanism
can be important for solving the mentioned putative problems regarding
words that are related phonologically or semantically.

5.1 Regulation of Cortical Activity

A brain model in the tradition of Hebb’s cell assembly theory runs into a
number of problems. Milner (1957, 1996) discusses some of these problems
in great detail. An important problem was the result of the original formula-
tion of Hebb’s learning rule, according to which two connected neurons that
frequently fire together increase the strength of their wiring. One can call
this a coincidence rule of associative learning because only coincident firing
of two neurons is considered to have an effect on connection strength. In a
network with many links between neurons, a coincidence rule can lead to
ever-increasing connection strengths so that, finally, catastrophic overacti-
vation may take place whenever the network is being stimulated.

There are, however, tricks available that allow for solving, or at least
minimizing, the problem of catastrophic overactivation. These tricks seem
to be applied by the real brain to allow for effective storage of memories, or
engrams, in the cortex. Three strategies for minimizing the overactivation
problem are introduced after this problem itself has been explained in more
detail.

5.1.1 The Overactivation Problem in Auto-associative Memories

The overactivation problem can be illustrated using artificial associative
memory networks. A fully connected autoassociative memory consists of
n neurons and reciprocal connections among all of them. This network type
is not a particularly realistic model of the cortex, but it can be made more
realistic by omitting connections between neurons, for example by reduc-
ing the number of connections of each neuron to

√
n (Palm, 1982). In this

case, the network is still called autoassociative, as long as it includes loops.
(A network in which different neuron populations are connected in only
one direction is called a hetero-associative memory.) The idea underlying
the Hebbian approach is that the neurons that show frequent coincident
activity, for example, the neurons activated by an object stimulus, link into
a neuronal assembly so that finally there are many object representations in
the network. Each object would be realized as a neuron ensemble with par-
ticularly strong connections between its members. These ensemble–internal
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connections are much stronger than the average connection strength in the
entire autoassociative network. Now, the problem is that coincidence learn-
ing leads to an increase in average connection strength. After much learning
and strengthening of connections, so many neuronal links may have become
so effective that any stimulation of some of its neurons activates the entire
network, a process that may be analogous to an epileptic seizure in the real
nervous system (Braitenberg, 1978a). This is undesirable because the aim
is to keep representations separate and allow for retrieving, or specifically
activating, individual object representations. This property is lost if too many
too strong links developed.

5.1.2 Coincidence vs. Correlation

Obviously, a first strategy to avoid the overactivation problem would be to
avoid the learning rule proposed by Hebb, or at least to modify it. There
is good motivation for this. It has become clear that not only coincidence
of neuronal firing has an effect on synaptic efficacy (Brown et al., 1996;
Rauschecker & Singer, 1979; Tsumoto, 1992). Although coincident activity
of two neurons can lead to synaptic strengthening, antiphasic activation of
the neurons can reduce their connection strength. If one neuron fires while
the other is silent, their synapse may become weaker, a process sometimes
called Anti-Hebb learning. The correlation rule mentioned in Chapter 2 cap-
tures important features of the known principles underlying synaptic plas-
ticity, in particular, Hebbian and Anti-Hebb learning. The correlation rule
implies that each learning event includes strengthening of certain synapses
(the synapses between coactivated neurons) as well as a weakening of other
synapses (the synapses between activated and inactive neurons). Thus, if
parameters are chosen appropriately, the average connection strength does
not increase when engrams are being stored in an autoassociative network.
This would make it less likely that, after substantial learning has taken place,
the network shows catastrophic overactivation.

5.1.3 Sparse Coding

A second strategy for minimizing the overactivation problem is to use what
has been termed sparse coding. This means that, among the many neurons
in a network, only a small subset of neurons contributes significantly to
the representation and processing of each individual engram stored in the
network. The activity state of the entire network can be coded using a vec-
tor of numbers, with each number giving the activity value of one neuron
of the network. For sparse coding, each engram can be characterized by
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only a few high values (for example, 1, meaning “strongly active”), whereas
most other values are low (0, for example, meaning “inactive”). One may
argue that, in this case, changing low values to high values may have the same
effect in deteriorating the engram as lowering high values. However, this is
not correct for an autoassociative network, in which engrams are sparsely
coded. Take the example of an autoassociative network of 100 neurons in
which 10 engrams are stored, each by way of 10 different neurons. The 10
neurons of each engram would be strongly associated and their common ac-
tivationwould be considered the retrieval of the engram.Evidently, if nine of
the active neurons in the vector defining the engram were not active, the acti-
vation of the remaining 1 neuron would now not allow for engram retrieval.
In contrast, if the 10 were activated and, in addition, nine randomly selected
other neurons defined as inactive by the engram vector would be active –
for example, as a result of noise, the engram could still be retrieved. The
noise would likely activate other engrams minimally, so that they could not
compete with the fully active cell assembly. Only if the nine other neurons
were part of the same engram, unlikely in the case of noise, this then strongly
excited ensemble could compete with the fully active engram (but would still
not reach its activity level). Still, the same engram would be retrieved. There-
fore, sparse coding implies that, on average, inactivating neurons defined as
active by an engram vector has a stronger effect on the retrieval outcome
than has the activation of neurons specified as inactive by the vector. One
can therefore consider the neurons specified as active by the engram vector
as primarily relevant for representing it.

These considerations underlie the postulate crucially that objects and
words are represented as cell assemblies or functional webs. If words are
assumed to be represented as functional webs, this has the implications (i)
that each word engram is defined by an activity vector specifying the activity
state of all neurons in the network (i.e., the cortex or brain), and (ii) that
sparse coding is used. In other words, one cortical cell assembly is assumed
to include only a small percentage of the neurons in the cortex. Estimates
of actual cell ensemble size actually range between thousands to 1 million
cortical neurons (Palm, 1993b). This is consistent with the sparse coding
assumption.

Most cortical neurons usually fire at a low rate of a few action potentials
per second. They become more strongly active only in response to specific
stimuli and are not much affected by the rest (Hubel, 1995). These facts are
consistent with and therefore support the notion of sparse coding of repre-
sentations in the cortex. Furthermore, a welcome property of sparse coding
is that the memory capacity of an autoassociative memory is largest if sparse
coding with small overlap of representations is applied (Palm, 1980, 1990).
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In sum, sparse coding not only has computational advantages but is also
likely to be used for information storage in the cortex. One of its important
consequences is the generally low activity level in the associative network,
which further reduces the likelihood of overexcitation.

5.1.4 A Cybernetic Model of Feedback Regulation
of Cortical Activity

Apart from correlation learning and sparse coding, a third strategy is likely
to be used by the brain to prevent overexcitation. Even in an autoassocia-
tive network with moderate average connection strength, strong stimulation
from outside may overactive the neurons. However, lack of stimulation may
cause activity to die out. To prevent these undesired outcomes, a regulation
mechanism designed to keep the activity level within certain bounds must be
postulated. In the real brain, thismechanismwould control the activity status
of the cortex. The regulation mechanism would respond to strong activity
increase by a process of inhibition or removal of background activity, that is,
disfacilitation. If activity is about to die out, the control device may provide
more background activity to elevate the excitation level again.

An important mechanism for controlling excitation is provided by the
small inhibitory cells in the cortex itself. As mentioned in Chapter 2, local
inhibitory circuits can reduce activity in small pieces of gray cortical matter if
much excitation is providedby local pyramidal neurons. Thus, overexcitation
in the cortex appears to be counteracted by a local feedback regulation
mechanism.

A different more global control mechanism has been formulated in terms
of a cybernetic feedback–regulation circuit (Braitenberg, 1978a). The feed-
back regulation device would take the global activity level, A, in the cortex –
or any other part of the brain, B – as its input and compute an output depen-
ding on how far this measured activity value A deviates from a preset target
value. The output of the regulation is fed back to the cortex. This feedback
value is called θ , which is calculated, at each point in time, as a function of the
activity state A. It can be conceptualized as global background activity that
is increased or decreased to move A toward the target value. Braitenberg
(1978a) called this mechanism threshold control, a term that may suggest
that the parameter actually changed by the regulation device is the thresh-
old of individual cortical neurons. However, as pointed out by Braitenberg,
it is likely that membrane potentials are the variable influenced by feed-
back control in the brain. If the threshold of a neuron is defined in terms of
the change in membrane potential needed to activate the cell, an increase
in background activity lowers the threshold and a reduction in background
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Figure 5.1. The idea of threshold regulation as formulated by Braitenberg. A brain (B) re-
ceiving input (I) and producing a functional output (F) has a second output that includes
information about its activity state (A). Based on this second output, threshold values (θ )
of the neurons in the brain are recalculated and fed back to the brain. Feedback control is
such that higher activity in the brain raises the threshold and lower activity attenuates it.
A feedback control mechanism is necessary for keeping brain activity within certain limits.
Adopted from Braitenberg, V. (1978). Cell assemblies in the cerebral cortex. In R. Heim
& G. Palm (Eds.), Theoretical approaches to complex systems. (Lecture notes in biomathe-
matics, vol. 21) (pp. 171–88). Berlin: Springer.

activity elevates it again. The threshold control mechanism postulated by
Braitenberg is illustrated in Figure 5.1.

Although there is agreement that regulation of cortical activity is neces-
sary, the exact characteristics of the mechanism and the brain systems that
realize it are still under discussion. For example, the threshold control mech-
anism regulating the activity state of an autoassociative network may take
several alternative variables as its input. It could look at the actual number
of neurons active in a given time window or at the average frequency of their
action potentials. When it comes to specifying the working of the mechanism
in more detail – as shown in Chapters 10–12 on grammar mechanisms – it is
assumed that the threshold control mechanism detects fast activity increases
and provides global inhibition if activity raises substantially. In particular,
the control mechanism is assumed to become active if a previously inactive
neuronal ensemble ignites. Furthermore, the assumption is that excitation
is provided if activity levels are generally low. This is one of several realistic
possibilities to model a threshold regulation mechanism.

There are alternative or complementary, proposals highlighting the pos-
sible role of cortico-cortical (Milner, 1996), cortico-striatal (Wickens, 1993),
and hippocampal (Fuster, 1995; Miller, 1991) connections in controlling the
activity level in the neocortex. It is not clear, however, which of these brain
structures is most crucial for regulating the activity level in the neocor-
tex. It may well be that more than one of the well-known loops formed
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by the cortex and other brain structures play a crucial role as regulation
devices.

5.1.5 Striatal Regulation of Cortical Activity

One putative circuit is now described in more detail to illustrate how a
regulation mechanism might operate. The neocortex is intimately linked to
subcortical brain structures. An important loop is formed by projections
form the cortex to the neostriatum (Putamen and Nucleus candatus), from
there to the paleostriatum (or Pallidum), and finally to the thalamus, from
where projects run back to the cortex, in particular the frontal lobes. Two of
these links are inhibitory, form neostriatum to paleostriatum and from there
to thalamus, so that the two inhibitory connections in series produce an
activating effect. Therefore, cortical activation causes additional cortical ex-
citation through this striatal–thalamic loop. Among the structures involved
in the loop, the neostriatum is known to include many neurons that can in-
hibit their local neighbors and, by way of indirect connections, can have an
inhibitory or excitatory effect on more distant neostriatal neurons as well.
It thus appears that if neurons in the neostriatum are being activated by
their cortical input, a complex pattern of selective inhibition and excitation
is being produced (Wickens, 1993).

In essence, there is a subcortical loop, including neostriatum, pallidum,
and thalamus, throughwhich the cortex can stimulate itself. In addition, there
is the inhibitory network in the neostriatum that can be the basis of competi-
tion. This architecture has been proposed to realize a regulation mechanism
also affecting cortical activity dynamics (Wickens, 1993). One proposal was
that distributed cortical neuron ensembles are linked to small populations of
neurons in the neostriatum, paleostriatum, and thalamus, and that each cor-
tical neuronal assembly self-activates through the cortico–striato–thalamic
loop. Given that each cortical assembly has this subcortical extension, the
striatal inhibitory neurons can provide the basis for competition between the
different ensembles. This is schematically illustrated in Figure 5.2, in which
open and filled circles are thought to represent two neuron ensembles. Note
that the two overlap in their cortical part, but inhibit each other by way of
the inhibitory connections between their neurons in the neostriatum (Miller
& Wickens, 1991; Wickens, 1993).

These considerations demonstrate that feedback regulation of cortical
activity can be implemented in the brain. Proposals for such implementation
are available and in agreementwith cortical structure and function.Theexact
wiring must be clarified by future research.
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Figure 5.2. A possible realization of a regulation device in the brain is illustrated. Cortical
neuron ensembles are assumed to be strongly connected to subcortical neurons in the
neostiatum, paleostriatum, and thalamus. Each cortical neuronal assembly can activate itself
through this subcortical loop. Inhibition between cortical neuronal assemblies is provided
indirectly by the inhibitory connections in the neostriatum. Filled and open circles indicate
two overlapping webs. The subcortical inhibition can prevent simultaneous ignition of both
overlapping webs.

5.1.6 Summary

The problem of cortical activity regulation can be minimized if correlation
learning, sparse coding, and feedback regulation are being applied. This
seems plausible neurobiologically. The basic idea therefore becomes that
correlation learning leads to the formation of sparsely coded representa-
tions of objects and words, each by one functional web, and that feedback
regulation keeps the cortical activity level within certain bounds.

The feedback regulation mechanism can be described in cybernetic terms,
and there are also proposals to spell it out in the language of neuronal
circuits. One possibly is that the inhibitory neurons in the neostriatum play
a role. Full activation of one of the neuron ensembles would, by way of
striatal inhibition, prevent other competing networks becoming active as
well. In caseof lackof strongactivity in the cortex, thepositive feedback loop
through subcortical nuclei could enhance the cortical activity level gradually.
The inhibition between neuronal assemblies can be provided even if the
cortical ensembles overlap – that is, if they share neurons. The illustrated
circuit shows that it is possible to keep overlapping cortical representations
and activity patterns functionally separate. It is therefore possible to realize
functionally discrete engrams by overlapping neuron ensembles.
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5.2 Overlapping Representations

How would functional webs representing related words be organized? A
similar question is, how can different readings of the same word or two
different ways to realize it phonologically, be modeled? The general an-
swer proposed for these questions will be that related items are organized
as overlapping cortical neuron ensembles. Putative mechanisms for such
overlapping representations have been specified in Section 5.1. In general,
these mechanisms allow each neuronal representation α to become fully
active, whereas, at the same time, preventing those neurons of other over-
lapping ensembles β, γ , . . . , ω that are not included in α from becoming
strongly active as well. In the proposed jargon of functional webs, the more
precise formulation is the following. The ignition of α prevents other webs
β, γ , . . . , ω, some of which overlap with α, from igniting at the same time.
The overlap areas α shares with β, γ , . . . , or ω would be activated as part of
the ignition of α.

The following proposal is that overlapping but mutually exclusive dis-
tributed representations underlie the processing and representation of dif-
ferent types of related words. As pointed out in Chapter 4, functional webs
representing individual words may include

� a phonological or word-form related part located in perisylvian language
areas and strongly lateralized to the left

� a semantically related part distributed over various areas of both hemi-
spheres, whose topography may depend on semantic word properties.

The two parts, the form/phonological and semantic subwebs, would be func-
tionally linked, and thus exhibit (i) similar dynamics and (ii) mutual func-
tional dependence.

In this framework, the representation of phonologically and semantically
related words is straightforward. Semantically related words should overlap
in the semantic, widely distributed, bihemispheric part of their functional
webs, whereas phonologically related words should share neurons in the
perisylvian lateralized part of their functional webs.

The overlap between representations also assumed by many other psy-
cholinguistic theories (Section 6.2) explains why words closely related in
meaning and form can influence or prime each other. In this context, to
prime means that, in experiments investigating word processing, the pre-
sentation of one of the related items, also called the prime, influences the
processing of the other related item that is presented later, usually called
the target. Priming effects can be facilitatory or inhibitory, that is, the prime
word can improve or deteriorate the processing of the target word. Both
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semantically and form-related words can have a facilitatory priming effect
on each other (Humphreys, Evett, & Taylor, 1982; Meyer & Schvaneveldt,
1971). It must be mentioned, however, that the paradigm and, in particular,
the onset with which the stimulus words are being presented can have an
effect on whether a priming effect is obtained, and on whether it is facilita-
tory or inhibitory (Glaser & Düngelhoff, 1984; Levelt et al., 1991; Mohr &
Pulvermüller, 2002).

The issues of semantic and form-related overlap of functional webs is
discussed in greater depth in the following subsections.

5.2.1 Homophones and Form-Related Words

Syllables such as “spy” have at least two possible meanings with only minor,
if any, relation to each other. How would such homophonous (or polysemic)
words be organized in a model of functional webs? The syllable may occur
frequently in the contexts of spiders and secret agents. The web represent-
ing the word form could, therefore, develop connections to the neuronal
counterparts of both word meanings. As argued in Chapter 4, these word-
form related or phonological webs should be localized in the perisylvian
cortex, whereas the meaning-related neurons would primarily be expected
outside the perisylvian cortex, in extra-perisylvian space. In addition, only
the form-related assemblies would exhibit strong laterality.

Now the problem arises that perception of the syllable “spy” will acti-
vate both semantic representations at a time. This is not desired; the two
possible word meanings should be kept separate. Conceptually, it is best to
speak about two word representations, each with its specific meaning, that
share their phonological representation. Likewise, it appears appropriate to
postulate two neuron ensembles, one for each word, that overlap in their
perisylvian phonological part.

The mutual exclusion of the two overlapping functional webs could be
provided by a regulation mechanism of the type discussed in Section 5.1.
A scenario for this would be as follows: A word stimulus would activate
the phonological part shared by the two functional webs representing the
two words. Because the semantic parts of both word webs are strongly con-
nected to the shared phonological representation, they both receive exci-
tation. There is a race between the two overlapping word webs that finally
ends in the ignition of one of them, the one reaching its activation threshold
first. The outcome of the race is likely determined by the internal connec-
tion strength of each of the overlapping webs – the web of the more frequent
homophone being more likely to ignite first – and by activity in the webs due
to input in the past, for example, preactivation of the web of the word that
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best fits into the context. The ignition of one of the word webs activates the
regulation mechanism, thus preventing the ignition of the competitor. Nev-
ertheless, as detailed, the competitor web initially profits from the activation
process because it is partially activated in the initial phase of the activation
process, before the ignition takes place.

This scenario is reminiscent of psycholinguistic ideas developed on the
basis of priming studies (Swinney et al., 1979). Reaction time studies indi-
cated that presentation of a homophonous word form first leads to partial
activation of all of its homophone meanings, whereas only at a later point in
time is one of them being selected while the others are suppressed. Strongly
connected overlapping word webs that activate each other, but cannot ignite
at the same time as a result of regulation processes, may be the mechanism
underlying this; initial broad partial activation of all overlapping webs and
later selective ignition of one of them would be the tentative neurobiological
realization.

This mechanism is not necessarily restricted to real homophones or poly-
semes. The same process could underlie the decision between different
“submeanings” or uses of one particular word. School, for example, can
either refer to a place (“the school in Brentwood”), an event in such a place
(“school begins at nine”), a body of persons (“the school of Tesnièrian lin-
guists”), or an animal group (“a school of fish”). These readings are related,
but nevertheless exclude each other in a particular context. Their putative
neuronal counterparts are overlapping functional webs that share some of
their neurons in perisylvian areas, but inhibit each other by way of a regula-
tion mechanism.

Homophones share their word form. There are also words composed
of other words, and similar arguments can be made with regard to them.
In this case, the form of one word includes the form of another one. This
is called form inclusion and the included word form is distinguished from
the including word form. This relation of form inclusion may hold for the
words’ phonology, orthography, or both. Examples of word pairs one of
which includes the other are, for example, scan vs. scant, pair vs. repair, and
depart vs. department. In these cases, the relationship between the words
concerns their formal aspects, but not their meaning. The representation of
the form of the smaller item that is part of the larger word can be envisaged
to be organized as sets of neurons, one of which includes the other. This idea
is sketched in Figure 5.3 in the diagram on the lower left.

It may not be appropriate to postulate that the form-related neuronal
populations fully include each other, because the pronunciation of the in-
cluded item is usually affected by the context of the larger one. There-
fore, the included item pronounced in other contexts can exhibit acoustic



5.2 Overlapping Representations 85

Figure 5.3. Putative organization and cortical distribution of functional webs represent-
ing related words. Each functional web is represented schematically as two ovals: one for
its semantic part and the other for the phonological or word-form related part. The ovals
would therefore represent sets of phonological and semantic neurons. Overlap between
ovals means that webs share neurons. As discussed in Chapter 4, the semantic subassem-
bly would be expected to have most of its neurons located outside the perisylvian areas,
whereas the phonological subassembly would be placed in the perisylvian areas. Lines rep-
resent connection bundles linking neurons within a functional web. (Upper left) The dia-
gram sketches the proposed organization of functional webs realizing homophonous words
(“spy”), or different readings of the same word (“school”). (Upper right) Putative correlate
of synonymous – or near synonymous – words (“car” and “automobile”). (Lower left) If one
word form includes another word form (“repair” and “pair”; this is dubbed form inclusion),
the relation of inclusion may also hold for the respective phonological webs. (Lower right)
In the case of hyperonymy, if one term is more general than another (animal vs. dog), the
relation of inclusion may hold for the semantic parts of the webs.

features it lacks in the context of the larger word that includes it. It may
thus appear more appropriate to postulate overlapping phonological repre-
sentations rather than that one is fully included in the other (as the written
representation would suggest). Still, however, there would not be too many
specific form features – and therefore neurons – of the small items, but
several specific features – and neuronal correlates thereof – of the larger
item.

It is particularly difficult for an autoassociative memory to keep separate
two representations, one of which fully includes the other. A mechanism for
this could be envisaged, for example, on the basis of the striatal inhibition
model, as sketched in Section 5.1. However, it is certainly easier to sepa-
rate two distributed representations if each includes a substantial number
of neurons that distinguishes it from the other representation. Ideally, the
number of neurons shared between two ensembles should be small, certainly
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not larger than the number of the neurons distinguishing one web from the
other. The larger the percentage of overlapping neurons becomes, the more
difficult it becomes to keep two representations apart.

It would appear that the brain uses an appropriate strategy for overcom-
ing the overlap problem. Word forms that include others can be attached to
different semantic representations. These semantic representations differ-
entiating between the similar forms can, so to speak, be used as handles to
keep the word forms separate. The non-overlapping parts, rather than sep-
arate neurons representing lexical items, can then be the target on which a
regulation mechanism can operate in order to exclude full activation of one
of the ensembles while the other one ignites. It is clear that various excita-
tory and inhibitory processes could occur between suchpartially overlapping
networks of neurons if they are stimulated while activity is controlled by a
regulation mechanism. Nevertheless, the overlap would make facilitatory
effects possible.

Again, mutual exclusion of ignitions of overlapping neuronal representa-
tions in a regulated system profits from relatively small overlap regions. Such
mutual exclusion is difficult in a system of fully inclusive neuronal ensem-
bles. If form representations strongly overlap, it is possible to maximize the
distinguishing neurons by adding completely different semantic web parts
to the similar form representations. This may be so if word forms have very
different meanings. Many lexicalized or semantically opaque words include
at least one part of their form that can also be used in a completely dif-
ferent meaning. The meaning change results, for example, if a derivational
affix is attached to a noun or verb stem, as, for example, in the previously
mentioned pairs repair vs. pair and department vs. depart. In a model of
functional webs, they would be realized as form-inclusive ensembles, as
sketched in the diagram on the lower left in Figure 5.3.

The representation is different for very similar forms whose meaning is
closely related and can be deduced from the meanings of the morphemes
they are composed of. These semantically transparent words, such as unpair
or departure, can be conceptualized as being composed of their parts at
both the word form and the meaning level. The words depart and depar-
ture have the same possible referent actions. Representations of words such
as departure would be composed of the two distinct representations of de-
part and the derivational affix (Marslen-Wilson, Tyler, Waksler, & Older,
1994). This proposal is consistent with the priming effects observed between
semantically transparent composites and their submorphemes (departure
and depart), which appears to be more solid and stable than priming be-
tween semantically opaque forms and their elements (department vs. depart)
(Marslen-Wilson et al., 1994; Rastle et al., 2000).



5.2 Overlapping Representations 87

Translated into the language of functional webs, this may mean that a se-
mantically transparent complex form isorganizedas awidelydistributedweb
(realizing a contentword) andamore focusedweb (realizing thederivational
affix). These two networks would be connected serially, by what is called a
sequencing unit, or sequence detector in Chapters 9–12. Facilitation effects
wouldbe the result of theactivationof the samenetworksbyprimeand target
stimuli. Instead, the relation between a lexicalized or semantically opaque
form and its parts is more complex, as suggested by Figure 5.3, lower left
diagram. Some facilitation could, in this case, be the result of the overlap
of form representations, but the competing meaning representations would
work against it.

5.2.2 Synonyms

The mirror image, so to speak, of homophony is homonymy or synonymy.
Two different word forms share their meaning – or are very similar in mean-
ing. Examples would be automobile and car. The relation between synonyms
may be realized cortically by functional webs sharing, or largely overlapping
in, their semantic, mainly extraperisylvian, part.

A decision between the two overlapping representations is necessary
when the semantic part shared by the neuron ensembles are activated. If
a picture must be named, the overlap region of two synonyms (or near
synonyms) would be activated to the extent that some activity would also
spread to each of the word-form representations. The best activated word
web would ignite first, thus inhibiting the competitor through the regulation
mechanism. Again, activity already present in the webs at the start and their
internal wiring strength may be crucial for deciding which of the alterna-
tives is being selected. The average internal connection strength of the web
is likely influenced by the frequency with which the word is used in language.

The upper right diagram in Figure 5.3 gives an idea of how the repre-
sentation of synonyms may be realized in the brain; by identical or strongly
overlapping widely distributed representations of the meaning and distinct
perisylvian left-lateralized subwebs for the different word forms. This is es-
sentially themirror imageof thehomophony/polysemydiagramon the lower
left. Therefore, onemaypropose that the general activity dynamics and inter-
ference effects should resemble each other. This is, however, not necessarily
the case because the overlap of homophone representations is necessarily
with respect to a temporally structured neuronal unit, whereas a possible
temporal structure in a semantic web part may be disputed (see Chapter 8).

A word can be realized in different ways. Different realizations of the
same word, for example, its pronunciations in different dialects, can be
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conceptualized using a similar mechanism as proposed for synonyms. In
contrast to synonyms, a strong overlap should exist not only in the semantic
parts of the webs, but also in the phonological parts. Chapter 8 addresses the
issues of alternative realizations of the same word form.

The meaning of words can be organized hierarchically. Words such as
animal, dog, and greyhound refer to wide and more narrow categories of
objects, and therefore amodel basedon functionalwebswould conceptualize
theirmeaningsasneuron sets that includeeachother.The larger category– to
which the hyperonym (“animal”) refers – would include a smaller category –
referred to by the hyponym (“dog”). The semantic part of the web of the
hyperonymwould therefore include the semantic part of the hyponym’sweb.
This is illustrated by the diagram on the lower left of Figure 5.3. Clearly, the
overlap of semantic representations should allow for facilitatory priming
effects, whereas the alternative word forms can be the basis of competition.

5.2.3 Prototypes and Family Resemblance

Theclaim that amoregeneral term’s semanticweb is theunionof all semantic
representations of its hyponyms is in need of refinement. The lower-level
categories share features, and the respective semantic representations can
therefore be conceptualized as sets of semantic feature neurons that overlap.
The name of the higher-level category can be used to refer to all objects the
hyponyms can refer to. Therefore, the higher-level category name correlates
best with this overlap of the hyponyms’ semantic features. Given correlation
learning is crucial, the connections between the word form of the more
general term and its semantics relies primarily on the strong connections
between word form web and the semantic overlap neurons.

Figure 5.4 schematically represents the shared semantic features by the
intersectionof threeovals.Thevisual featuresof themouthsor eyesof typical
frequently encountered animals, such as dog, cat, andmouse,maybe thought
to be located here. If a less prototypical animal lacks some of these features,
or even most of them – think of the words octopus or jellyfish as examples –
its semantic representation would not link into this overlap region (dashed
oval in Fig. 5.4). It is therefore clear that priming between the hyperonym
and the less prototypical hyponym would be much reduced compared to the
priming expected between hyperonym and prototypical hyponyms.

If a picture of an object is being presented to a person and he or she is
asked to produce a name for it, the activation race between possible word
representations would again be determined by their internal connection
strengths. The outcome of the race depends on the correlation among the
relevant neurons and, thus, for example, on the frequency with which the



5.2 Overlapping Representations 89

Figure 5.4. Putative organization of semantic relationships between concepts: overlap of
prototypes and family ressemblance. Ovals represent semantic web parts of individual
words. Overlap means shared semantic features between word representations and shared
feature neurons between webs. Think of the overlap area to include neurons responding to
visual features ofmouth, eyes, and heads of typical animals. Three overlapping semantic web
parts of prototypical concepts are illustrated by ovals in solid lines (e.g., cat, frog and shark).
A fourth semantic web representing a nonprototypical concept may not link into the over-
lap area of the three prototypical webs, but nevertheless exhibits family ressembence with
them – that is, it would share some semantic feature neurons with some of the other webs
(e.g., jellyfish). The union of all of these semantic representations may be considered the
semantic part of a web realizing a hyperonym of the words whose meanings are represented
by the individual ovals (e.g., animal ). However, the sound-to-meaning correspondence of
the hyperonym would be realized primarily as connections between the overlap area and
its word-form representation.

respective words are used (their lexical frequency). Frequently occurring
basic-level category names, such as dog, may therefore be preferred to rare,
more specific terms, such as greyhound. A higher-level category name will
lose the race against a more specific term (animal vs. dog) primarily because
of the better correlation between the specific set of activated semantically
related features on the one hand and the basic category name on the other.
An additional factor is that higher-level categories can refer to very different
objects or actions, as Wittgenstein (1953) illustrated using the word game as
an example. The correlation among the semantic features these words relate
to is therefore necessarily low, resulting in relatively weak average links
within the semantic part of their webs. The word web of dog would therefore
ignite faster than that of the more general term animal – because of its better
meaning-form correlation and also faster than the web of the more specific
term greyhound, because of its higher lexical frequency. (Additional factors
may also be relevant.) These considerations are reminiscent of the priority
of basic level categories of the dog type in cognitive processing as made
evident by behavioral testing (Rosch et al., 1976).
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The illustration of overlapping meaning representations in Figure 5.4 has
further implications for a model of functional webs or other types of strongly
connected neuron ensembles. It shows that the borders of a functional web
are not necessarily easy to define (formal definitions of neural assembly have
been discussed by Palm, 1981). The word animal, whose meaning may be
thought of as the union of all the features of its hyponyms, would have the
union of the semantic web parts of its hyponyms as its neuronal equivalent.
In contrast to thiswide definition, onemay argue that only the overlap region
of semantic neurons shared by all hyponym webs should represent the “core
meaning” of the more general term. The problem with this latter view is that
the overlap of all hyponyms’ semantic webs may be zero, or at least not very
specific.

This is essentially Wittgenstein’s (1953) argument about family resem-
blance.Themeaningsof aword indifferent contexts donotnecessarily havea
common kernel of semantic characteristics (or criteria). The different mean-
ings may just resemble each other like members of a family, without sharing
a set of features or genes. Likewise, the semantic neuron sets representing
the different context-dependent meanings of the word animal may not have
a significant overlap. The situation may just be as illustrated in Figure 5.4,
in which the uncommon meaning (e.g., if the word animal is used to refer to
jellyfish) is linked into theother semanticwebparts butnot their intersection.

This raises deeper questions about the definition of cell assemblies and
functional webs. The implication of these considerations are that a cell as-
sembly or functional web should not be conceptualized as a static neuron set
with sharp boundaries (Braitenberg, 1978a; Posner & DiGirolamo, 1999).
Depending on the general background of cortical activity and previous acti-
vation of the web, more or less neurons may become involved in an ignition
of a given functional web.

These considerations show that the view “functional web = word” raises
theoretically interesting questions. A necessary conclusion is that functional
webs should not be thought of as constant neuron sets with sharp boundaries
that always ignite and reverberate in the same way. Although a core of word
form and semantically related neurons may always be included in the igni-
tion, there are neurons at the border of the set, so to speak, that may or may
not takepart in an ignition.Their inclusion intoor exclusion from the ignition
process would depend on context – that is, on background activity and activ-
ity alreadypresent in theweb.Asanexample, the coreof the semantic ensem-
ble could be defined as the neuron set shared by at least two of the four over-
lapping ovals in Figure 5.4, representing the more typical features of animals.
A similar point is made with regard to phonological features in Chapter 8.
Chapters 10–12 focus on words used in different grammatical contexts and
how they may be modeled in a network composed of functional webs.
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5.3 Web Tails

This section discusses two very different issues that may nevertheless have a
similar neurobiological basis:Howmay the cortical representationofwritten
words link into the functional webs set up for words and what may be the
putative neurobiological correlates of affective meaning?

5.3.1 Affective and Emotional Meaning

The idea that cortical neuron webs may be linked to additional subcortical
circuits is discussed in Section 5.1. Evidence for the involvement of thalamic
and striatal circuits in language processing comes from clinical studies. Fur-
ther, emotional and affective word properties may be represented by neu-
rons in the amygdala and midbrain. As a result of correlation learning, these
subcortical neurons may be attached as a tail, so to speak, to the cortical neu-
ron ensembles representing words (Pulvermüller & Schumann, 1994). There
have been several tentative explanations of the variable success of learners
who started to learn their second language late in life. One proposal assumes
differential attachment of amygdala–midbrain tails to word webs. Only if
word processing and subcortical emotionally related brain activity corre-
late, the learners’ word webs were envisaged to grow amygdala–midbrain
tails. Activation of these networks would flood the forebrain with dopamine,
thereby possibly facilitating further language-related learning. Therefore, a
person learning a second language who has already acquired a few word
webs with amygdala–midbrain tails may facilitate storage of more informa-
tion, including language and grammatically related information, when these
networks are active.

Although the proposal has led to research efforts that yielded data con-
sistent with the basic idea at both the behavioral level (Schumann, 1997) and
that of neurophysiological investigation (Montoya et al., 1996), a systematic
investigation using functional brain imaging techniques must await future
research.

5.3.2 Linking Phonological, Orthographical,
and Meaning-Related Information

In Chapters 4 and 5, the visual representations of written words were largely
ignored. The webs realizing word forms were proposed to be phonologically
related. Clearly, however, literate speakers must have acquired learned rep-
resentations of written words and their neurobiological counterparts are
likely localized in visual areas of the occipital and inferior temporal lobes.
Equally clearly, however, the written word-form representations should be
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coupled to the perisylvian phonological webs, and this should be so for all
word categories alike. Therefore, no predictions on word-category differ-
ences can be derived, except if the correspondence of written and spoken
word form differs, as is the case for words with regular and irregular spelling
(home vs. come).

Correlations are present at the levels of features of letters and phonemes
and at the level of spoken and written word forms. Obviously, letter–sound
correlation plays a greater role for regularly spelled words than for irregu-
lar ones. Additional correlation exists between aspects of the written word
form and aspects of referential meaning. The correlation between individual
letters and meaning aspects might not be high in most cases; however, if let-
ters and their local context are assumed to be processed as units below the
word and morpheme level, relevant correlation between letters-in-context
and meaning aspects can also be postulated. The proposal is that neurons
related to context-sensitive variants of a phoneme or grapheme would link
with semantic neurons. This suggestion is worked out in greater detail with
regard to phonemes in Chapter 8.

Neuropsychological models in the tradition of Morton’s logogen model
(1969) have shed light on the complex relationship between systems involved
in the processing of input- and output-related information about spoken
and written words. Autonomous processors, modules for the production and
perception of spoken and written words, were postulated and related to
modality-specific lexical modules and one central semantic system (Ellis
& Young, 1988).

The assumption of a uniform central semantic system contrasts with other
approaches in which much emphasis is put on multiple semantic systems pro-
cessing different types of category-specific semantic information. Chapter 4
summarized such an approach.

Figure 5.5. (Upper matrix) Matrix display of the core part of the modular model of word
processing proposed by Ellis and Young (1988). The terms in the rows and columns refer to
individual modules. Each dot represents a connection from a module indicated in the left
column to a module indicated in the top line. Filled dots refer to within-module connections.
Open dots refer to connections between modules. Only 29% of the possible between-
module connections are realized. (Lower matrix) If information about spoken and written
word forms and about meaning is thought to be processed by neurons in an autoassociative
memory, all possible connections should be present and effective. In this diagram, proposed
local cortical connections are indicated by filled dots and long-distance cortical connections
are indicated by open dots. The connections can be taken to define the internal structure
of one word web. The matrix lacks detail about important aspects of the neurobiological
model. For example, it does not specify category-specific semantic systems and glosses
over the fact that phonologically related neurons may be included in (rather than connected
to) the web realizing the word form. Nonetheless, the matrices stress a potentially important
difference between a modular approach and an autoassociative memory model.
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The main proposal of modular models of word processing is that the men-
tioned types of word-related information are processed in separate modules
with specific selective connections between them. Figure 5.5 illustrates the
modules and connections postulated by one of the most developed modular
models of word processing (Ellis & Young, 1988). The model is presented
here in the form of an autoassociation matrix in which dot signs represent
connections andblank squares represent their absence.Each termappearing
on the left (and again appearing at the top) refers to a distinct functionally
autonomous system, a module. It can be seen that more than half of the
81 possible connections between modules are assumed to be not present. It
appears appropriate to assume very strong connections within each of the
ninemodules, because informationprocessing is primarily takingplace there.
These within-module connections are indicated by the black dots on the di-
agonal. Between modules, only a minority of the possible connection is pro-
posed to be realized (21 out of 72 possible ones, which equals 29 percent).
The sparseness of connections is motivated by the research strategy applied.
The zero assumption was no connection, and each connection was required
to be motivated by a double dissociation or by at least one patient whose
behavior was interpretable as evidence that the respective type of informa-
tion transfer was specifically impaired. Thus, insertion of an open dot (or
arrow in the original diagrams) needed justification by neuropsychological
dissociations.

An associative memory model of the respective types of information ex-
change would suggest a different conceptual approach. The cortex would be
considered an autoassociative memory in which correlation causes strong
links. It cannot be disputed that writing and seeing a letter is accompanied
by neuronal activity in visual and motor cortical areas, including primary but
probably extending into higher-order areas. Because as a rule the frontal and
temporo-occipital systems are strongly linked and connections are recipro-
cal, it makes sense to postulate that strong reciprocal connections develop
between the visual and graphic representations. This leads to the proposal
that additional reciprocal connections between writing gestures and visual
analysis (not present in theoriginalmatrix) should exist. Furthermore, young
children learning to write would usually articulate and/or hear the respective
phonemes/graphemes. Thus, reciprocal connections between auditory and
visual phoneme and grapheme systems should develop as well. This leads to
the addition of four more connections, linking the two analysis systems to
each other and to the output systems also. The same argument should hold
at the level of word forms, and the semantic system should have reciprocal
connections to all other systems. A difference between models would be
that the cotext-sensitive variants of phonemes, and possibly also graphemes,
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would be thought to be part of (rather than connected to) the word-form
representations in the respective lexicons.

In summary, the postulate put forward here is that strong connections are
present between all components of a distributed representation of a word.
The zero assumption would therefore be that neurons involved in the pro-
cessing of one aspect of a word are linked directly to neurons involved in
the processing of all its other aspects. Neuropsychological dissociations can
still be explained within the autoassociative approach, because cutting one
particular connection – together with the partial lesion of adjacent represen-
tations – may still cause a processing defict primarily affecting performance
on specific tasks (see also Excursus I).

In conclusion, a neurobiological model can incorporate aspects of visual
word processing. The neuronal webs may include attachments or tails that
are connected reciprocally to the neuron sets representing the phonological
word form and the word’s semantics. It must be left for future research
to show how an autoassociative network model can account for the great
variety of neuropsychological symptom constellations involving reading and
writing.

5.4 Summary

This chapter aimed at refining aspects of the functional web model of lan-
guage processing outlined in Chapter 4. Mechanisms for maintaining the
cortical equilibrium of activity were discussed in Section 5.1, and complex
sound-to-meaning relationships of words were treated in Section 5.2. Finally,
the possibility was mentioned that word webs may have additional neuron
populations attached to them that could relate to knowledge about the affec-
tive valence of the words and to the written image of a word and respective
actions involved in writing it.

The regulationmechanismdiscussed inSection5.1plays an important role
in the grammar mechanisms discussed in Chapters 10 to 12. The regulation
mechanism establishing inhibition between strongly connected neuronal en-
sembles can be considered a mechanism that explains a universal feature of
language occuring at various levels. It could be important for the mutual
exclusion of two word forms with the same meaning, of two pronunciations
of the same word, of two meanings of homophonous words, of two readings
of the same word, and even of two interpretations of the same sentence
(word string).



CHAPTER SIX

Neural Algorithms and Neural Networks

What does the investigation of artificial models of networks of neurons con-
tribute to the investigation of brain function in general, and of language
mechanisms in particular? There are at least two possible answers to this
question.

One answer is that an artificial neural model can be used to prove that
a circuit of a certain type can solve a given problem. When thinking about
complex interactions of functional neuronal units, one is in danger of losing
track of what a network actually can, and cannot, do. Here, a simulation may
help by providing an existence proof that a desired result can be obtained
using a given circuitry or circuit structure. A successful simulation never
proves that the network it is based on is actually realized in the nervous
system; it shows only that the network type the simulation is based on is
one candidate. To call it a realistic simulation, other criteria must be met:
in particular, that the network structure can be likened to brain structure
and that the functional principles governing the neurons’ behavior and their
actual behavior have analogs in reality as well.

A second possible answer to the question about the significance of neu-
ron models is that they can serve as illustrations of one’s ideas about brain
function. In the same way as a detailed verbal description or a description in
terms of algorithms, a neuron circuit can help to make an idea more plastic.
However, algorithms or verbal descriptions of mechanisms cannot always
be likened to processing elements in the brain. In contrast, model circuits
always have some relationship to potentially real neuronal mechanisms, and
it is possible to make such a model more realistic by including more detail
about neuroanatomy and neurophysiology into the network’s structure and
functioning.

Historically, neural networks have been of utmost importance in a dis-
cipline one may want to call brain theory, the systematic theoretical

96
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investigation of the function of the brain. Groundbreaking work started
in the 1940s with McCulloch and Pitts’ work, in which symbols called arti-
ficial neurons were used to illustrate ideas about how neurons may realize
logical operations. This chapter introduces these ideas, gives a brief overview
of some neural network architectures, and highlights a few applications to
language-related problems.

Some of the network architectures featured in this chapter exhibit fam-
ily resemblance to the cell assembly framework outlined in earlier chapters.
One obvious difference between the neural network approaches to language
discussed later and the cell assembly framework is that the latter provides
explicit statements about the brain areas in which neuronal processes re-
lated to cognition are postulated. Such statements are sometimes lacking in
neural networks frameworks in which cognitive processes are assigned to
artificial neurons ordered in layers or modules but not to brain areas. It is,
however, not a principle problem to relate neuron layers to brain structures.
Differences and common features betweendifferent types of neural network
proposals are discussed in more detail.

6.1 McCulloch and Pitts’s Logical Calculus as a Starting Point

In the early 1940s, McCulloch and Pitts published a paper titled “A Logi-
cal Calculus of Ideas Immanent in Nervous Activity” (1943). In this article,
the authors discuss putative brain mechanisms possibly underlying the abil-
ity to recognize complex sequences of events. Their “calculus” was later
reformulated and further developed as a theory of finite-state automata
(Kleene, 1956; Minsky, 1972). Considerations were based on circuits made
up of simple computational elements that share properties with nerve cells.
The question was to which type of events such artificial neurons could re-
spond to specifically. In this context, the term event refers either to stimuli
and stimulus constellations in the environment or to neural events – that is,
activity patterns of other artificial neurons spread out in space and time. The
computational units would therefore specifically respond to, or “recognize,”
spatiotemporal patterns of activity (and stimuli), and analogous circuits can
be constructed as producing, or “generating,” similarly complex events.

The proposed artificial computational elements were later called
McCulloch–Pitts-neurons. They transform an input into an output. The out-
put is binary, and the neuron is either active or inactive. This binary character
is inspired by the knowledge about real neurons that, at each point in time,
either generate an action potential as an output or not. Similar to their real
counterparts, the artificial neurons are active at a certain point in time if they
have received enough excitatory input one moment, or time step, before. For
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Table 6.1. The logical operations carried out by the circuits in Figure. 6.1
are OR, AND, NOT, and EITHER–OR (or XOR). The truth conditions of
these operations are summarized. Variables a and b can be thought of as
statements that can be either true (T) or false (F). The table lists the
resulting truth values of statements that include the operators. If T
is replaced by 1 and F by 0, and a and b by the neuron labels α and β,
the activity value of the rightmost “cardinal” cell in the four diagrams
of Fig. 6.1 can be derived from the activity states of the leftmost
“input neurons.”

a b a OR b a AND b NOT a a XOR b

T T T T F F
T F T F F T
F T T F T T
F F F F T F

ease of illustration, the time continuum is, so to speak, sliced into discrete
time steps.

The artificial neurons vary with regard to the number of simultaneous
inputs they need for becoming active. One neuron may be activated by only
one input; it would have a threshold of 1, whereas others may have a higher
threshold, for instance, of 2, 3, or 10, and would therefore need at least
2, 3, or 10 simultaneous excitatory inputs to become active. The artificial
neurons are usually symbolized by circles, which can be thought to represent
the analog of cell body plus dendrites of real neurons, and by arrows pointing
to other neurons that may be considered to be analogs of axons and their
branches.

The neuron circuits one can build using these artificial threshold neu-
rons can realize logical operations (see Table 6.1). Two neurons α and β

may project to a third neuron γ , whose threshold is 1 (Fig. 6.1, uppermost
diagram). This circuit can be considered a representation of a logical “Or”
operation. The third neuron, γ , becomes active under three conditions: if α

is active, if β is active, or if both α and β are active at the same time step. If
any of this happens at time t, the neuron γ fires at the next time step, t + 1.
Otherwise it remains silent, given it does not receive additional input from
other neurons. Activity of the neuron γ would therefore signify the event
that α or β were active just one time step earlier. One can say that the circuit
realizes, and the neuron γ represents, the logical “Or” operation.

The neurons α or β may be sensory neurons that become active when spe-
cific stimuli are present in the environment. The stimuli, or stimulus features,
may be labeled a and b, respectively. In this case, the activity of the γ neuron
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Figure 6.1. Logical circuits. In each diagram, the
right-most cardinal neuron specifically responds to
an activity constellation of the input neurons on the
left. The cardinal neuron becomes active if neuron
α OR neuron β is active (uppermost circuit), if neu-
rons α AND β are simultaneously active (second
from top), if neuron α was NOT active (third from
top), and if EITHER neuron α OR neuron β have
been active (“XOR” circuit at the bottom). Circles
denote artificial neurons and arrows directed con-
nections of strength 1. The activation threshold is
indicated by a number in the circle. (For further
explanation, see text.)

would represent the complex event that a or b was present in the input.
The event c indicated by the γ neuron’s activity would be equal to “a or b.”
To choose a more concrete example, the sensory neurons may respond to
stimuli appearing at the same location of the visual field. One of them could
be responsive to green color and the other one to circle shapes. In this case,
the firing of the γ neuron would tell one that an object with the feature of
greenness or roundness was present. Therefore, it would fire if the object
was a green ball, an orange, or a crocodile.

By changing the threshold of the γ neuron to 2, the function of the cir-
cuit can be altered (Fig. 6.1, second diagram from top). In this case, two
simultaneous inputs, from neurons α and β, respectively, are necessary to
activate γ . This neuron would now only respond after both sensory neurons
had been active at the same time. Thus, the stimulus features a and b must
both be present. The neuron γ would respond in the event of the perception
of a green ball, but not to an orange or crocodile. This circuit now realizes a
logical “And” operation.

The logical “Not” operation can also be translated into a simple network.
For this to work out, one may want to assume a neuron that is spontaneously
active – that is, a neuron that fires even if not stimulated before. As an
alternative, the neuron may receive continuous input from somewhere else.
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This neuron, γ , could now receive an inhibitory input from a sensory neuron
α so that it would stop firing one time step after α was active. Activity of γ

would therefore indicate that α was not active and, thus, that the stimulus to
which α responds was not present in the input.

More complex circuits of artificialMcCulloch–Pitts neurons are necessary
for realizing other logical operations. One may wish to have a neuron that
responds to green objects and to round objects, but not to objects that are
green and round at the same time. For this purpose, a circuit must be created
that realizes the “Exclusive Or” operation. This is not possible based on one
single McCulloch–Pitts neuron, but would require an arrangement of such
units in two steps, or layers.

One possibility, also illustrated in the diagram at the bottom of Figure 6.1,
is the following: The input neurons α and β each activate one additional neu-
ron, γ and δ, respectively. In addition, each of them inhibits the neuron the
other input neuron activates. Therefore, α activates γ and inhibits δ, and β

inhibits γ and activates δ. A fifth neuron, ε, receives activating input from
both γ and δ.All thresholds are 1, so that one activating input alone –without
presence of additional inhibition – suffices for firing any of the neurons. The
ε neuron now is activated if α was active while β was silent (because γ fired)
and if α was silent while β was active (because δ fired). Simultaneous exci-
tation of α and β does not effect this circuit because the inhibition caused
at the second processing step, the neurons in the middle layer, cancels the
effect of any activation. The circuit can be considered a neural analog of an
“Either–Or” operation. Activation of the network’s cardinal cell, ε, repre-
sents the fact that either input feature a or input feature b was present in
the input. It would respond to the orange or to the crocodile, but not to the
green ball.

Again, this example illustrates that for certain problems, in this case, the
calculation of an “Either–Or” operation, the solution cannot be achieved
by one single neuron. It is necessary to introduce processing steps into the
network and arrange the computational elements in layers through which
activity flows serially. This is an important insight that dates back to the 1940s
and 1950s (Kleene, 1956; McCulloch & Pitts, 1943) and was critical for the
emergence of the strong interest of neural modelers in multilayer networks
in the 1980s and 1990s. A neuron arrangement with an input layer and two
subsequent processing steps can realize any event that can be described by
a logical formula including the logical operators “And,” “Or,” and “Not”
(Kleene, 1956).

Networks of McCulloch–Pitts neurons can not only be used to detect
simultaneous stimuli or events, they can be used to represent complex events
spread out in time as well. For example, the sequence of words in a simple
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Figure 6.2. Illustration of the representation of a com-
plex event – the word sequence “Betty get up” – in a
McCulloch–Pitts network. The neurons in the upper line
are called input units, each of which is activated by the oc-
currence of a given word in the input. The neuron at the
bottom is a string detector that becomes active only if
the word sequence occurs. Numbers indicate the thresh-
old of neurons – that is, how many simultaneous inputs
they need to become to active. The string detector can
be considered a logical unit that indicates that the con-
junction of three assertions is correct.

sentence can be represented by a simple network. Assuming neurons that
respond specifically to individual words of a language, the McCulloch–Pitts
network in Figure 6.2 can be used for detecting the word sequence (1):

(1) Betty get up.

The network shown in Figure 6.2 includes neurons, depicted at the top,
that specifically respond to one of the three words. Because they respond
to a specific input, they can be called input units. At the very bottom of the
graph is a neuron that fires if the string of words had been presented and the
input units have therefore been fired in a given order. Because this neuron
at the bottom fires in response to a string of elementary events, one can call
it a string detector. Apart from the input units and the string detector, the
network is composed of neurons whose function is to delay activity caused
by the early events so that all relevant information arrives simultaneously
at the string detector. Because their function is to delay activation, they
can be called delay units. This type of network transforms a series of events
spread out in time, the serial activation of input units, into simultaneous
events, the simultaneous activation of the neurons feeding into the string
detector. The string detector in Figure 6.2 has a threshold of 3, thus needing
three simultaneous inputs to become active. Therefore, the entire series of
three words must be presented to the network to activate the string detector.
Missing a word, introducing a delay between words, or changing the order
of the words will not allow the string detector to become active.
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Figure 6.3. Modified McCulloch–Pitts network for
sequence detection. Now, sequential activation of the
sequence detectors at the bottom would be the criterion
for string acceptance.

In these example networks, the criterion for the detection of a complex
event by the network was always the activation of one single neuron. This
neuron, the string detector in Figure 6.2 and the neurons representing logi-
cal operations in Figure 6.1, can be called the cardinal cells of the respective
networks. Instead of having a cardinal cell in the network, it is also pos-
sible to introduce a criterion for event detection based on an activity pat-
tern in which more than one neuron participates. Such a criterion could be
that input causes a continuous sequence of neuron firings. The network in
Figure 6.3 could then serve the purpose of string detection, because the neu-
rons in the lower row only become active in sequence if one particular input
sequence occurs. In this case, several neurons would be involved in the string
detection process (bottom row of neurons in Fig. 6.3), apart from the several
input units (top row of neurons in Figure 6.3). Delay neurons are no longer
necessary, because direct connections between the neurons and activation
thresholds include the information about the correct sequence. If string (1),
the string “Betty get up,” occurs in the input, this causes sequential activa-
tion of the three units involved in string detection. If the same words are
presented in a different order, at least one of the string-detecting neurons
fails to become active.

Onemay considermost of the networks discussed so far as heterogeneous,
because their neurons have different thresholds. Activation thresholds of
cortical pyramidal neurons do not differ so much; it is rather the connection
strength of synapses that differs widely between neuronal connections. One
may therefore argue that thesenetworks are inneedof improvement inorder
to make them more realistic. This could be done by changing all thresholds
to 1 and varying connection strengths instead. Because connection strengths
between neurons are known to vary, varying connection strengths in artifi-
cial networks may be considered more realistic than varying their thresholds.
Note that in all diagrams, all connections were either excitatory (lines ending
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in an arrows) or inhibitory (lines ending in a T shape). If, instead, connec-
tion strength was varied, this could be indicated by writing the strength or
weight of each link as a number next to the arrow or line. The “Or” circuit in
Figure 6.1 would not need to be changed, in this case, the connections all re-
ceiving the weight 1. However, the connections in the “And” network would
need to be changed to 0.5 so that the cardinal neuron, whose threshold would
be set to 1, would need two simultaneous inputs to become active. In the
same way, some of the connections in Figure 6.3 would need to be readjusted
to 0.5. The function of the circuits would not change as a consequence of
these adjustments. The less realistic circuits depicted in the figures can nev-
ertheless be preferred for illustration purposes. One reason for preferring
them might be that they require specification of a smaller number of param-
eters and may, therefore, be considered easier to oversee. Note that in the
depicted networks, the number of connections that must be labeled is usu-
ally greater than the number of neurons whose threshold must be specified.
Depicting the less realistic circuits is also not a problem here because the
more realistic equivalent solutions can be derived easily.

Figures 6.2 and 6.3 show two ways in which a sequences of events can be
mapped onto neuronal dynamics. In one case, a string detector is present
that receives simultaneous input informing it about a specific serial activa-
tion pattern. In the second case, the sequence of stimuli is imitated by a
sequence of activation of neurons involved in the sequence detection pro-
cess. As pointed out in Chapters 8 and 9, the two neuronal strategies of
string detection that can be postulated on theoretical grounds appear to
have analogs in real neuron circuits.

The networks discussed so far can only detect events that occur within a
short time interval, usually a few time steps. The temporal extend of these
events is certainly always finite. However, it was one of the main points of
McCulloch and Pitts’s proposal that their networks can also detect events
of arbitrary length, endless strings in principle. This can be achieved by
introducing loops in the network.

Figure 6.4 presents two neurons that respond to strings of indefinite
length. On the left is a neuronal element that becomes active only if it was
active at an initial time step, and if it received continuous input since its
initial activation. Thus, it is active later only if it was supplied with a contin-
uous sequence of excitatory inputs. As soon as an input fails to stimulate the
neuron, its activity immediately ceases, and it is silent until reactivated by
a mechanism not specified here. Assuming that the neuron responds to the
input “very,” it is active if an arbitrarily long word chain including only this
particular word has been perceived. One may consider this a somewhat odd



104 Neural Algorithms and Neural Networks

Figure 6.4. McCulloch–Pitts neurons with self-connecting
loops. (Left) The neuron with threshold 2 stays active if it
was active initially and received continuous input since. Its
activity means that a given input was always present (be-
ginning at a predefined starting point). It can represent a
string of indefinite length in which a symbol occurs repeat-
edly. (Right) Activity of the neuron with threshold 1 indi-
cates that a given input has occurred at least once. The
latter neuron may be helpful for modeling discontin-
uous constituents – that is, two morphemes that belong
together although they are separated in a sentence.

device, but if the neuron is allowed to respond not to only one particular
word, but instead to a class of words, for example, adjectives, its potential
usefulness for syntactic processing may become obvious. It could then detect
long strings of adjectives as they can occur preceding a noun (“the young,
beautiful, attractive, little, . . . frog”). Because the neuron stays active only
during a certain interval if a given input – for example, the word “very” –
is continuously present throughout all time steps, one may call it an “All”
neuron.

In contrast, the neuronal element on the right in Figure 6.4 becomes
and stays active whenever the element it responds to has occurred once.
Because it continuously stimulates itself once it becomes active, the neuron
stays active for, in principle, an unlimited time. Whereas the “All” neuron’s
activity signals that a particular elementary event has occurred at all time
steps (during a certain interval), this present neuron’s excitationwouldmean
that at least one time step exists when a particular event was present. It could
thereforebecalledan“Existence” neuron.Neuronsof these types, expressing
the existence and all operations, are necessary to neurally implement aspects
of the logical predicate calculus.

If neurons are so helpful in implementing logical calculi, why should they
not be helpful in modeling sentences? An “Existence” neuron could be
useful for storing the information that a particular word has occurred in the
past. The verb get and the particle up in sentence (1) belong together. When
get has occurred, it would be advantageous to store this for some time, not
only because there may be a delay between the two words as a result of
hesitation or breathing but also because other word material may intervene
between the verb and its particle. An “Existence” neuron could store the
information that the verb has occurred and, via a direct connection, could
prime the particle’s neural representation so that its activation would be
facilitated later.

It is worthwhile to take a closer look at the possibilities opened by the
assumption of neuronal units that can, in principle, stay active forever.
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Consider sentences (2)–(5):

(2) Betty switched it on.
(3) Betty switched the coffee machine on.
(4) Betty switched the nice brown coffee machine on.
(5) Betty switched the coffee machine she received as a present from her

mother at her 25th birthday on.

Here, the distance between the verb “switched” and the particle “on” gets
longer and longer. Although examples such as (5) may be unusual in English,
one may want to argue that the distance between the two parts of the dis-
tributed word “switch . . . on” has, in principle, no upper limit, at least in cer-
tain languages (see Chapter 7). Realistically speaking, the distance is seven
words or fewer in most cases (e.g., Braitenberg, 1980), but this does not rule
out the possibility of longer lags. Distributed words such as “switch . . . on” or
“get . . . up” are one type of discontinuous constituent. They illustrate that,
in language, sometimes very distant elements are in a close relationship, a
phenomenon called long-distance dependency (see Chapter 7). To produce
or understand sentences such as (5), it is therefore necessary to be prepared
to store the earlier of the mutually dependent elements or the necessity
that the second is required, and there is perhaps no upper limit for the
time this fact must be kept in mind. This issue will be discussed in depth in
Chapters 7 and 10.

Clearly, the task to store the piece of information that the verb stem has
occurred or that a verb particle is required can be carried out by a bistable
unit that is activated and stays active thereafter. One possible realization
in a neuronal network model is presented in Figure 6.5. Here, the “verb
neuron” that projects onto the “particle neuron” keeps itself active because
of the self-activating loop. Thus, the network (or fraction of a network)
detects a string consisting of an initial verb and a particle occurring after

Figure 6.5. (Top) A network that shows sequential
activity of the sequencing unit (lower line of neurons)
if the string “Betty switches . . .on” appears in the in-
put. The delay between the two parts of the discon-
tinuous constituents can vary. The “2” next to the
arrow forming a loop indicates connection strength.
(Bottom) By extension, each sequencing unit can be
assumed to be bistable, so that delays would be pos-
sible between all input symbols. This may be useful,
for example, to allow for introduction of a relative
clause after the noun.
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the verb, with, in principle, no upper limit for the time delay between the
two.1

This example of the representation of two linguistic elements that belong
together but are nevertheless separated in time or space shows that net-
works of McCulloch–Pitts neurons can solve linguistic problems that cannot
be solved by probabilistic grammars such as Markovian sources (Charniak,
1993; Markov, 1913). Markov chains and other so-called k-limited stochas-
tic models use the probabilities with which a (k+ 1)th element follows a
string of k other elements (obtained from large text corpora) to calculate
the probability with which a particular word (or letter) follows a given sen-
tence fragment.

Anexamplehowthisworks is the following:Markov (1913)usedPushkin’s
novel Eugene Onegin to calculate the probabilities of vowels and consonants
to follow each other. He also calculated the probabilities of consonants (C)
and vowels (V) to follow series of CC, CV, VC, and VV. In this case, k = 2,
that is, only two preceding elements were used to calculate the conditional
probability of the next letter type. The same can be done for words in sen-
tences and for larger k’ s (for further discussion, see Miller & Chomsky, 1963;
Shannon & Weaver, 1949).

However, the fact that an element occurring in a string (e.g., the root
“turn”) leads to a 100 percent probability of occurrence of another element
(the verb particle “on”) at an indefinite time step later cannot be modeled in
theMarkovian framework.Tomodel it in theMarkovian framework, the two
distant elements that belong together would have to be treated differently
from the intervening string.Both sentence (6), which includes a verb particle,
and sentence (7), which includes an intransitive verb without a particle.

(6) Betty steht morgens um halb drei Uhr morgens mit einem mürrischen
Gesicht auf. (including the particle)

(7) Betty geht morgens um halb drei Uhr morgens mit einem mürrischen
Gesicht. (without particle)

Nevertheless, the ten words preceding the particle in sentence (6) are the
same as the ten words at the end of sentence (7). Therefore, the differ-
ence between the two would escape a k-limited stochastic source if k = 10.
The probability for the particle to occur is primarily influenced by the dis-
tant morpheme (with no strict upper limit for the distance) – not by its

1 This preliminary solution raises additional problems. First, the criterion for string acceptance
must be modified. Second, the bistable element must be switched off after the particle occurs
in the input. In later chapters, in particular 9 and 10, related ideas will be looked at in more
detail.
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next neighbors. To model this, probabilities would have to be calculated
for strings of arbitrary length. An extension of the Marcovian approach
is necessary – for example, so-called Hidden Marcov models – to capture
this property of sentences. A McCulloch–Pitts network seems to be able to
solve one serial-order problem in language that stochastic models of a par-
ticular type have systematic difficulties with. One may ask in which way a
McCulloch–Pitts-based approached could help in capturing serial-order re-
lationships in language, where its principle limitations are, and how these
can be overcome.

McCulloch–Pitts’s framework allows for modeling logical operations at
the level of neurons. It can also be used to model serial order of complex
spatiotemporal events. Historically, McCulloch and Pitts’s proposals were
crucial for the emergence of automata theory, without which the develop-
ment of modern computers would have been unthinkable. In language sci-
ence, they inspired research on grammar algorithms. Grammar models such
as finite state grammars and augmented transition networks were built on
the proposed neural mechanisms. These approaches to serial-order mecha-
nisms were successful in modeling particularities of grammatical rules (see,
for example, Winograd, 1983), although the need to incorporate more so-
phisticated rules sometimes led to extensions that made the resulting devices
somewhat more difficult to relate to neuronal structure. Examples are the
recursive embedding of networks and the addition of registers that are acted
on under special conditions whose implementation in terms of neurons may
appear opaque. This is not to say that these entities and processes could
not themselves be transformed into circuits of artificial neurons. However,
in the present context, the task is to provide candidate circuits for syntactic
processing that may be realized in the brain. The circuits originally proposed
by McCulloch and Pitts seem to be closer to this general aim than some of
the more recent and more sophisticated syntactic algorithms rooted in their
work.

6.2 Symbolic Connectionist Models of Language

The idea to model language and cognitive processes on the basis of artificial
neuron-like devices was applied at different levels. Syntactic models, such as
finite state grammars, were proposed that modeled aspects of serial-order
mechanisms, and at the level of linguistic units – words and language sounds,
for example – processing models were proposed that specified the activation
processes envisaged to occur during production and comprehension.

According to modular approaches to cognitive psychology, the mental
language processor consists of quasi-autonomous subprocessors or modules,
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and therefore language processing is being considered the result of sub-
processes carried out by these. The subprocesses envisaged to be involved
in language comprehension are, for example, input-feature analysis, letter
or phoneme analysis, word-form processing, and semantic analysis (Ellis
& Young, 1988). A similar but reverse cascade has been assumed for the pu-
tative subprocesses of language production that finally results in movements
of the articulators or the (writing) hand (Garrett, 1980). The postulated sub-
processes of word comprehension and production are assumed to occur se-
quentially or in an overlapping cascaded manner. It cannot be disputed that
during certain types of language production and comprehension, informa-
tion about stimulus features, letters or phonemes, word forms and semantics
are being processed. One may therefore refer to different levels or stages of
language processing, such as the word form or lexical stage or the semantic
level. A specific proposal immanent to one class of modular models now is
that information processing is autonomous at each of the different levels.

In symbolic connectionist models, the subprocessors of modular models
have been replaced by layers of neuron-like elements, the assumption being
that individual artificial neurons or nodes represent acoustic or visual fea-
tures, phonemes or graphemes, word forms, and word meanings (Dell, 1986;
Dell et al., 1997; McClelland & Rumelhart, 1981). Figure 6.6 presents one
model (Dell, 1986) in which each representation of a word is composed of a
central lexical node and its associated meaning-related (semantic) and form-
related (phonological) nodes. In this network, a stimulus word first activates
the phonological nodes corresponding to its sounds. These would, in turn,
strongly activate the lexical node of the respective word and partially acti-
vate lexical nodes representing words phonologically similar to the stimulus
word. Activity then spreads to the semantic layer. This model has recip-
rocal connections so that backward flow from the semantic to the lexical
layer and from the lexical to the phonological layer would also be allowed.
Computations at the different levels of the network can take place at the
same time and there can be a continuous exchange of information between
levels during computation. Each neuron of the network would at each time
step compute the sum of its inputs and receive an activity value accordingly.
In contrast to McCulloch–Pitts neurons, the networks’ neurons would not
need to have a fixed activation threshold, but their activity level may vary
continuously. A special criterion, for example, which node is most active
in the lexical layer, may serve as the criterion for considering the word it
represents to be selected among alternative words whose nodes have also
been activated to some degree. The nodes are assumed to stay active for
some time after their stimulation, not only because they continuously send
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out and receive activity from their associated nodes in other layers, but also
because each node is assumed to hold back some of its activity by an internal
memory mechanism.

The model has been applied successfully to various psycholingusitic and
neurolinguistic data sets and can, for example, imitate patterns of speech er-
rors made by normal speakers and aphasic patients. The network can imitate
semantic errors, replacements of a word by another one close in meaning. In
the model, semantic errors are based on activity flow between lexical nodes
through their common associated semantic nodes. Phonological errors, re-
placement of words with similar sounds, can be based on phonological nodes
strongly associated with more than one lexical node. The model also explains
why errors that are both phonologically and semantically related to the tar-
get word are far more frequent than one would predict on stochastic grounds
(Dell, 1986; Dell et al., 1997).

Different authors diverge in the exact architecture postulated for their
symbolic connectionist networks,with someproposing thatmore node types,
layers, and levels of processing are necessary. One influential proposal is
that apart from phonological, lexical, and semantic representations, there
should be a separate representation of a word’s syntactic properties, and
that this syntactic word node should be introduced between the lexical and
the semantic layers (Levelt, Roelofs, & Meyer, 1999).

A major point of divergence between proponents of the modular and
the interactive approaches to cognitive processing concerns the processing
properties of the systems of nodes and connections. As mentioned, the mod-
ular approach states that processing at each level is autonomous – that is, not
influenced by processes occurring at the same time at other levels – whereas
the alternative view is that there is continuous forward andbackward activity
flow. Furthermore, the strict modular view puts that activity flow is possible
only in one direction, therefore necessitating separate networks for model-
ing speech production and perception. The discussion between modularist
and interactionist schools was quite vivid, with the outcome being that both
approaches can provide models for impressive data sets (Dell et al., 1997;
Norris, McQueen, & Cutler, 2000).

From a neuroscientific perspective, some assumptions immanent to mod-
ular models may appear difficult to anchor in brain matter. For example, the
idea that activity should be allowed to flow in only one direction through
a network is in contrast with neuroanatomical observations that most of
the corticocortical connections are reciprocal (Pandya & Yeterian, 1985;
Young et al., 1995). Also, the idea that the processing of different types
of linguistic information – phonological, lexical, and semantic, for exam-
ple – should take place without interaction would not have a necessary
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correlate in, for example, an associative memory model of word processing.
In such a model, strong links would be present, for example, between neu-
rons responding to acoustic features of a stimulus word and those sensitive
to visual features of objects to which the word refers. These links would allow
for fast information exchange between phonological and semantic parts of
the distributed word representation. Having said this, it should be added that
this by no means implies that a modular approach would be incompatible
with a neurobiological perspective.

The interactive perspective discussed here comes close to a cell assembly
model as proposed in Chapter 4. In both types of models, semantic and
phonological information about aword is linked through strong connections.
In both model types, an activated representation maintains its enhanced
activity status for some time. The representation of a word is the union of
neural elements spread out over different “layers,” or brain areas. There is
one important difference between the models, however. The connectionist
architecture includes nodes that represent and process only one lexical entry.
These word-specific neural elements are not necessary in the cell assembly
proposal. The coactivated neuron sets in primary sensory and motor cortices
are assumed to be held together by neurons in other areas, but neurons
involvedonly in the processing of oneparticularwordwould not be required.
Eachneuron included in the functionalweb representingoneparticularword
could also be part of cell assemblies of other words as well. It is clear that,
in a computational architecture, word-specific nodes make the simulations
easier, because the activity level of the lexical node and its relation to that
of other lexical nodes provides a simple criterion for selecting one of the
words. In an associative network of overlapping functional webs, it may be
much more difficult to determine which of the assemblies is most active.
Furthermore, activity excess is one of the dangers an associative memory
model runs into, a problem that is easily avoided in the symbolic network:
for example, a regulation mechanism within a lexical layer only allowing
one node to be selected could be used. Therefore, the cell assembly model
requires a regulationmechanismaswell (Braitenberg, 1978a;Wickens, 1993).
The regulation issue was addressed in Chapter 5.

Although the lexical layer may have computational advantages, one may
argue that such a layer of word-specific neural element is not an a priori
requirement within a neurobiological system. The functional web approach
would suggest that there are neuron sets in different primary cortical areas
that are activated, on a regular basis, when a given word is being processed,
and that there are neurons in other areas providing the connections between
these neurons. These additional neurons whose main function is to hold the
functional web representing a word together would respond to excitation
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of sensory and motor cells also being part of the ensemble. If each of these
binding neurons was also be part of other cell ensembles, this may even
have advantages from a neurocomputational point of view. As mentioned in
Chapter 5, simulation studies of associative memories showed that the best
storage capacity is achieved if neuronal assemblies are allowed to overlap,
so that each neuron is part of several assemblies (Palm, 1982). Therefore,
it is not necessary to assume word-specific neurons in a network in which
each word has its specific neuron set. However, these considerations do not
exclude the possibility that in a network of overlapping neuronal assemblies,
each representing one individual word, there might be neurons that are
part of only one assembly. Again, however, these cardinal cells (Barlow,
1972) would not be required. Still, an important common feature between an
approach postulating functional webs and a symbolic connectionist network
is that each word is assumed to be represented as an anatomically distinct
and functionally discrete set of neurons or neuron-like elements.

6.3 Distributed Connectionist Models of Language

The distributed network type most commonly used to model language re-
sembles symbolic networks because both network types are made up of lay-
ers of neurons and connections between layers. An important difference is
as follows: Most symbolic networks include so-called local representations –
usually single artificial neurons – that can represent elementary features of
the in- and output, but also more complex entities; for example, letters,
phonemes, and words. An example already discussed is the separate lexical
node postulated for each individual word. In contrast, distributed networks
use activity vectors specifying the activity of all neurons in one or more
layer(s) to represent words and other more complex linguistic structures. In
this view, all neurons contribute to the processing of every single word. One
cannot say that only the active neurons of an activity vector would be rele-
vant for coding the respective word because changing the value of one active
neuron in the vector (to inactivity) and changing that of an inactive neuron
(to activity) may have a strong effect as well. This is particularly so if the
coding is not sparse, as is frequently the case in the so-called hidden layer of
multilayer networks. Thus, each neuron contributes to the fully distributed
representation. One may therefore conclude that distributed connectionist
networks and localist symbolic networks reflect two extreme views at the
two ends of a continuum. Each individual neuron would be a “Jack of all
trades,” so to speak, in fully distributed approaches, but a master of almost
nothing (only one single word or phoneme, etc.) in the localist framework.
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It is clear that both views could be correct descriptions of what actually is
the case in the brain, but it is also clear that there is room for alternative
proposals in between the extremes.

The cell assembly framework offers such an alternative possibility be-
tween these extremes. Each neuron is envisaged to contribute significantly
to the processing of some words, but not necessarily to all of them. Each neu-
ron has a critical role in distinguishing between some lexical alternatives, but
may nevertheless be irrelevent for distinguishing between words to which it
corresponds. Not one cardinal cell and not the entire system would process a
single word, but a strongly connected neuron set, a functional web. A lexical
representation would be the union of neurons involved in processing the
motor program, acoustic properties, and semantic features of a word.

A further difference between a cell assembly model on the one hand and
a fully distributed approach or a localist account on the other hand lies in
the structure of the assumed between-neuron connections. The distributed
connectionist networks most commonly used in language simulations, and
also their localist sisters, do not usually include direct excitatory connec-
tions between the neurons in one layer. For example, an input layer in which
each neuron represents a phonological feature would leave these feature
neurons without direct connections, although their activity may, in the ab-
sence of other active neurons, define a word. In contrast, a model of func-
tional webs based on neuroanatomical data must assume strong links within
cortical areas and between directly adjacent areas, and therefore between
neurons related to sensory processes in a certain modality. This implies that
the different neurons sensitive to acoustic properties of a stimulus word
have a relatively high probability to be connected to each other directly,
rather than by way of intervening areas or layers. Because the active neu-
rons defined by an activity vector are not connected to each other directly,
they do not form a functionally coherent system. This distinguishes them
from cell assemblies or functional webs with strong internal links between
their neuron members, especially between their closely adjacent neurons.
However, given there are reciprocal connections between the layers of the
network, artificial neurons in different layers may strengthen their connec-
tions to neurons in other layers as a consequence of associative learning,
thereby indirectly linking the active neurons defined by individual activ-
ity vectors. Still, the structural differences between the connectionist ar-
chitectures and a view incorporating more details about neuroanatomical
connnections remain.

The classical type of distributed connectionist network is called the per-
ceptron (Minsky & Papert, 1969; Rosenblatt, 1959). It consists of neurons
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arranged in two layers, the input and the output layers. Each neuron in
the input layer is connected to each neuron in the output layer. Activity
flows from input to output only. Connection strengths (or weights) vary as
a function of associative learning between pairs of input–output patterns.
Rosenblatt (1959) proved that perceptrons can learn to solve only a certain
type of simple classification problem called linearly separable. Rumelhart,
Hinton, and Williams (1986) showed that a modification of the perceptron’s
architecture, through the addition of one additional layer of neurons, the
so-called hidden layer between the input and output layers, and by an ex-
tension of the learning rule, this limitation can be overcome. The networks
were now able to learn to solve more complex classification problems, for
example, classifications requiring the Either–Or operation, and this made
them much more interesting for cognitive scientists. It was mentioned in
Section 6.1 that a network of a certain type requires three neuronal steps to
solve the Either-Or problem (Kleene, 1956).

Three-layer perceptrons have been used successfully to model aspects
of language processing. For example, there are models that classify speech
signals (Waibel et al., 1995), others that mimic important aspects of the
infant’s learning of language specific information as described by elementary
rules (Hare, Elman, & Daugherty, 1995), and simulations of the effects of
focal brain lesions on language functions (Hinton & Shallice, 1991; Plaut
& Shallice, 1993) and of the recovery of language functions after stroke. The
results of these simulations are not only of great theoretical relevance, but
they have found many useful practical applications as well.

Two- or three-layer distributed connectionist architectures do not have
memory.An input pattern activates the input layer andactivity spreads to the
(hidden and) output layer(s). This network architecture must be modified
for addressing problems posed by syntax. To allow the network to process
long strings of words, it was necessary to introduce a memory mechanism
in the architecture that allows the storage of information about past events
for a longer time span. Such a memory is necessary for assessing syntactic
relationships between temporally distant language units, as, for example, be-
tween the first and last words of a long sentence. Therefore, a memory layer
allowing for reverberation of activity, thereby providing the basis of informa-
tion storage, was added to the three-layer architecture (Elman, 1990). Either
the hidden layer was given within-layer connections so that each of its neu-
rons fed back onto itself and the other neurons in the hidden layer, or loops
were introduced by connecting the hidden layer reciprocally to a separate
memory layer. Compared to three-layer perceptrons, these networks includ-
ing a memory layer could be shown to be more powerful in storing serial-
order relationships. They are capable of learning subsets of syntactically



6.4 Hot Topics in Neural Network Research on Language 115

complex structures, for example, aspects of so-called center-embedded sen-
tences (Elman, 1990; Elman et al., 1996).

6.4 Hot Topics in Neural Network Research on Language

Among the many facets of connectionist research on language, work on two
topics can nicely illustrate in which way our understanding of the language
mechanisms have been furthered by simulation studies. The point here is not
so much that the actual simulation taught us important lessons. The critical
colleagues who consider many of the results of simulation studies as trivial
and emphasize the relevance of rigorous thinking about a problem, after
which a simulation might be close to redundant, may therefore be partially
correct. The point here is rather that simulation studies and comparable
theoretical work made scientists think about details of neuron circuits, and
this led to important insights.

Both issues to be addressed in this section are related to deficits in lan-
guage processing, seen either in aphasia or in young infants before they are
fully capable of speaking their mother tongue. One issue is the explanation
of deficits in processing words of certain types. The other relates to young
infants’ acquisition of what one may want to describe as syntactic rules.

6.4.1 Word Category Deficits

Certain types of aphasia are surprising because the patients can produce
words of one type, but are unable to produce words of a second type. This
issue is addressed in Chapter 4 along with neuroimaging results. The princi-
ple observation that a word kind can be affected selectively by brain lesion
has first been made with regard to a disturbance called agrammatism (Pick,
1913). Agrammatic patients have difficulty producing words primarily char-
acterized by their grammatical function, such as articles, pronouns, auxiliary
verbs, prepositions, and also inflectional affixes. Geschwind (1974), a neurol-
ogist, recommended basing the diagnosis of agrammatism on a simple test:
Ask the patient to repeat Sentence (8).

(8) No ifs, ands, or buts.

An agrammatic patient would usually not be able to repeat the sentence, and
would otherwise not be able to use the words included in it correctly. The
affected words are used mainly as grammatical function words and do not
refer to objects or actions. Difficulties with the respective word forms are
present even if these words are not actually used in their normal grammatical
function but instead, for example, in their nominalized forms (as nouns), as
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Sentence (8) illustrates. The abstract function words whose meanings are not
imageable at all are sometimes not the only word kinds affected. For some
patients, abstract nouns and verbs whose meaning is difficult to imagine are
also difficult to produce.Adeficit in producing functionwords andother low-
imageability words can be most pronounced in language production but can
be present in language perception as well (Pulvermüller, 1995; Pulvermüller,
Sedat et al., 1996). A deficit most pronounced for abstract low-imageability
words is also common in a neurological reading deficit called deep dyslexia
(Marcel & Patterson, 1978) and in semantic dementia (Patterson & Hodges,
2001). One view on agrammatism and similar disturbances is that the im-
ageability of words is a crucial factor in determining their availability after
brain lesion. Low-imageability words are more difficult than comparable
high-imageability words.

Evenmore surprisingly, however, agrammatismhas a “mirror image” syn-
drome called anomia. Anomic aphasics do not have difficulty using function
words and may even produce complex sentences without any problem but
cannot find some well-imageable content words from the lexical categories
of nouns, adjectives, and verbs (Benson, 1979).

How can the double dissociation between the deficit for low-imageability
words and function words in agrammatism and the deficit for the more con-
crete and imageable content words in anomia be explained? In the cell as-
sembly framework discussed in Chapter 4, a highly imageable word would
be represented by a perisylvian cell assembly with strong connections to
neurons in other brain areas organizing referential aspects of the word, that
is, the motor programs and perceptual patterns to which it can refer. The cell
assembly would therefore be distributed over wider cortical areas, including
perisylvian areas but also other sensory- and action-related areas as well. In
contrast, a function word lacking any concrete associations that cannot be
used to refer to concrete objects or actions would be represented by a func-
tional web without strong links to neurons in action- or perception-related
areas. Therefore, function words and also highly abstract and not imageable
content words would be realized in the brain by more focal functional webs
restricted to the perisylvian cortex. Figure 6.7 illustrates schematically the
postulated difference in circuits in the language-dominant hemisphere. A
further implication would be that the function words’ networks are more
strongly lateralized than are the networks representing highly imageable
content words. The word types are thus assumed to be realized as functional
webs with different cortical topographies (Pulvermüller, 1995).

Assuming more localized perisylvian functional webs for grammatical
function words and more widely distributed cell assemblies for concrete
nouns, verbs, and adjectives makes a few additional comments necessary.
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Figure 6.7. Schematic illustration of left-hemispheric distributions postulated for cell as-
semblies representing high-imageability content words (left) and highly abstract function
words (right).

First, it may appear more adequate to postulate such differential represen-
tation not at the level of individual words, but at that of meaningful units,
morphemes, instead. In this view, not entire content words, but “content
morphemes” or the stems of content words, are represented (cf. Section 4.4).
(The reader may forgive the imprecision that the more common term, con-
tent word, is usually used in this book because it is much more common.)
Furthermore, there is no principle difference in the grammatical function
of a function word, such as the article “the”, and a functional affix, such as
the plural suffix “-s” attached to nouns. Their inclusion in a sentence usually
does not add semantic information to it, but may make the word string ei-
ther acceptable or unacceptable. The neuronal representations of function
words and affixes could therefore exist without a semantic part.At least, they
can be conceptualized without a part including information about referen-
tial meaning that would be stored primarily outside the perisylvian region.
In this respect, the functional webs representing different kinds of function
items, words and affixes, may be similar.

A second point one may wish to raise is the following: The assumption
that no semantic information is being added to a sentence by the inclu-
sion of function items does not generally hold true for all members of
this category. The regular past suffix “-ed” and the auxiliary verb form
“was”, for example, include information about time, and it is clear that a
cortical representation of these lexical items must include this information
as well and bind it to the phonological information about the respective
form. However, it is less clear where in the brain this semantic information
characterizing some function words and affixes should be laid down. This
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information is not about these words’ referential semantics, and, therefore,
considerations such as the ones made in Chapter 4 are not relevant. By
postulating cell assemblies, or functional webs, for function words and af-
fixes, it remains clear that the semantic information immanent in some of
them must have a brain internal correlate, although it is doubted that this
locus of storage and processing is cortical and outside the perisylvian ar-
eas. In this context, it is relevant that the differential cortical processing of
function words and stems of concrete content words receives support from
neurophysiological imaging studies (Brown, Hagoort, & ter Keurs, 1999;
Neville, Mills, & Lawson, 1992; Nobre & McCarthy, 1994; Pulvermüller,
Lutzenberger, & Birbaumer, 1995; Shtyrov & Pulvermüller, 2002a). In the
context of studies reviewed in Chapter 4, these neurophysiological differ-
ences are best explained in terms of the difference in referential semantics
between content words and function items (for discussion, see Pulvermüller,
1999).

A parsimonious explanation of the double dissociation between agram-
matism and anomia becomes possible on the basis of the proposal that func-
tion items are processed by strongly lateralized neuron ensembles restricted
to the perisylvian cortex, whereas content words have less lateralized cor-
responding neuron ensembles distributed over various areas of both hemi-
spheres. Presumably, the likelihood of a word to be affected by a brain
lesion depends on the degree to which its word representation has been
damaged.

A lesion restricted to the perisylvian regions, for example in Broca’s re-
gion in the inferior frontal lobe, would remove a high percentage of neurons
included in a function words’ webs. The concrete content words’ webs that
have their additional neurons outside perisylvian space (and also in the other
hemisphere) would not suffer so much, that is, a smaller percentage of their
neurons would be affected by the same lesion. This explains deficits primar-
ily affecting function words and other abstract items, as seen in agrammatic
patients and related syndromes. The mirror-image pattern of deficits would
be expected if a lesion affected areas primarily outside the perisylvian re-
gion, for example, in the inferior temporal lobe, the temporooccipital region,
or various areas in the hemisphere not dominant for language. In this case,
only the concrete content words’ webs would be affected, thereby explaining
a selective deficit in processing these items. This explanation of the double
dissociation between agrammatic and anomic deficits has been grounded
in neural network simulations and is in good agreement with data about
the cortical locus of lesions causing these disturbances (Pulvermüller, 1995;
Pulvermüller & Preissl, 1991). Focusing on deficits for low- vs. high-image-
ability content words in deep dyslexia, a similar account has been developed
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based on distributed connectionist networks (Hinton & Shallice, 1991; Plaut
& Shallice, 1993).

Neural network accounts of category-specific deficits for words and con-
ceptsmaybegrounded in a standard connectionist architecture, a three-layer
perceptron, for example.Aselectivedeficit foronewordandconceptual kind
may then relate to properties such as the frequency with which the words
are being used, or the amount of semantic feature overlap the words – and
their neural representation – share with other words from the same category.
For modeling more fine-grained category-specific deficits, as mentioned in
Chapter 4, it might be advantageous to use networks that include subcom-
ponents specifically handling information processed in different brain areas.
One way to go is to introduce components for action-related, visual, and
other sensory information types. The word and conceptual representations
could be laid down as distributed but strongly connected neuron sets dif-
ferentially distributed over some of the network’s components. Category
deficits would then result from lesions in one of the network parts (Farah
& McClelland, 1991; Humphreys & Forde, 2001; Plaut & Shallice, 1993;
Pulvermüller & Preissl, 1991).

6.4.2 The Development of Rules in the Brain

The modeling of rule-like verbal behavior is another illustrative example
for the fruitfulness of neural network research on language. It is sometimes
assumed that symbolic algorithms are necessary for explaining the behav-
ior described by linguistic rules and that a description in terms of rules is
incompatible with a neural network approach. For producing a past tense
form of English, one would, accordingly, use an abstract rule such as the
following addition scheme:

(9) Present stem + Past suffix = Past tense form

An algorithm of this kind could model the concatenation of the verb stem
“link” and the past tense suffix “ed” to yield the past tense form “linked,”
and, more generally, it could be used to derive any other regular past form
of English. However, it is difficult to see how an irregular verb such as
“think” or “shrink” could yield a past tense form by a similar rule. In the
extreme, one would need to assume rules for individual words to provide
algorithms that generate, for example, “went” from “go.” This would re-
quire stretching the rule concept, and linguists have therefore proposed that
there are two distinct cognitive systems contributing to language processing:
a symbolic system storing and applying rules and a second system storing
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relationships between irregular stems and past tense forms in an associative
manner (Pinker, 1997).

From the perspective of neural networks, however, one may ask whether
two separate systems for rules and exceptions are actually necessary to han-
dle regular and irregular inflection. Rumelhart and McClelland (1986, 1987)
showed that a two-layer perceptron can store and retrieve important aspects
of both past tense rules and exceptions. It can even produce errors typical
for children who learn past tense formation, such as so-called overgeneral-
izations (e.g., “goed” instead of “went”).

From a linguistic perspective, the two-layer model of past tense proposed
by Rumelhart and McClelland has been criticized because it did not appro-
priately model the fact that rule-conforming behavior is by far most likely
to be generalized to novel forms. The past tense form of a newly introduced
verb such as “dif” will thus almost certainly receive an “ed” ending if one
intends to use it in the past tense (“diffed”). This is even so in languages
in which most verbs have irregular past tense forms and only a minority of
the verbs conform to the rule. The rule is nevertheless used as the default,
and generalized to novel forms and even to rare irregular items. This is a
problem for a subset of connectionist models because the strongest driving
forces in associative networks are the most common patterns in the input.

However, there are distributed three-layer networks that solved the prob-
lem of default generalization surprisingly well (Hare et al., 1995). An im-
portant determinant was that rule-conforming input patterns are maximally
dissimilar whereas the members of an irregular class resemble each other.
Consider the different regular forms watch, talk, and jump in contrast to
the similar members of an irregular class sing, ring, and sting. Because the
regulars are so heterogeneous, they occupy a wide area in input space. The
representation in input space of a novel word is thus most likely to be closest
to those of one of the many different regular forms, and this is one reason
why so many new items are treated as regular by the network. However, if a
newly introduced itemhappens to strongly resemblemanymembers of a reg-
ular class, for example, the pseudo-word pling, it is, in many cases, treated
as regular. These observations may lead one to redefine one’s concept of
regularity: A rule is not necessarily the pattern most frequently applied to
existing forms, but is always the pattern applied to a most heterogeneous set
of linguistic entities. The heterogeneity of the regular classes may explain
default generalization along with the great productivity of rules.

The simulation studies of the acquisition of past tense and other inflection
types by young infants suggest that neural networks consisting of one single
system of layers of artificial neurons provide a reasonable model of the



6.4 Hot Topics in Neural Network Research on Language 121

underlying cognitive and brain processes. In this realm, the single system
perspective appears equally powerful as an approach favoring two systems:
one specializing in rule storage and the other in elementary associative
patterns.

Neuroscientific data and theories have shed new light on the issue of a
single-system vs. double-system account of rule-like behavior. The discovery
of patients with brain lesions who were differentially impaired in processing
regular and irregular past tense forms was important here. Patients suffering
from Parkinson’s disease or Broca’s aphasia were found to have more diffi-
culty processing regular forms, whereas patients with global deterioration of
cortical functions as seen, for example, in Alzheimer’s disease or semantic
dementia showed impaired processing of irregular forms (Marslen-Wilson
& Tyler, 1997; Ullman et al., 1997). This double dissociation is difficult to
model using a single system of connected layers, but is easier to under-
stand if different neural systems are used to model regular and irregular
inflection.

Another argument in favor of a double system account comes from a neu-
robiological approach. Within the cell assembly framework, a typical verb
stem has its putative neurobiological correlate in a widely distributed func-
tional web that includes neurons involved in the processing of actions and
perceptions related to the meaning of the verb. The to-be affixed or infixed
phonological material – for example, the ending “ed” or the [ae] inserted
into “ring” may initially be processed by a network restricted to perisylvian
space. The widely distributed assembly and the more focal perisylvian as-
sembly can be linked by two types of connections. One possibility is provided
by local connections within perisylvian areas, and the other by long-distance
connections between the verb stem’s assembly neurons far from the Sylvian
fissure and the perisylvian neurons contributing to the processing of the past
tense form. The local and long-distance links have different likelihood, two
adjacent neurons having a higher probability of being connected than two
neurons in distant cortical areas (see Chapter 2). Assuming that most of
the relevant connections between the two cell assemblies are indirect, that
is, through one additional neuronal step, the situation can be schematized
as in Figure 6.8. Two systems of connections, a high-probability pathway
linking perisylvian neurons and a low-probability pathway between neurons
outside perisylvian space and neurons inside, would be available for storing
links between present and past tense forms. Given parameters are chosen
appropriately, the two low- and high-probability systems specialize differ-
entially in the storage of rules and irregular patterns. Similar to a two-layer
perceptron, the low-probability system is best at storing the simple mapping
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system 2

system 1

Figure 6.8. A neuroanatomically in-
spired network architecture consisting
of two systems of connections specializ-
ing in exception learning and rule stor-
age, respectively. The system at the
top includes a link with low connec-
tion probability. The system at the bot-
tom has high connection probabilities
throughout. Associative learning in this
system leads to rule strorage primar-
ily in the high-probability system (bot-
tom) and to exception storage primar-
ily in the low probability system (top).
There is reason to assume that two types
of neuroanatomical links are relevant for
the learning of morphology. (For further
explanation, see text.) Adapted from
Pulvermüller, F. (1998). On the matter of
rules. Network: Computation in Neural
Systems, 9, R1–51.

between irregular present forms that resemble each other and their past
tense forms. In contrast, the complex classification problem, the mapping
between the heterogeneous regular stems and their past tense forms, is best
accomplished by the three-layer component with high connection probabil-
ities. A full three-layer architecture is necessary for this, because Either-Or
relations are required for the classification of the heterogeneous items in
the regular class. When the two components are damaged differentially, the
network produces the double dissociation between regular and irregular
inflection seen in neuropsychological patients. This approach explains the
neuropsychological double dissociation while being consistent with aspects
of the acquisition of past tense formation by young infants (Pulvermüller,
1998). The explanation is based on principles of cortical connectivity and
has implications for the cortical loci of the wiring organizing rules and ex-
ceptions, respectively.
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Together, the neuropsychological double dissociation and the neurobio-
logical consideration argue in favor of a two-system model of regular and ir-
regular inflection. In contrast to a modular proposal stating that two systems
are concerned exclusively with regular and irregular processes, respectively,
the neuroscientific variant would suggest a gradual specialization caused by
differential connection probabilities. The fruitful debate between scientists
favoring single- or double-system accounts of rule-like knowledge reveals
the importance of multidisciplinary interaction between the linguistic, cog-
nitive, computational, and neurosciences.



CHAPTER SEVEN

Basic Syntax

This chapterhighlights a fewproblemsof serial order thatmayposeproblems
to a biologically realistic model, problems best explained in the context of
theories designed to solve them. Therefore, the following paragraphs sketch
examples of linguistic descriptions of syntactic regularities. In addition, tech-
nical terms are introduced. Occasionally, a sketch of what a neuron-based
approach to syntax might look like may intrude but is developed systemati-
cally only in Chapters 9–12.

There are many different approaches to syntax in theoretical linguistics,
and it is not necessary to give an overview of them in the present context.
This chapter highlights examples, their choice being primarily motivated by
the historical development. So-called phrase structure grammars and their
offspring rooted in the work of Harris (1951, 1952) and Chomsky (1957) are
in the focus, because the superiority of phrase structure grammars to a model
of serial order in the McCulloch–Pitts (McCulloch & Pitts, 1943) tradition
was one of the main reasons in the 1940s and later to base syntax theories on
these more abstract algorithms rather than on neuronal algorithms. Apart
from approaches related to and building on phrase structure grammars, an
alternative framework whose roots also date back to the 1940s is mentioned
occasionally. This framework, or family of theories, goes back to Tesnière
and is called dependency grammar. Clearly, phrase structure grammars and
dependency grammars have been modified and much developed, but, as is
argued later in this chapter, some of their underlying main ideas persist.

In addition to an introduction of syntactic terminology and theory, this
chapter reviews arguments in favor of and against different views on serial-
order mechanisms. Here, the main focus is on the question of what abstract
syntactic theories achieve more than neuron-based proposals. It is also asked
what the neuron-based proposals could offer what the abstract syntactic
theories lack.

124
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A linguist familiar with most syntactic theories may safely skip most of
this chapter, but may want to glance over the list of questions that must be
addressed when building on a McCulloch–Pitts approach to syntax.

7.1 Rewriting Rules

Syntactic regularities are sometimes expressed in terms of rewriting rules.
A rewriting rule is a formula expressing that something can be replaced
by, or be rewritten as, something else. The rule consists of an arrow and
symbols to its left and right. The arrow can be read as “is rewritten as” or
“is replaced by.” A subtype of such rules, context-free rewriting rules, have
only one single symbol to the left of the arrow and one or more symbols on
its right. Examples of context-free rewriting rules are given later. A set of
context-free rewriting rulesdefinesa context-free grammar.A setof rewriting
rules can also be called a phrase structure grammar, or PSG.

Calling a set of rewriting rules a grammar implies a formal view on what
a grammar should actually achieve. This view restricts grammar to aspects
of the form of sentences, without consideration of the meaning of words
and strings and their role in communicative interaction. In more recent pro-
posals, the interaction of formal syntactic rules and principles with semantic
processes is also considered. Although it appears justified to restrict consid-
eration to the question of how serial order of meaningful language units is
achieved, the task of a grammar may nevertheless be considered to cover
not only the form of sentences, but aspects of their meaning as well.

In modern linguistics, great breakthroughs have been achieved in the for-
mal description of languages since the early 1940s. The early breakthroughs
were based on PSGs and more sophisticated grammar theories building on a
basis of PSG rules (e.g., transformational grammars; Chomsky, 1963). Mean-
while, these theories have again been replaced in what is sometimes called
the standardview in linguistics (Chomsky, 2000;Haegeman, 1991). Still, how-
ever, many modern syntax theories build on a kernel of PSG rules or a kernel
of principles and parameters that translate into language-specific context-
free grammars. When aiming at a neurobiological model of serial order, it
may be advisable to consider this common basis of many theories of syntax.

What exactly is a phrase structure grammar implementing a context-free
grammar or context-free rewriting system? As mentioned, it includes rewrit-
ing rules that are subject to one restriction: Only one symbol is allowed to
the left of the arrow. At least one of these rules includes a starting symbol,
abbreviated by an “S,” to the left of its arrow. S can be used to start the
generation process of a sentence. By applying a rewriting rule, the starting
symbol is being replaced by other symbols. These are symbols for syntactic
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categories, which are sentence parts, such as subject, predicate or object,
or noun phrase (NP) and verb phrase (VP). Additional rewriting rules can
specify the replacement of syntactic categories by other syntactic categories,
or the replacement of syntactic categories by lexical categories, which are
word types sharing grammatical properties, such as noun (N), verb (V), ar-
ticle/determiner (Det), or preposition (Prep). Symbols for lexical categories
finally can be replaced by symbols for actual words. Rules specifying the
insertion of words are called lexicon rules. Thus, after replacing symbols by
symbols and symbols by words, a word string or sentence results.

This can be illustrated by the following example rules:

(1) S � NP VP
(2) NP � (Det) N
(3) VP � V (NP)
(4) N � {Betty, machine}
(5) V � {laughs, cleans, switches}
(6) Det � {the, a}

Starting with Rule (1), S yields NP and VP, a noun phrase and a verb
phrase. The noun phrase includes a noun, N, and can include an article
or determiner, Det, as well. This is the meaning of Rule (2), in which the
brackets to the right of the arrow indicate that the item within brackets, the
determiner, is optional. According to Rule (3), the VP can expand to a verb,
V, plus NP, but the NP is optional. The symbol for the lexical category N can
be replaced by a real noun. Candidates are listed in Rule (4), which states
that one of thewordswithin curved brackets can replace theN symbol.Rules
(4)–(6) are lexicon rules because they replace the abstract lexical category
labels by lexical elements. In contrast, Rules (1)–(3) are syntactic rules in the
narrow sense; they replace syntactic category symbols by other symbols for
syntactic or lexical categories and are not concerned with individual words.
By inserting (4) into (2) and (2) into (1), the string (7) can be derived.

(7) Betty VP

By additional insertions of (4) and (6) into (2) (yielding “the machine”), and
of (2) and (5) into (3) (resulting in the VP “cleans the machine”), sentence
(7) can be rewritten as (8).

(8) Betty cleans the machine.

Other correct grammatical sentences can also be generated based on the
small set of rules. They include the sentences (9) and (10), but also strange
word strings such as (11).
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(9) Betty laughs.
(10) The machine cleans Betty.
(11) The Betty laughs machine.

More generally, a phrase structure grammar, as one possible description
of a context-free grammar, includes

(i) symbols representing lexical categories (e.g., N, V),
(ii) symbols for syntactic categories (e.g., NP, VP),
(iii) rewriting rules with one syntactic or lexical category symbol to the

left of the arrow (e.g., NP �Ar N), and
(iv) a starting symbol (S).

Phrase structure grammars specify sets of lexical and syntactic categories,
or word and phrase types, that differ between languages. Modern syntactic
descriptions attempted to replace such idiosyncrasies of individual languages
by a more universal formulation of lexical categories, phrase types, and rules
(Haegeman, 1991; Jackendoff, 1977). Phrase types are now defined with ref-
erence to their main lexical category, their head. Instead of verb and verb
phrases, different projection levels of the verb are being distinguished. This
makes the formulation of grammars of individual languages more econom-
ical. The equivalents of phrase structure rules can be derived from more
abstract principles by setting a few language-specific parameters. As an ex-
ample, the abstract principle might be that each word from a major lexical
category X requires a complement (and forms a so-called X′ projection to-
gether with it), allows for an adjunct, and also requires a “specifier” to form
a “maximal projection” (X′′). The language-specific parameters to be set
include, for example, the information about whether the specifier has to be
placed before or after the verb. The syntactic categories would thus be con-
sidered derivatives, or projections, of one of the major lexical categories.
Instead of VP, one would write V′′, or Vmax. This indicates that separate
syntactic categories, independent of the major lexical categories they are
driven by, are not necessary in a formal grammar [cf. (ii)]. The more sys-
tematic treatment of rules (on the basis of principles and parameters) and
syntactic categories (considered to be projections of lexical categories) do
not affect the general arguments made here.

At this point, it may be difficult to see why a network of neurons storing
and processing syntactic information, called a neuronal grammar, should not
be capable of solving the same tasks as a PSG does. One may speculate that
a neuronal grammar could include

(i) neuronal elements representing morphemes and words
(ii) directed connections between neuronal representations
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(iii) criteria for activity dynamics in the network and for string accep-
tance

and that these neuronal elements and dynamics could be as powerful in
determining serial order of neuronal excitation as are formal grammars in
determining the serial order of words and meaningful language elements.
However, it has been argued that this is incorrect, that a neuronal device
cannot, for principled reasons, process string types that can be handled easily
by a formal model of syntax.

7.2 Center Embedding

The beauty of a context-free grammar lies in the fact that rules are recur-
sively applicable. By repeatedly using rules, one can obtain syntactically
correct sentences of considerable complexity. As pointed out by Chomsky
(1963) and Levelt (1974), a neuron network of the McCulloch–Pitts type is
equivalent to a regular grammar or right-sided linear grammar. A context-
free grammar is more powerful than a regular grammar; it includes recursive
rules that allow one to produce sentences in which other sentences are em-
bedded, in which even further sentences can be contained. This “Russian
doll” game can be played, as has been argued by linguists, with, in principle,
no upper limit for the number of recursive operations, so that sentences of
mild to extreme complexity can be synthesized. The fairly complex sentences
would be characterized by center embedding, if the same sentence types are
embedded in each other, by self-embedding.

Examples of center-embedded sentences or strings are listed as (12)–(14).
Brackets have been inserted to help to structure the strings.

(12) Betty gives the machine (that had been cleaned the other day) to Bob.
(13) The rat (the cat (the dog chased) killed) ate the malt.
(14) Anyone (1 who feels (2 that (3 if so many more students (4 whom we

haven’t actually admitted 4) are sitting in on the course (4 than ones we
have 4) (4 that the room had to be changed 4) 3) then probably auditors
will have to be excluded 2) 1) is likely to agree that the curriculum needs
revision.

Clearly, the two more extreme word strings, (13) and (14) (the latter being
taken from Chomsky, 1963), are confusing and improbable. Sentence (13)
is not easy to understand, and paper and pencil are necessary for work-
ing out a possible meaning for (14). Nevertheless, the argument maintained
by some theoretical linguists would be that the internal grammar mecha-
nism itself would, in principle, be capable of generating and processing such
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strings, were there not the theoretically not interesting limitations to mem-
ory and processing capacity. In fact, the “English sentence” (14) was used by
Chomsky “to illustrate more fully the complexities that must in principle be
accounted for by a real grammar of a natural language” (Chomsky, p. 286,
1963).

Example strings (12)–(14) show that there is, in fact, an upper limit for the
language processing device in the human brain. The fact that much effort is
needed, and even pencil and paper, to make sense out of (14) demonstrates
that the brain-internal grammar mechanism is limited with regard to this
analysis. There appears to be no empirical basis for a brain-internal grammar
mechanism capable of dealing with strings such as Sentence (14) without
external aids.

There are languages other than English in which center embeddings are
more common. The German translation of (13) might be considered much
less irritating by many native speakers of German than its translation, sen-
tence (13), is by native speakers of English.

(15) Die Ratte [die die Katze (die der Hund jagte) getötet hat] ass den Malz
auf.

Thus, there can be no doubt that center embeddings are possible, at least in
certain languages. For a realistic model of language, the relevant question is
what the upper limit for the number of embeddings is. Empirical research
on this issue indicated that three embedded sentences are at the upper limit
and are already difficult to understand (Bach, Brown, & Marslen-Wilson,
1986). This study also revealed that speakers of Dutch understand sentences
including multiple crossed dependencies better than do speakers of German
with center-embedded sentences. The authors argued that this rules out a
pushdown mechanism (cf. p. 131f) as a universal basis of the human parsing
mechanism. However, it may well be that a pushdown mechanism is avail-
able, but a distinct mechanism supporting crossed dependencies is available
as well, and is more effective under conditions of high information load
(Pulvermüller, 1994).

An abstract description of the problem posed by multiple center embed-
dings is as follows: In many languages there are strings such as (16) that
later require complement strings in the reverse order, as schematized by
(17). Here, the upper-case letters represent words, morphemes, or larger
constituents including words. An initial string part would therefore require
a complement string whose constituents exhibit the mirror-image sequence
of the initial sentence part. If (16) is the initial part, (17) would be the mirror
image part, and (18) would be the center-embedded construction.
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(16) AB . . .M
(17) M′ . . . B′A′

(18) AB . . .MM′ . . . B′A′

Here, all pairs I, I′ are assumed to be complements of each other. If an
element I has a complement I′, it means that if I occurs in a string, I′ must
also be present. In (18), the sequence of constituents is therefore followed
by the mirror-image sequence of their complements. Sentence (13) can be
described by the mirror-image order of syntactic categories in (19).

(19) NP1 NP2 NP3 VP3 VP2 VP1

Here, each sentence consists of two complements, one NP and one VP. Num-
bers indicate the sentence to which the constituents belong.

To understand a center-embedded sentence such as (12), (13), or (15), the
parts of each sentence that belong together must be related to each other.
To complete sentence (13) after the third subject noun phrase has been
uttered, not only information about the missing constituents of the main
and subordinate clauses must be kept in memory, but information about
their serial order as well.

Context-free grammars offer to deal with the phenomenon of multi-
ple center embedding in the following way. A mirror-image string such as
(20) can be generated by starting the generation process with the starting
symbol, and by rewriting it as indicated in (21), then applying Rule (22), and
finally Rule (23). (The optional “s” would be left out only in the latter rule
application.)

(20) A B C C′ B′ A′

(21) s � A (s) A′

(22) s � B (s) B′

(23) s � C (s) C′

(24) B A C C′ A′ B′

(25) A A A A A′ A′ A′ A′

In these and similiar examples, lower-case letters, a, b, c, . . . , are used for
syntactic category labels and upper-case letters, A, B, C, . . . , are symbols for
actual parts of a string. Application of Rules (21)–(23) in a different order
may result in (24), and repeated application of (21) in (25). Please note that
the strings andRules (20)–(25) aremore abstract and simpler than the earlier
examples taken from, or applicable to, real languages.

PSG Rules (21)–(23) would express that syntactic category symbols
(indicated here by small letters) can be rewritten as strings of lexical category
symbols (capital letters) and other, in this case optional (brackets), symbols
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for syntactic categories. After the arrow, the syntactic category symbols can
appear to the left or right of a lexical category label. This is an important
feature of context-free rewriting systems. If a syntactic category symbol ap-
pears only on one side of a syntactic category symbol, and if rules with more
than one syntactic category label to the right of the arrow are not permitted,
the descriptive power of the grammar is reduced. Such a one-sided linear
grammar then, for example, is not able to process center-embedded strings
(see Levelt, 1974). In right-sided linear grammar, the rules have their lexical
category symbol always to the right of the lexical category symbol, and are
therefore of the form (26).

(26) a � B c

Again, the small and large letters refer to syntactic categories and string
parts, respectively.Asmentioned, right-sided linear grammars are also called
regular grammars and are equivalent to networks of McCulloch–Pitts neu-
rons. Thus, it appears that the McCulloch–Pitts devices lack something
context-free grammars exhibit.

The memory mechanism postulated to be necessary for the processing of
a context-free grammar is called pushdown memory. Context-free grammars
have been shown to be equivalent to pushdown automata, one type of linear-
bounded automaton. In contrast to a finite automaton of the McCulloch–
Pitts type, which is characterized by a finite number of neuron elements,
each with a finite number of possible activity states, a pushdown automaton
includes a pushdown store of unrestricted capacity. It is called pushdown
memory because it is accessed in a first-in last-out manner, like a stack.
New information is entered on top of the stack, above the older entries,
and memory access is from top to bottom. Whatever piece of information is
being entered into the store first is read out only after all information put into
the store later has been removed. Conversely, the last piece of information
entered into the store is read out first.

Having a pushdown store available makes it easy to store the knowl-
edge about the mirror-image sequence of the verb phrase complements
in example sentences (13) or (15), or the complements in the strings (19),
(20), (24), and (25). Whenever an initial element is being perceived or pro-
duced, information about its complement, as specified by the respective rule
[e.g., (21)–(23)] can be entered into the memory stack. The complement
entered when the last constituent of the initial sentence part is being used
remains on the top of the stack. Only after it has been read out is it possible
to access the information about the complement of a constituent appearing
earlier in the initial part of the string. This continues until the information
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about the complement of the initial constituent of the sentence has been read
out. The way the pushdown automaton stores and accesses its information
thus produces the mirror-image sequence of complements.

Both a regular and a context-free grammar, a McCulloch–Pitts device and
a pushdown automaton, can generate, or specifically respond to, strings of
arbitrary length. It is sometimes claimed that syntax algorithms are special,
because they allow the generation or acception of, in principle, an infinite
number of possible strings based on a finite set of rules. However, this is also
true for regular grammars and their equivalent, McCulloch–Pitts neuron
ensembles. This is explained in the context of neurons specifically responding
to events of arbitrary length, the All and the Existence neuron in Section 6.1.

Another feature sometimes considered to be specific to syntax algorithms
is the recursive applicability of their rules. However, this is, again, also a fea-
ture of regular grammars. An example of a simple abstract regular grammar,
which is analogous to the context-free grammar (21)–(23), follows. Clearly,
the rewriting Rules (27)–(29) also define a grammar, in this case a right-
sided linear grammar, in which each rule can be applied recursively in the
processing of a sting.

(27) s � A (s)
(28) s � B (s)
(29) s � C (s)

These rewriting rules can generate, for example, strings of A’s, B’s, or C’s of
any length, or a sequence in which these three symbols are mixed arbitrarily.
The grammar is called right linear because, after the arrow, all syntactic cate-
gory symbols (s) are to the right of lexical category symbols (capital letters).
Analogs in terms of McCulloch–Pitts circuits are obvious. For example, a
neuron activating itself can produce an unlimited sequence of activations of
the same type. (if certain abstractions are being made).

One of the string types regular grammars cannot process are center-
embedded strings of indefinite length. It has been argued by theoretical
linguists that center-embedded strings are characteristic of many languages
and that it is, therefore, important for grammar theories to allow for their
processing without upper limit for the number of embeddings allowed. Note
that this argument depends crucially on the assumption that extremely com-
plex center-embedded strings such as (14) are relevant in grammatical pro-
cessing. From this perspective, it appears that context-free grammars are
superior to regular grammars with regard to the description of natural lan-
guages. Regular languages, and their equivalent neuronal automata, were
therefore considered inadequate as descriptions of the syntax of natural lan-
guages. The neuron-based devices were abandoned by linguists, if they had
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at all been considered in the first place. A door between the language and
brain sciences was closed, or possibly never opened.

This historical move is surprising because not too long after the elab-
oration of context-free PSGs and syntactic theories building on them, it
could be shown that neuron-based models can be made equivalent to PSGs
in describing context-free rewriting systems. The major difference between
a McCulloch–Pitts network, with its finite number of possible states, and
the pushdown automaton, with its stack of indefinite depth, obviously lies
in their storage capacity, which is limited in one case but unlimited in the
other. It is trivial that a device with unlimited storage capacity can outper-
form a device with limited capacity on certain tasks. Therefore, the obvious
move was to think about possibilities to upgrade finite automata. For ex-
ample, recursive transition networks were proposed and shown to be equiv-
alent to PSGs. These formed the basis of a new class of grammar devices,
called augmented transition networks (see also Section 6.1; Kaplan, 1972;
Winograd, 1983; Woods, 1973). A different approach was rooted in the idea
that McCulloch–Pitts networks could be allowed to grow so that the number
of their neurons, and therefore the amount of information they can store,
is unlimited (Petri, 1970; Schnelle, 1996b). It is unclear whether this view is
realistic as a description of brain-internal processes. However, it is uncon-
troversial that a McCulloch–Pitts network with unlimited storage capacity
and therefore a putatively infinite number of possible states is equivalent
to a Turing machine, and is therefore even more powerful than a pushdown
device (Schnelle, 1996b). It appears that the view about the inferiority of
McCulloch–Pitts approaches to syntax cannot be maintained.

In summary, the limited vs. unlimited storage capacities of the respective
devices is not an important difference between approaches to serial-order
processing in the McCulloch–Pitts tradition on the one hand and those build-
ing on abstract pushdownautomata on theother.Not only can this difference
be compensated for easily by extending neuronal networks, its relevance is
also questionable, given the dubious status of unacceptably complex strings
with multiple embeddings such as (14). As mentioned, empirical evidence
(Bach et al., 1986) suggests that speculations about unlimited pushdown
stores are not required.

Perhaps a more important difference lies in the way pushdown automata
and McCulloch–Pitts networks treat center-embedded sentences of finite
length. Clearly, a McCulloch–Pitts automaton can also store information
about a finite number of constituents that occur in the input. If a network is
confronted with a string ABC, neurons each specifically activated by one of
the string elements could store that the respective elements were present.
Themechanism could be the sameas those underlying theExistence neurons
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described in Section 6.1. However, although in this case information about
the elements would be stored, the information about their serial order would
be lost. One way to store the information about the sequence would be by
way of sequence detectors – as also discussed in Section 6.1 – that respond
only if input elements havebeenactive in aparticular order.However, for the
three elements A, B, and C, there would, theoretically, already be 33 – that is,
27 possible sequences – each requiring its specificmirror-image complement.
Postulating so many different sequence detectors may render the proposal
unrealistic and therefore unattractive. It appears important to think about
how a realistic neuronal device could store information about the important
properties of such sequences of elements without the need for introducing
new sequence detectors for each and every possible series of constituents.
One approach is suggested by the pushdown storage mechanism: Perhaps
each of the neuronal elements is active and some property of their activation
retains the information about their serial order. This idea may appear attrac-
tive, because it allows for more economical information storage. However,
it certainly needs elaboration, in particular with regard to possible realistic
neuroscientific under pinnings. This is discussed in Chapter 12.

7.3 Discontinuous Constituents and Distributed Words

Is it possible that a neuron-based approach to syntax is more elegant for
describing aspects of serial order in language than classical linguistic ap-
proaches rooted in the tradition of PSGs?

In Section 7.1, an example grammar was presented including six rewriting
rules, (1)–(6) (see p. 126). Whereas these rules allow for the generation
of several strings, for example, (9)–(11), they do not allow for generating
sentence (30).

(30) Betty switches the machine on.

The problem here is that the last word’s placement would not be specified
by any of the earlier rules. At least one rule would need to be modified. For
example, Rule (3), which is repeated here as (31) for convenience, could be
replaced by (32):

(31) VP � V (NP)
(32) VP � V (NP) (on)

Given Rule (32) is being used, sentence (30) can be generated. The verb
could then be followed not only by the noun phrase (“the machine”) but
by the verb particle (“on”) as well. The downside of this formulation in
(32) is that the intimate relationship between the two words switch and on
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disappears in this representation. The relationship between these two words
is so close that the two can actually be considered one single composite
word. This would in no way be a strong assumption. There are languages, for
example, German, in which (33) is translated as a single word (34), which
can also appear in its distributed form (35).

(33) switch . . . . . . on
(34) einschalten
(35) schalten . . . . . . ein

Theproposal to call items suchas (33)–(35) distributed words datesback to
Harris (1945), a linguist. Distributed words or morphemes are a special case
of discontinuous constituent, grammatically closely related sentence parts
that are separated from each other in time in spoken language and sepa-
rated in space in written language. Discontinuous constituents allow for, or
can even require, that other material be inserted between the parts of the
distributed representation.

The example of distributed words is even more interesting than that of
discontinuous constituents at the level of larger syntactic categories. The
main parts of a main clause, noun and verb phrases, separated from each
other by a relative clause in center-embedded sentences, such as (12)–(15),
would be an example of discontinuous constituents above the level of words.
As discussed in Section 7.2, center embeddings can easily be dealt with by
context-free rewriting systems. This is not so for distributed words such as
(33) and (35). The reason is that the word is usually assumed to be dealt with
as a whole. The grammar would process the word as a whole although the
different parts occur at different places in the sentences and are separated in
time or space. In a PSG, a lexicon rule would specify the two word parts and,
in the generation process of a sentence, this lexicon rule would be applied
only after the VP has been broken down into V and NP [Rule (3)]. Thus, one
wouldultimately endupwith a stringofwords inwhich verb andverbparticle
are next to each other, although they may actually appear, for example, on
opposite sides of an NP in the sentence.

A sentence including a discontinuous constituent or distributed word re-
mains grammatical if the string inserted between its parts is made longer and
longer. This is illustrated by examples (36)–(39), in which the two parts of
the discontinuous constituent appear in italics. (The examples have already
been mentioned in Chapter 6 and are repeated here for convenience.)

(36) Betty switched it on.
(37) Betty switched the coffee machine on.
(38) Betty switched the nice brown coffee machine on.
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(39) Betty switched the coffee machine she received as a present from her
mother at her 25th birthday on.

Admittedly, insertion of a longer phrase between the verb and the particle
at the end of the sentences may sound somewhat odd. In English, one may,
in these cases, prefer to place the particle immediately after its verb stem, as
shown in (40).

(40) Betty switched on the nice brown coffee machine.

Nevertheless, there are again languages in which the constructions that are
less usual in English are common or even preferred in language use. In
German, sentence (39) would read as (41), in which, again, the two parts of
the discontinuous constituent are in italic.

(41) Betty schaltete die Kaffeemaschine, die sie von ihrer Mutter zum 25.
Geburtstag bekam, ein.

Discontinuous constituents can illustrate that, in language, sometimes
very distant elements belong together, or in other words, are in a dependency
relationship. As already mentioned in Chapter 6, this phenomenon is also
called long-distance dependency. The word chain to be inserted between
the two closely related constituents can be long. To produce or understand
sentences such as (36) or (41), it is therefore necessary to be prepared to
store information about the earlier of the mutually dependent elements, or
the information that the second is required, and there is no apparent upper
limit for the time this fact must be kept in memory.

Formulated in a more abstract manner, the problem of discontinuous
words (assuming that there is a problem) is the following: Suppose the verb
included in a discontinuous constituent can be part of strings of two kinds,
either (42) or (43).

(42) A switches B C on
(43) A switches B C

Again, the letters represent (strings of) one or more morphemes. Related
example sentences are (44) and (45):

(44) Betty switches the machine on.
(45) Betty switches the machine.

Now the problem is that the elements in italics are part of the same word, or,
more generally, of the same distributed representation, although they can
be separated in time by a long word chain.
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To generate strings (42) and (43), the following rewriting rules (which
form a one-sided linear grammar) may be used:

(46) a � A b
(47) b � switches c
(48) c � B d
(49) d � C (on)

Starting with a, the sequential application of Rules (46)–(49) yield string
(42) or (43), depending on which of the two alternatives allowed by (49),
with or without particle, is being chosen.

The parentheses in (49) suggest that the choice of the final particle is an
optional process. However, this is not appropriate. Selection of the particle
must be coupled to the selection of one of the two readings of the verb.
Notably, the two verbs switch and switch . . . on in (42) and (43) have different
meanings: (43), but not (42), implies that there are two machines, one of
which is being replaced. There is therefore motivation to distinguish two
different verbs that share the phonological form switch.

A tentative idea would be to represent the two parts of a distributed word
in a neuronal grammar by using bistable elements, for example, the Exis-
tence cells discussed in Chapter 6. The two parts of a distributed word could
be implemented by two Existence cells that are in some way functionally
related. If one of the two is activated, the other one would also be aroused
to some degree, and thereby prepared to accept the second part of the dis-
tributed word. The bistable nature of the Existence cells would guarantee
that time lags of some length can intervene between the two complement
word parts. This tentative idea would also need to be worked out in detail.

Theproblemofdistributedwords andother long-distancedependencies is
virulent not only for one-sided linear grammars, but also for any context-free
rewriting system. In order to solve it, different solutions have been proposed.
For example, the two complementary constituents have been assumed to be
generated together and one of them transported away from the other to
its correct position by a movement or transformation (Harris, 1945, 1951,
1952, 1957, 1965). In sentence (44), the verb particle on would therefore be
moved away from the verb root to its sentence final position. The idea that
the grammatically correct sentences of a natural language are the result of
movements of constituentswithin strings first “base-generated”bya context-
free rewriting systemhasbeenworkedout in great detail and invarious forms
by Chomsky (1957, 1965).

Adifferent solution of the problemof discontinuous constituents requires
introduction of new categories of nonterminal nodes. One example is the
slash features in modified PSGs (Gazdar, Klein, Pullum, & Sag, 1985; Joshi
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& Levy, 1982) that specify syntactic objects lacking a complement or are
otherwise incomplete. According to this proposal, the information about a
missing verb particle could be, so to speak, transported through the sentence
representation. The nodes of the syntactic tree intervening between the two
complements (e.g., verb root and particle) would incorporate the informa-
tion that a particular type of complement (e.g., the particle) is missing.

Still a different solution of the problem posed by discontinuous con-
stituents and long-distance dependencies is offered by a more fine-grained
categorization of words into lexical subcategories, as first proposed in the
context of valence theory and dependency grammar. Assume we wish to
represent the root of the particle verb and the verb without particle as two
distinct elements in the lexicon, say switch—1 (root of transitive verb re-
quiring the particle, abbreviated here as “V14par”) and switch—2 (“plain”
transitiveverb, “V14”).Thedifferentmeaningsof theword switchesmaypro-
vide sufficient motivation for introducing two word representations in this
case. (The idea of more fine-grained lexical subcategorization also underlies
the dependency rules formulated in the next section.) This would have the
consequence that the rewriting system would need to become more complex
than in (46)–(49). These rules and the syntactic categories they operate on
must be doubled to distinguish between the representations triggered by the
two different verbs.

(50) b � switches—1 c1
(51) c1 � B d1
(52) d1 � C on

(53) b � switches—2 c2
(54) c2 � B d2
(55) d2 � C

Technically speaking, it is now guaranteed that, if switches—1 is chosen
by application of Rule (50), the particle on must follow at the end of the
sentence. However, choice of the other variant of the verb by Rule (53)
Rules out a final verb particle on. This makes the syntactic description more
precise at the cost of introducing more material, lexical categories, and rules,
into the right-linear (regular) grammar, in this case.

However, there is still nothing in the one-sided linear grammar that would
allow for representing the fact that it is precisely the verb stem and the
particle that are interdependent. This disadvantage could be overcome, for
example, by using one of the strategies outlined previously (making use
of movement or slash features) or by a neuronal machinery implementing
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the close relationship between complements by direct links between their
representations and bridging the time delay by bistable neuronal elements
(i.e., Existence neurons, memory cells).

Other disadvantages of the more complex right-sided linear grammar
introduced for solving the problem of discontinuous constituents and dis-
tributed words are that so many different rules are now necessary and also
that the number of symbols for syntactic categories was doubled. If there
were several discontinuous constituents or long-distance dependencies in a
sentence, the number of additional rules and nonterminals would multiply. If
the number of long-distance dependencies is n, the number of nonterminals
and the number of rewriting rules would increase with 2n. This exponential
increase is not attractive. In a neuronal circuit in which discontinuous con-
stituents are realized as linked bistable units, the number n of elements to
be kept in memory can be represented by n memory circuits.

This example may indicate that, although finite neuronal automata of the
McCulloch–Pitts type and one-sided linear grammars are equivalent, there
may be syntactic phenomena aspects of which can be coded more easily, or
more elegantly, in a neuron network than in a rewriting system.

7.4 Defining Word Categories in Terms of Complements:
Dependency Syntax

In PSGs, rules were proposed to operate on syntactic categories. A differ-
ent approach is to base grammar algorithms on lexical categories (or word
classes) and their complements, the necessary additions they require, and
adjuncts, the optional additions they allow for. This alternative approach
was taken in the 1950s by a syntactic theory, or class of theories, called
dependency grammar (Tesnière, 1953, 1959).

Dependency grammars can be formulated in terms of dependency rules
that operate on lexical categories and do not necessitate syntactic categories.
These rules specify that the presence of an element of lexical category A in
the string requires the presence of additional elements from lexical cate-
gories B, C, D, . . . . The latter elements are therefore said to be dependent
on A.

To distinguish rewriting and dependency rules from each other in the
present context, a different notation for the latter is used. Hays (1964) and
Gaifman (1965) proposed to abbreviate the valence and complement struc-
ture of verbs by brackets in which symbols for the required complements
are inserted either to the left or right of an asterisk symbolizing the posi-
tion of the element outside brackets they are dependent from (for a more
elaborate formalism, see Heringer, 1996). Here, a similar notation is used
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with an asterisk between slashes representing the position of the parent cat-
egory and the labels of the dependent categories between brackets. Optional
rules, that is, rules that specify possible but not required adjuncts, are shown
in double brackets. Curly brackets frame alternative words that can replace
labels for lexical categories. The context-free grammar (1)–(6) has its analog
in the dependency grammar (56)–(65):

(56) V14par (N1 /∗/ N4 Par)
(57) V14 (N1 /∗/ N4)
(58) V1 (N1 /∗/)
(59) N1 ((Det /∗/))
(60) N4 ((Det /∗/))
(61) V14par {switches}
(62) V14 {cleans}
(63) V1 {laughs}
(64) N {Betty, machine}
(65) Par {on}

This example of dependency grammar includes five syntactic dependency
rules, (56)–(60), and five lexicon rules, (61)–(65). This formulation is slightly
more detailed than the formulation chosen in (1)–(6) because it includes
subcategories of verbs and nouns. In the present grammar fragment, nouns
are either subjects, and are therefore in the nominative case, N1, or they are
accusative objects, N4, and are therefore in the accusative case. The verbs
are intransitive “one-place” verbs, V1, which do not require complements
except for their subject noun, or they are subclassified as V14, transitive
verbs requiring an additional accusative object, or, as a third possibility, as
transitive particle verbs V14par, which require a verb particle in addition
to an N1 and N4. The lexicon rules also become more detailed, consistent
with the larger number of subcategories. Rule (64) applies for both N1 and
N4. The increase in sophistication of the grammar and the larger number of
rules now allow for a more precise adjustment of the grammar to the set of
strings the grammar should generate.

Here are illustrations of the meaning of the dependency rules: (56) would
read “a transitive particle verb stem requires a noun in the nominative case
that precedes it andanoun in the accusative case andaparticle that follow it.”
Rules (59) and (60) state that nouns require determiners that precede them.

The dependency system (56)–(65) allows for the generation of some of
the example sentences discussed previously and are repeated here for con-
venience. Following each sentence, its structure is illustrated on the basis
of the syntactic dependency rules. The dependency rule appropriate for the
respective verb type is first selected and other rules are inserted to specify
additional relevant lexical categories.
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(66) Betty cleans the machine.
V14 (N1 /∗/ N4 (Det /∗/) ) by insertion of (60) into (57)

(67) Betty laughs.
V1 (N1 /∗/) by insertion of (59) into (58)

(68) The machine cleans Betty.
V14 (N1 (Det /∗/) /∗/ N4) by insertion of (59) into (57)

(69) Betty switches the machine on.
V14par (N1 /∗/ N4 (Det /∗/) Par) by insertion of (60) into (56)

Note that sentence (69) and the respective syntactic structure representation
including a distributed word can be represented. A particular dependency
rule, (56), can express that there is a direct relationship between the verb
stem and its particle.

Again, a main idea underlying dependency grammar is that words as
members of a particular lexical category are characterized by, or, actually
can be defined by the set of complement lexical categories they require.
As mentioned in Section 7.3, this idea has spread to other approaches to
syntax and has been incorporated in different ways into the respective algo-
rithms. The grammar circuits offered in Chapters 10–12 draw heavily on this
idea.

7.5 Syntactic Trees

The application of rule systems such as the ones exemplified previously can
be illustrated using so-called tree graphs. Unlike real trees, these graphs
have a root pointing upward and branches hanging downward. Trees are
two-dimensional graphs that represent the application of rules schematically
in the generation or analysis of a sentence. If a rule is applied, the symbol
to the left of the arrow of rewriting rules or the symbol outside brackets in
dependency rules – the parent category – appears above the symbols speci-
fied otherwise by a rule – called child category labels here. Parent labels are
connected to those of their children by lines, as specified by rules. These
lines are called projection lines. In the tree representation, the word string
specified by a set of rules is given at the bottom, as the final leaves of the
tree. The words and morphemes at the bottom of the syntactic tree are in
the linear order in which they appear in the sentence. Trees are strictly two
dimensional in the following sense: Projection lines are not allowed to cross.
This property is sometimes called projectivity (Marcus, 1965). In many anal-
yses, the two parts of a distributed word violate the projectivity principle.

Figure7.1 showshowdifferent graphs illustrate the structureof theEnglish
sentence (70).
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Figure 7.1. The structure of a sentence is illustrated based on different approaches to
grammar. (Upper left) Context-free phrase structure grammar is used to analyze the string.
(Upper right) X-bar syntax. (Lower left) Dependency grammar. (Lower right) A symbolism
thought to represent neuronal elements and connections between them. (For explanation,
see text.)

(70) Betty switches the machine on.

As mentioned, analysis of this string is not a simple task. Obviously, one
problem is that it includes a particle verb that is realized as two separate
constituents that belong together, switches and on. Note that in the trees,
abbreviations of lexical and syntactic categories have been changed slightly
to make them even shorter, and Vp replaces Vpar and Ar is used instead of
Det. Also, the verb suffix is analyzed (Vs).

The diagram on the upper left in Figure 7.1 gives an example of a syn-
tactic tree constructed from a simple context-free grammar or PSG. The
macroscopic sentence structure is analyzed according to Rules (1) and (3)
(Section 7.1), and the noun phase is broken down as detailed in Rule (2). In
addition, the verb is rewritten as verb followed by a verb suffix. The analysis
leaves open how the verb particle Vp should be linked into the construction.
As mentioned in Section 7.3, one possibility would be an indirect link to the
verb phrase so that a line connects the VP label to the Vp(ar). As mentioned,
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this would obscure the relationship between the verb root and its particle
and would therefore not be optimal. The verb and its particle can be linked
to each other directly only through a line if projection lines cross. This is,
however, not allowed in this kind of graph, which is, as we know, conceptual-
ized as strictly two dimensional and therefore without crossings of projection
lines.A third possibility is to attach the verb suffix to the nounor nounphrase
nodes directly and define the intervening constituents, the VP and NP (and
N), as incomplete constituentsmissing a verbparticle. In this case, the feature
that the particle is missing could originate from the verb stem representa-
tion and be transported through the intervening nodes of the tree, finally
reaching the constituent directly connected to the particle representation.

The treegraphon theupper right ofFigure7.1 is congruent to thePSGtree
on the upper right. The only difference is the relabeled nodes. Each syntactic
category label has been replaced by the name of a lexical category plus prime
signs indicating the distance between the correspondingnodes. This is similar
to an analysis based on X-bar theory. The charming thing here is that it
becomes apparent that the syntactic categories are closely related to lexical
categories. The problem with the attachment of the verb particle remains.

The diagram on the lower left of Figure 7.1 shows how the same string
may be represented by a dependency grammar lacking nonlexical syntactic
categories entirely. The tree is near equivalent with the bracketed repre-
sentation in (69). The lines in this tree have a different meaning than in
the two earlier graphs. Apart from relationships between lexical entries and
lexical categories, they express the dependency relationship between lexi-
cal categories. In this formulation, it is possible to attach the verb particle
to the verb it belongs to without violating the projectivity principle. This
is not to say, however, that the projectivity problem is absent in this gram-
mar type for other discontinuous constituents or unbounded dependencies
(see Heringer, 1996). A major difference distinguishing the dependency ap-
proach from rewriting systems is that in the former the syntactic properties
of one of the words in the sentence, in this case the verb, determines the
structure of the sentence representation.

An ensemble of connected neuronal elements that may serve similar pur-
poses as the aforementioned trees is sketchedon the lower right ofFigure 7.1.
It is based on the idea that in the brain, there are specific representations of
lexical categories. In this case, symbols for neuronal connections replace the
lines indicating rewriting or dependency relations in the tree graphs.

There appear to be no a priori reasons for preferring one of these rep-
resentations, although it appears at first glance that treatment of the verb
particle is least problematic in the representations at the bottom. However,
again, it is well known that after introduction of additional principles into
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PSG-based rewriting systems, aspects of the problem of discontinuous con-
stituents and unbounded dependencies can be solved (Gazdar et al., 1985).

Furthermore, note that none of the representations in Figure 7.1 cap-
tures the fact that there is agreement between the subject noun Betty and
the verb suffix -es – the phonological realization of the present third person
singular feature of the verb. For the graphs to describe such fine-grained
structural relationships, some refinement would be necessary. A possibility
is again offered by transporting features through the tree representation so
that the feature can be shared by lexical elements distant from each other
in the string. In the case of the agreement between subject noun and verb
suffix, the feature “third person present singular” could climb through the
tree, from the noun in subject position to the verb. Clearly, this would re-
quire a mechanism different from the one expressed in terms of rewriting or
dependency rules or related descriptions of serial order in sentences. One
may ask whether such an additional feature transport mechanism is required
(Pulvermüller, 2002).

7.6 Questions for a Neuronal Grammar

Of course, there are many open questions that must be addressed by a neu-
robiological approach to serial order, such as

(a) How can center-embedded strings be represented (e.g., those of the
form ABCC′B′A′)?

(b) How can discontinuous constituents and distributed words be real-
ized (e.g., switch . . . on)?

(c) How is it possible to specify the syntactic relatedness of distant
elements in a string (e.g., noun and verb agreement)?

These problems have been dealt with in great detail in syntactic theories,
but a brain perspective on them has not been offered, or at least not been
specified in great depth.

More questions pose problems to a neuronal device designed to process
serial order, one of which is the possibility to store the fact that the same lex-
ical entry or syntactic category ocurs more than once in a sentence. Clearly,
one word can occur repeatedly in a sentence, sometimes even with the same
meaning.

(71) The dog chased the cat.
(72) Die Ratte [die die Katze (die die Hunde jagten) getötet hat] ass den

Malz auf. (Engl.: The rat [whom the cat (whom the dogs chased) killed]
ate the malt.)
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In sentence (71), the determiner the occurs twice, whereas in example (72),
the German word die is used five times – twice as a relative pronoun (i.e.,
that and who), and three times as definite articles marked for casus, nu-
merus, and genus. It is clear that repeated use of words in single sentences
is a rather common phenomenon, and that words are frequently used in
the same grammatical function and semantic meaning when being repeated.
The problem that a representation is being processed twice also occurs if a
syntactic category is used repeatedly in a derivation.

Context-free rewriting systems offer to deal with the phenomenon, as
discussed in detail in the context of examples (20)–(29). Rules are usually
defined as being recursive, and there is no restriction on the number of occur-
rences of syntactic categories, lexical categories, or lexical items in one tree.
In contrast, however, there are models for which an account of this feature is
difficult. Localist connectionist models of language, for example, implement
words as nodes in a network. If two occurrences of the same word in one sen-
tence are to be modeled, it may be necessary to activate the representation
twice simultaneously, so to speak, a possibility not offered by most models.
Nevertheless, repeated access to the same representations – words, lexical or
syntactic category representations, and/or rules – and storage of this multi-
ple use is necessary for modelling important properties of language (Sougné,
1998).

This type-token problem is not easy to realize within a neuronal machine.
Section 6.1 discusses one form of repeated processing of the same infor-
mation when modeling a device responding to a string of several identical
stimuli or events. However, this solution has the disadvantage of not keeping
track of how many times the neural representation has been activated. It is
clear that to produce or understand sentences (71) and (72) successfully, one
must know not only that a string of several the’s or die’s was present, but
also exactly how many of the’s or die’s were present to answer the question
of whether this string was grammatical and acceptable; the same knowledge
is necessary for comprehending the string successfully.

To realize repeated use of the same word or lexical category, one may
postulate several neuronal representations of such an entity. For example,
predicates have been proposed to be available a finite number of times in
neuronal automata (see Shastri & Ajjanagadde, 1993). Processing of sev-
eral tokens of the same type would then correspond to activation of two,
three, or more neuronal devices. One may assume to have, for instance, five
McCulloch–Pitts neurons representing the word the. Although this assump-
tion is certainly possible, it is not very attractive because (i) it is difficult
to explain why the brain should invent several representations of the same
entity, and (ii) the choice of any upper limit for the number of representa-
tions would be arbitrary.
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A second possible view posits that different levels of activity of one neu-
ronal device could code for multiple processing of the same linguistic ele-
ment. This solution, however, requires that activity levels coding 1, 2, and
more tokens of the same type are distinct. Given the gradual loss of activity
over time seen in many memory cells (see Chapter 2), this does not appear
to be a fruitful strategy. Information about one or several occurrences of the
same element may easily be mixed up if neuronal representations exhibit
exponential activity decrease over time. There is cross-talk and, therefore,
loss of information.

As a third perspective on solving the problem of multiple use of one
linguistic entity, one may assume that multiple activity patterns in the same
neuronal device realize presenceof several tokens of the same type in a string
or in the linguistic representation of a string. This possibility is explored
further in Chapter 12.

Another question posing problems for a serial order network is related to
the organization of lexical categories. All syntactic theories use lexical cate-
gories, and there is little doubt that some kind of a category representation
must be postulated in a neuronal architecture of serial order as well. How-
ever, how this could be done is not clear. In some of the proposed neural
networks, individual neurons or neuron ensembles are assumed to repre-
sent and process individual words or morphemes (see Chapters 4–6). For a
network underlying the production and perception of syntactic strings, it is,
for obvious reasons, desirable not to have separate representations for each
chain of words; otherwise each word string would have to be learned sepa-
rately, and the ability to generate new grammatical sentences could not be
explained. Therefore, it appears advantageous to have a representation of
what different words and morphemes have in common. If there is a neuronal
representation of these common features of the words and morphemes of
a particular type, rules of serial order could be realized as the connections
not between individual word/morpheme representations, but as the con-
nections between the representations of common features of several words
(Pulvermüller, 2000).

To sum up, in addition to the problems (a) to (c), questions (d) and (e)
must be addressed:

(d) How can repeated use of the same word or lexical category within a
sentence be modeled and stored?

(e) How can lexical categories be realized in a neuronal network?

Tentative answers to questions (a)–(e) are proposed in Chapters 9–12.



CHAPTER EIGHT

Synfire Chains as the Basis of Serial
Order in the Brain

The putative brain mechanisms of word processing are highlighted in ear-
lier chapters; however, mechanisms of serial order have until now been ad-
dressed only sporadically in terms of neurons. This chapter now focuses on
neuroscientific questions about serial order. Serial-order mechanisms rele-
vant for language processing are being specified in great detail by linguistic
theories, but these are not easily converted into neuron mechanisms. Such
conversion of linguistic theory into neuroscientific models is possible by re-
placing rules and the operations they determine by artificial neurons and
their dynamics (see Schnelle, 1996b). However, this chapter and Chapter 9
take a different approach. First, the question of which serial-order mecha-
nisms are suggestedbyneurophysiological research is considered.Themech-
anisms inferred from neuroscientific data are then used as a basis of a neu-
ronal model of syntax.

How may rules governing serial order of language elements be realized
in the brain? This question may be asked with regard to the level of words
and morphemes, the smallest language units that carry meaning, the mean-
ing atoms, so to speak. A similar question may also be asked at the level of
phonemes, language sounds distinguishing between morphemes or words:
How are phoneme sequences stored and processed neuronally? The follow-
ing paragraphs review brain mechanisms that could be relevant for estab-
lishing serial order of language units.

8.1 Neurophysiological Evidence and Neuronal Models

A sequence AB of events can be represented by two directly connected
neuronal units: one corresponding to event A and the other to event B.
If the respective neuronal units are referred to by Greek letters, α and β,
the sequence of events could be realized as α, β, and, in addition, a direct
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connection from α to β. A single neuron α could, therefore, by way of its
direct projection to neuron β, arouse it whenever active.

However, it is unlikely that single cortical neurons connected in this way
play a role in language processing. As mentioned in Chapter 2, the connec-
tions of most neurons in the cortex are known to be weak so that input from
one single neuron would usually not be sufficient to strongly enhance the
firing probability of a second neuron on which the first projects (Abeles,
1991). Data from both in vivo and in vitro intracellular recordings show
that individual postsynaptic potentials are small and unreliable (e.g., about
0.2 µV +/− 0.1 µV in the neocortex of the rat). Thus, the concept of strong
connections between individual neurons is not realistic. Near-synchronous
input through many of its afferent synapses is usually necessary to arouse a
neuron. It appears therefore to be more likely that sets of neurons project
onto each other, thereby making up broad neuron chains that determine
spatiotemporal patterns of activity. Waves of synchronous excitation could
then spread along these broad neuron chains.

Studies on the correlation of the firing in multiple neuronal units pro-
vided strong evidence for complex spatiotemporal activity patterns in which
many neurons participate (Abeles et al., 1993; Vaadia et al., 1995). The firing
probability of a single neuron could best be determined when more than one
preceding neuronal event and behavioral context were taken into account.
This context dependence cannot be modeled based on a chain of single neu-
rons, each projecting onto the next in the chain. If this view were correct,
one would expect each neuron to have a constant influence on the firing
probability of other neurons. Instead, it was found that two neurons firing
with a particular exact delay were good predictors of the firing of a third
neuron. In contrast, each of the former neurons firing alone or both neurons
firing with a slightly different delay would not have a detectable effect of the
third one. Thus, the firing of a neuron was found to be strongly dependent
on the context of more than one other neuronal events.

The complex context dependence of firing probabilities follows from a
model in which groups of neurons are connected in chains. In this case, the
synchronous activity of one of the groups that are connected in sequence
is necessary to arouse the next set. This type of neuronal circuit has been
labeled a synfire chain (Abeles, 1991). Figure 8.1 illustrates a simple model
of a synfire chain. In this illustration, each neuron needs two simultaneous
inputs to become active, and each of the sequentially connected sets of the
chain includes three neurons. This is a simplification made for ease of ex-
hibition; the number of neurons of each neuron set connected in sequence
is probably higher, between 50 and 100 neurons (Diesmann, Gewaltig, &
Aertsen, 1999), and their firing threshold is probably in the order of 5–10
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Figure 8.1. A synfire chain consisting of five subgroups of neurons connected in sequence.
Circles represent neurons and v-shapes connections between cells. Each neuron is assumed
to have a threshold of 2. Each subgroup activates only the next subgroup if all of its neurons
fire simultaneously. If the synfire chain is active, the neurons α, β, and γ embedded in the
chain will fire in a fixed temporal order (e.g., β 10 ms after α, and γ another 30 ms after β).
If α and β fire with this fixed delay, 10 ms, the probability for γ to fire another 30 ms later
is enhanced. If α or β fire alone, and therefore independently of the synfire chain, then the
firing probability of γ is not affected.

simultaneous inputs (Abeles, 1991). In the model circuit, simultaneous acti-
vation of the three neurons on the left leads to a wave of activity spreading
to the right. The serially connected subsets, or steps, of the synfire chain ac-
tivate each other after exact delays. The neurons of each subset activate the
neurons of the next subset at exactly the same point in time.

Figure 8.1 explains the relationship between the assumed synfire mech-
anism and the mentioned data on context dependence of neuronal firing.
Note that neurons α and β in this example circuit can be active indepen-
dently of each other. Given the signals they send out are weak, each of them
being active alone would have only a negligible influence on neuron γ at the
end of the chain. However, if they are active in a given temporal order, for
instance β 10 ms after α, this would likely be because the chain as a whole is
active, in which case γ would be activated at a fixed delay after β, perhaps
30 ms later. Thus, the firing probabilities depend strongly on the context of
other neuronal firings. The conditional probability of γ firing 40 ms after
α and 30 ms after β is high, but the firing probabilities of γ in other contexts
for example, after α has fired but not β, may be low.

The synfire model implies that a cortical neuron can be part of several
synfire chains and that it can therefore be a member of different spatiotem-
poral firing patterns. The individual neurons would then become active, on
a regular basis, in different well-defined behavioral and neuronal contexts.
In multi-unit studies of cortical activity, it was found that much of a neuron’s
activity that would otherwise be considered to be “noise” or “spontaneous
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activity” could actually be described in terms of frequently occurring spa-
tiotemporal firing patterns (Abeles et al., 1993, 1995).

To further illustrate the synfire mechanism, a schematic representation of
two intersecting synfire chains is shown in Figure 8.2. Whenever the neuron
group at the upper left is active, an excitation wave spreads downward,
terminating at the lower right. Although the neurons in the very center are
also heavily connected to the neuron groups at the lower left, activity on
the lower left dies out in this case. In the same way, a wave from the upper
right spreads only to the lower left. There are two distinct spatiotemporal
patterns of activity that are prevented from getting mixed up by the very
nature of the connections, although the structural bases for these patterns
overlap. Two of four of the neurons in the central layer, where the two synfire
chains cross and the two ovals overlap, belong to both synfre chains. Each
of the other neurons included in the synfire chains may also be part of other
chains as well.

An essential feature of the synfire model is that information highways
share part of their structural basis, which has the obvious consequence that
each neuron’s firing depends on the firing context of several other neurons.
As mentioned, the shared part of the two chains sketched in Figure 8.2 are
the neurons in the middle of the central neuron group, where the ovals
intersect. These neurons would become active as part of an activity wave

Figure 8.2. Synfire chains that cross. Each
circle represents a neuron and y-shapes
represent connections between neurons.
Each neuron is assumed to have a thresh-
old of 2. Possible phonemic correlates of
subsets of the synfire chains are indicated.
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starting at the upper left, but would also be activated if an activity wave
started at the upper right. In this case, the firing of these neurons shared
by the two synfire chains alone would not decide the direction in which the
excitation wave progresses. However, given these shared neurons are active,
the direction of activity flow can be determined if more of the context of
the firing of these neurons is taken into account. The left- and right-most
neurons in the central group, which are included in only one of the ovals,
have the role of context indicators channeling the wave of activity either
to the left or right. Synfire chains can thus have shared neurons, in which
case context indicators are crucial for keeping them and the spatiotemporal
activity pattern they determine separate.

8.2 A Putative Basis of Phonological Processing

Synfire chains have been proposed as a putative neuronal basis of articu-
latory programs (Braitenberg & Pulvermüller, 1992). The exact timing of
nerve cell firings determined by the circuitry would allow for realizing pre-
cisely timed articulations. From a cognitive perspective, the beauty of the
synfire chain mechanism lies in its potential to provide a straightforward
solution to what Lashley (1951) described as one of the main aspects of
the problem of serial order in behavior. If each phoneme or letter was re-
presented as a separate entity, the possible words of a language could not
be modeled simply by direct connections of 50 or so phoneme or letter
representations. Too many different sequences would be possible whenever
a set of phoneme or letter representations are selected. If a set of repre-
sentations is activated, for example, the phonemes [t], [æ] and [b], there
would be no information about their serial order, so that different sequences
would be permitted (e.g., “tab” and “bat”). However, if not phonemes but
context-sensitive phoneme variants were represented instead, each possi-
ble sequence could be realized by direct links between neuron sets. The
context-sensitive variant of phonemes would be, for example, [b] at word
onset followed by [æ] – which can be abbreviated #Bæ – [æ] following [b],
and followed by [t], bÆt, and [t] terminating a word and preceded by [æ],
æT#. The three context-sensitive phoneme-like units #Bæ, bÆt, and æT#
would determine the elements of the phoneme sequence and their serial or-
der.A similar solution to the serial-order problemhas earlier been suggested
by Wickelgren (1969).

In contrast toWickelgren’s approach,whichacknowledgesonlyphoneme-
context effects among adjacent phonemes, it is well known that the phys-
ical properties of the realization of language sounds can depend on more
distant context. The synfire model would suggest that for each frequently
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encountered word, a synfire chain is being established and that the synfire
chains of different word forms intersect, cross, and overlap depending on
how the physical features of the sounds are being shared between the usual
realizations of the word forms.

In phonology and phonetics, context-dependent variants of phonemes are
sometimes called allophones. Allophones are phonotactically determined
variants of a language sound with complementary distributions, the vari-
ation being determined by their position relative to other phonemes in a
string. There are also free variants of phonemes without obvious phonotactic
determinants and similar distributions (e.g., the [r] and [R] sounds generated
by the tip vs. back of the tongue as they coexist in German and French). It is
possible that the context-sensitive variants of a phoneme that are laid down
in the synfire chain include phonetic features of both phonotactic phoneme
variants and of the free phoneme variants the individual happened to be
frequently exposed to. The synfire model allows for specifying a putative
underlying mechanism of the processing of language sound variants.

It may be worthwhile to illustrate the processing of phonological and
phonetic information in a synfire architecture. Figure 8.2 can be used for
this purpose, although the relevant articulatory–phonological mechanisms
are much simplified. The focus is on articulatory mechanisms only, although
analogous mechanisms must be postulated on the acoustic side.

If the synfire chain starting at the upper left and running to the lower
right is considered the neuronal correlate of the syllable [bæt], its compo-
nent neuron groups can be taken as the correlate of the relevant linguistic
elements, the language sounds as they are realized in the respective con-
text. Each sound representation would be composed of two different kinds
of neuronal elements: One related to invariant properties of the articula-
tion of a phoneme and realized by the shared neurons of different chains;
the other related to variations of the articulation depending on the con-
text sounds in which a given language sound is being articulated, realized
by the context-indicator neurons mentioned previously. These would cover
features of allophones, the context variants of phonemes.

This can again be made more plastic on the basis of Figure 8.2. The neu-
rons shared between the two representations of context-sensitive variants of
the phoneme [æ] – the two middle neurons in the central layer of Figure 8.2
shared by both chains – could relate to articulatory distinctive features of
that phoneme (e.g., lips open but not rounded, tongue at the bottom of
the mouth). In contrast, the neurons deciding between the possible suc-
cessors and distinguishing between the alternative synfire chains – the left-
and rightmost neurons of the central neuron group, the context indicators –
would process information about the articulatory movements determined
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by the context, the preceding and following articulations. Information about
differences between allophones is stored and processed here.

In this view, the neurobiological equivalent of a phoneme in context
would therefore consist of neurons related to articulatory distinctive features
(the shared neurons) and others realizing context-sensitive phoneme variants
allophones (the context indicators).

Any discussion of a possible neurobiological correlate of phonological
processing must include some limitations of the proposal. Clearly, the synfire
model postulates exact delays. Although this is an advantage for modeling
precisely timed articulations, the model circuits may provide not enough
flexibility for explaining certain obvious phenomena. For example, speech
rate can be high or low. If synfire chains were designed to model different
articulation speeds (i.e., rapid or slow pronunciation of a syllable), it would
be necessary to allow them to be tuned so that the basic time scale on which
they operate can be changed. One possibility is to assume that the chains
operate at different levels of background activity affecting all neurons in the
chain to a similar degree. Weak background activity slows the speed with
which activity runs down the chain. The candidate explanatory process is that
more time is needed for temporal summation of neuronal activity necessary
for activating each step in the chain. Higher background levels of activity
may speed up the chain because less temporal summation would be needed.
It is clear that this proposal must be worked out in more detail, but it is
equally clear that such elaboration is possible (Wennekers & Palm, 1996).

In assuming that synfire chains realize the articulation of phoneme strings,
one may suggest that each of the functional webs underlying word process-
ing (see Chapter 4) could include a synfire chain controlling the articulation
of the word form. The functional web representing the phonological word
form would include, or would have attached to itself, a chain of neurons
whose spatiotemporal sequence of activity is timed precisely. Ignition of the
functional web could therefore include or be followed by the sequence of
neuron firings determined by the articulatory synfire chain. Ignition of the
word-related functional web would not necessarily also activate the syn-
fire chain. Such activation of the articulatory program may require that the
respective neurons be in a preparatory state.

This proposal does not address the fact that words can be realized in
different ways, some of which are substantially reduced in rapid speech.
For example, the function word will (but not its noun homophone) can be
reduced to ll. To model this in a network, one may attach two or more
mutually exclusive synfire chains to the representation of the function word.
As an alternative, one may model the reduced articulation on the basis of
background activity levels. If articulation speed is very high, the articulatory
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network may be under strong background activation, so that the respective
chains become too fast for the neuromuscular articulatory machinery to
follow their commands. This results in omissions of sounds, in particular in
contexts in which fast complex articulatory movements would be required
(e.g., “it comes” realized without the [t]).

Keeping in mind the limitations of the proposal, it still appears that the
synfire model may allow for a fruitful approach to phonological brain pro-
cesses. Because it offers (i) a simple solution for one aspect of the serial
order problem, (ii) a mechanism for precisely timed articulations, and (iii)
a mechanism for coarticulation effects, the synfire model may provide a
neurobiological perspective on articulatory mechanisms. Clearly, this does
not prove the model correct. There are also fruitful approaches to memory
processes for phonological sequences that exploit alternative, or possibly
complementary, mechanisms (Page & Norris, 1998).

One of the features this proposal shares with recent psycholinguistic ap-
proaches (Marslen-Wilson & Warren, 1994) is that it does not require sep-
arate representations of phonemes. Overlapping sets of neurons related to
phonetic distinctive features and context features are proposed to corre-
spond to the contextual variants of each language sound. The intersection,
or, as an alternative, the union of these overlapping neuron sets, can be
considered the (putative) neurobiological basis of a phoneme. No addi-
tional “phoneme nodes” are required; rather, several overlapping context-
sensitive representations of a phoneme coexist. Furthermore, feature over-
lap of all context vatiants of one phoneme are not required. The family
resemblance argument (Wittgenstein, 1953) may hold for phoneme vari-
ants as it holds in the semantic domain (Section 5.2.3), and the underlying
neuronal mechanisms may be similar. Although the intersection of context-
sensitive representations underspecifies the articulatory movements neces-
sary for realizing the phoneme, each of the context-sensitive representations
itself overspecifies the articulatory movements of the phoneme because it
also includes redundant information about phoneme variants whose fea-
tures may, strictly speaking, not all be necessary for distinguishing word
meanings.

8.3 Can Synfire Chains Realize Grammar?

It is tempting to apply the synfire model to higher-order sequences of mean-
ingful units, morphemes, and words. One may want to define and neuronally
implement a word’s syntactic role on the basis of its context words, the items
that frequently occur before and after it in continuous speech, and pos-
tulate a representation of these various contexts by multiply crossing and
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intersecting synfire chains. There are, however, at least five reasons why this
strategy is not likely to be successful.

(1) Word sequences span relatively long periods of time, at least ∼1
second but usually several seconds. Synfire chains provide precise
adjustment of neuronal events that follow each other at short delays,
usually in the millisecond range, and occasionally up to 1 second. The
synfire model therefore operates at a time scale different from that
relevant for word-chain processing. Whereas synfire chains may pro-
vide a plausible model of articulatory programs within syllables and
words, they cannot provide the mechanism relevant for sequencing
words, because this mechanism operates at a larger time scale.

(2) The occurrence of a word usually does not allow for good predic-
tions on the particular word(s) that follow(s). Cases in which the
occurrence of one particular word predicts, with high probability, the
occurrence of a particular complement word, as it is the case for
“neither . . . nor,” represent rare exceptions. Whereas within a word a
phoneme is usually followed by 1 of 5 to 20 other phonemes (Harris,
1955), the number of possible successors of a word can be in the order
of 104. Although a synfire model for phoneme sequences appears fea-
sible, such a model for word sequences would require an astronomic
number of chains as a result of the very large number of possible word
sequences.

(3) The regularities determining word sequences likely operate on more
abstract word groups called lexical categories (see Chapter 7). Exam-
ples of lexical categories are noun (N) or verb (V). The occurrence of
a word from one particular category, for example, the noun category
predicts with high probability the later occurrence of a member of a
complement category – for example, verb (cf. the problem of long-
distance dependencies addressed in Section 7.3). However, there is
freedom as to which verb to select. It is unclear how a synfire model
could realize lexical categorization.

(4) When competent speakers are being confronted with new sentences
theyhave encounteredbefore, theymaynevertheless judge these new
sentences to be correct. This requires generalization from a limited
input to new sequences that were not subject to learning. The synfire
model leaves open the question how to neuronally implement such
generalization.

(5) The occurrence of a word of a particular type predicts the occurrence
of complementwords, but there canbe freedomas toatwhichposition
the complement follows its antecedent. For example, the occurrence
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of a noun or personal pronoun predicts the later occurrence of a
complement verb, but material may intervene between the two, as,
for example, in “Peter comes to town,” “Peter, the singer, comes . . . ,”
“Peter, the greatest singer in the world, comes . . . ” (see also examples
in Chapter 7). A synfire model would not allow for such extremely
variable delays.

These points are closely related to the issues discussed in Chapter 7.
Although they are generally difficult to account for in a neurobiologically
realistic model, the synfire model appears to be unable to solve them. One
may speculate whether it might be possible, in principle, to modify the syn-
fire mechanism so that it could operate at a larger time scale and deal with
the various problems listed. However, the concept of synfire chains would be
stretched in this case, and its most important feature – the temporal precision
they provide – would need to be removed [cf. point (5)]. There is no reason
for such redefinition of the concept. Rather, it is advisable to characterize
the mechanisms necessary for grammar processing and how they differ from
the synfire mechanism.

8.4 Functional Webs Composed of Synfire Chains

In Chapter 2, functional webs were defined as strongly connected neuron
ensembles. This does not have further implications about in which way the
assemblies are structured internally. One could envisage these networks to
be unstructured lumps of neurons in which average connection probability
and strength are high, but in which activity flow is not determined otherwise.
In Section 8.2, it was proposed that functional webs may include synfire
chains for certain tasks (e.g., for defining articulatory programs). Taking
this view, one may still consider cell assemblies to be largely unstructured
neuron ensembles in which only subgroups of neurons exhibit well-timed
spatiotemporal activity patterns.

An alternative view is the one proposed by Donald Hebb (1949) in his
book on cell assemblies. He suggested that the cell assembly is actually a
reverberatory chain of neurons, with many reentrant loops through which
activity waves can travel repeatedly.

This view about the inner structure of cell assemblies is illustrated in
Figure 8.3, which is taken from Hebb (1949). In this diagram, arrows are
used to represent neuron groups and the numbers are used to indicate the
sequence in which the different neuron groups are activated, given the cell
assembly is in a certain state of activity. If the cell assembly is active, this
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Figure 8.3. Hebb’s illustration of the inter-
nal structure of a cell assembly. Neuron sub-
groups of the assembly – represented as
arrows in the diagram – were envisaged
to become active in a well-timed reverber-
atory fashion. The numbers indicate the
sequence in which the subgroups be-
come active. Neurophysiological observa-
tions support the idea of multiply re-
verberatory circuits (Abeles et al., 1993).
Reprinted from Hebb, D. O. (1949). The
organization of behavior. A neuropsycho-
logical theory. New York: John Wiley.

implies that at least some of the neuron groups included in the assembly be-
come active repeatedly. For example, the arrow labeled “1, 4” in the diagram
represents the first neuron group to be activated, and it would again be active
as the fourth group if the indicated spatiotemporal pattern of activity runs
through the cell assembly. According to this view, a cell assembly is concep-
tualized as a network of neurons with exactly determined spatiotemporal
activity patterns. A cell assembly would be a synfire chain with loops, also
called a reverberatory synfire chain (Abeles et al., 1993). The two terms cell
assembly and reverberatory synfire chain would be synonyms (or, at least,
near synonyms; for discussion, see Pulvermüller, 2000).

Because ample redefinitions of a term never facilitates scientific com-
munication and some authors have proposed to distinguish cell assemblies
without internal spatiotemporal structure from reverberatory synfire chains
(e.g., Braitenberg & Pulvermüller, 1992; Braitenberg & Schüz, 1998), the
term cell assembly here is restricted to this use. In contrast, the term func-
tional web is reserved, in the context of this book, to refer to networks that
include reverberatory loops and produce well-timed spatiotemproal pat-
terns of activity (see also definition in Chapter 2). The reverberatory loops
are thought to allow the ensembles to retain their activity for some time. In
addition, the reverberatory loops in the networks are assumed to be the basis
of fast oscillatory activity (Bressler, 1995; Pulvermüller et al., 1997; Tallon-
Baudry & Bertrand, 1999). As mentioned in Chapter 4, dynamics of high-
frequency cortical responses distinguish words from meaningless pseudo-
words and may also differentiate between words from different categories
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(Pulvermüller, Lutzenberger et al., 1999). One may therefore speculate that
these high-frequency dynamics reveal the signature of functional webs, in-
cluding many reverberatory loops.

8.5 Summary

Synfire chains consisting of sets of neurons connected in sequence are a
well-established neurobiological mechanism of serial order. Each synfire
chain defines a precise spatiotemporal pattern of neuronal activity. Synfire
chains may overlap and cross with other chains while keeping separate the
spatiotemporal activity patterns they organize. It is possible that the brain
exploits the synfire mechanism for controlling precisely timed movements,
including articulations. Serial order of phonemes may be organized by syn-
fire chains built into or attached to functional webs representing words.
A mechanism different from that of synfire chains may be necessary for
establishing serial order of meaningful language units in sentences.

In summary, a neurobiological approach to serial order in language
processing suggests that different mechanisms underlie the processing of
phoneme sequences within syllables and words on the one hand and the pro-
cessing of word and morpheme sequences in sentences on the other hand.
Chapter 9 discusses the latter.



CHAPTER NINE

Sequence Detectors

The synfire model discussed in Chapter 8 is one example of a realistic model
of serial order in the brain. One may call it realistic because it has strong
footings in neuroscientific research. Which alternative mechanisms for es-
tablishing serial order exist in the nervous system? This chapter reviews a
class of serial-order mechanisms different from the synfire chain. It is ar-
gued that this type of mechanism may be important for organizing grammar
in the brain, and an attempt is undertaken to apply the mechanism to the
processing of a simple sentence.

9.1 Movement Detection

As emphasized in Chapter 8, the synfire model realizes a sequence of ele-
mentary events “A then B” by direct connections between their neuronal
representations, α and β. As an alternative, it is possible to connect a third
element to both representations of elementary events. The third element, γ ,
would become active if sequence AB occurs. The third element would be a
mediator serving the sequence detection process, which could otherwise be
performed by a synfire mechanism as well.

The basic idea for this mechanism of mediated sequence processing has
been formulated by McCulloch and Pitts (Kleene, 1956; McCulloch & Pitts,
1943). In Chapter 6, the cardinal cells responding specifically to strings of
events were called string detectors. In modern neuroscientific research, sev-
eral lines of research have proved similar mechanisms in the nervous system
of animals.

Many animals respond specifically to stimuli that move. Therefore, they
must be equipped with a mechanism for movement detection. The problem
of movement detection shares properties with the serial-order problem, and
this becomes obvious in the following formulation. If there are two sensory
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cells, α and β, looking at adjacent areas A and B of visual space, a moving
stimulus first appearing at A and later appearing at B stimulates the neurons
α and β sequentially. A third neuron, γ , receiving input from both α and β,
may function as a detector of a movement in the AB direction. It should
respond to the sequential stimulation of α and β, but not to the reverse
sequence. The mechanism yielding sequence sensitivity may involve low-
pass filtering of the signal from α, thereby delaying and stretching it over
time. Integration of the delayed and stretched signal from α and the
actual signal from β yields values that are large when the activation of α

precedes that of β, but small values when the activations of α and β occur
simultaneously or in reverse order. This mechanism of directional sensitivity
was first described in the visual system of insects (Reichardt & Varju, 1959;
Varju&Reichardt, 1967).Analogousmechanismsofmovementdetectionby
mediated sequence processing were uncovered in the visual cortex of higher
mammals (Barlow & Levick, 1965; Hubel, 1995), and a related mechanism
of sequence detection exists in the cerebellum (Braitenberg, Heck, & Sultan,
1997).

The cerebellar mechanism appears to be closest to the mechanism of
sequence detection suggested by McCulloch and Pitts’s model circuits
(cf. Chapter 6). Actual delay lines, realized as the parallel fibers of the
cerebellum, ensure that precisely ordered sequences of neuronal events can
simultaneously stimulate the sequence-detecting cardinal cells, realized as
cerebellar Purkinje cells (Braitenberg et al., 1997). This is very close to the
mechanism sketched in Figure 6.2. The three input units in the figure would,
in reality, correspond to inputs to different parallel fibers. The delay units
would not be present in the cerebellar mechanism, but parallel fibers of
different length would replace them. The sequence detector cell would be
analogous to a Purkinije cell responding only if several action potentials ar-
rive simultaneously in its flat dendritic tree through several parallel fibers.
It would appear that many aspects of the mechanisms envisaged by McCul-
loch and Pitts could be confirmed by modern neurophysiological research
(see Heck, 1993, 1995).

Again, the specific feature of the mechanisms of mediated sequence pro-
cessing is that a sequence of elementary events is detected by a third-party
element (labeled γ here) that receives input from the neuronal correlates
of the elementary events (labeled α and β). This mechanism of mediated
serial-order processing is in contrast with the unmediated or direct serial-
order mechanisms as, for example, synfire chains – because it is characterized
by the existence of neuronal elements devoted to computing serial-order in-
formation and mediating between more elementary units. Please note that
the two possibilities – mediated, or indirect, sequence detection based on
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extra third-party neuronal elements vs. direct sequence detection made
possible by the synfire architecture – had already been sketched and con-
trasted in Section 6.1 (cf. Figs. 6.2 and 6.3, respectively). Meanwhile, it be-
came clear that there is strong evidence for the existence of bothmechanisms
in the nervous system.

9.2 Sequence Detectors for Word Strings

A basic proposal explored in Chapters (10–12) of this book is that mediated
sequence detection may be relevant for processing the serial order of words
and morphemes in sentences. However, word-order detection cannot be
achieved by exactly one of the mechanisms found in the visual system of
arthropodes and vertebrates, or in the cerebellum, because of the time do-
main differences [cf. caveat (1) in Section 8.3]. As is the case for the synfire
chain mechanism, the mechanisms for direction-sensitive movement detec-
tion usually apply for delays much smaller than 1 second, whereas sub-
stantially longer delays occur between sequentially aligned words and mor-
phemes. Still, however, Barlow and colleagues reported that some neurons
in the visual system of vertebrates exhibit rather long decay times (Barlow,
Hill, & Levick, 1964), which could be compatible with the detection of se-
quences spanning tens of seconds. In addition, a model building on sequence
detectors fed by word webs can also be subject to all of the points raised
previously against a synfire model of word sequencing. Points (2) to (5) in
Section 8.3 and also Point (1), are therefore be addressed again. The strat-
egy is to explore what the mediated sequence detection mechanism already
well established by neuroscientific research can achieve, and how it would
operate at the level of functional webs.

(2) Number of represented sequences : One may argue that a model based
on indirect sequence detectors for word strings requires a very large
number of such detectors, each responding to a particular sentence.
However, this is not necessarily so. Like movement detectors, word-
sensitive sequence detectors can be assumed to operate on pairs of
elementary units. If there is a sequence detector for each frequently
occurring sequence of two words, the number of necessary sequence
detectors can be reduced substantially. Still, the number would be
large [but see (3)].

(3) Categorization: If a sequence detector γ responds to a sequence “first
α1, then β1” of neuronal events, it is possible that it responds to a
sequence “first α2, then β2” as well (where α1, α2, β1, and β2 symbolize
wordwebs).By connections toα1,α2, . . . ,αm on theone side and toβ1,



162 Sequence Detectors

β2, . . . , βn on the other, γ can be sensitive to activation sequences
of elements of groups of word webs – that is, to a sequence of any
member of the α group followed by any member of the β group.
The α group could, for example, be the lexical category of nouns, and
the β group could be the verbs. The sequence detectors could operate
on webs representing words and morphemes from given lexical
categories.

(4) Generalization: Suppose a sequence detector γ is frequently active
together with the activation sequence of word webs α1 and β1, and
develops, by associative learning, strong connections to both so that
it finally responds reliably to the sequence “first α1, then β1.” Addi-
tional confrontation with the sequences “first α1, then β2” may also
strengthen the sequence detector’s connections to β2, and finally, if
theactivationofα2 is frequently followedby thatofβ1, theα2 webmay
furthermore be chained to γ . The “generalization” that the sequence
detector is also sensitive to the event “first α2, then β2,” although this
particular sequencemaynever havebeenpresent in the input, follows
from this learning history. This type of substitution-based associative
learning can account for at least one type of generalization of syntac-
tic rules to novel word strings. It requires that a few standard strings
be perceived frequently, and that substitutes replace members of the
string selectively so that their representation can be chained to the
sequence detector.

(5) Variable delays: A sequence detector does not require fixed tem-
poral delays between the activation of the units feeding into it to be-
come active. Motion detectors of the Reichardt–Varju type
(Reichardt & Varju, 1959; Varju & Reichardt, 1967) can respond to
stimuli moving with variable speed, and in the same way, a functional
web fed into by two word webs may respond to their serial activation
independently of the exact delay in between their respective activa-
tion. A noun–verb sequence detector may therefore become active
whenever confronted with one of the strings “Peter comes to town,”
“Peter, the singer, comes . . . ,” or “Peter, the greatest disk jockey of
the world, comes . . . .” Clearly, there must be an upper limit for the
delays possible, which, in a Reichardt–Varju inspired model, would
depend on the decay times of the word webs and the characteristics
of the low-pass filter.

Returning, finally, to Point (1), the time-scale problem, it appears that de-
lays of several seconds do not constitute a principled problem for a model of
mediated sequence detection. Again, the decay time and the characteristics
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of the assumed low-pass filter may determine the time scale on which se-
quence detection is possible. If functional webs corresponding to words feed
into a sequence detector, the activation and decay times of these word webs
would likely be crucial. At present, there are no data revealing these dy-
namics of the neurobiological correlates of words. However, one may allow
for educated guesses. Relevant neurophysiological data come from memory
cells (see Chapter 2) whose dynamics may reflect the activity status of dis-
tributed memory networks they are part of. If this is correct, functional webs
could have decay times of 10 seconds or more (Fuster, 1995, 1998b, 2000;
Zipser et al., 1993). Assuming that this feature generalizes to the proposed
word webs (see Chapter 4), the indirect sequence detectors responding to
word-pair sequences may well be assumed to operate on a time scale of
several seconds as well.

In summary, the proposal is that mediated sequence processing known
from other neuroscientific domains is an important mechanism for syntactic
processing. In contrast to the already known mechanisms of sequence de-
tection that operate at the single neuron level, single neurons represent the
input and mediate the sequence, the present proposal puts that the same
type of mechanism exists at the level of functional webs. Thus, the relevant
sequence detectors would be functional webs responding to sequences of
neuron populations related to the processing of single words. A sequence
detector would become active if the word Ai from a word category A is
followed by a word Bj from category B, thereby activating the correspond-
ing functional webs αi and βj sequentially. Frequent cooccurrence of words
in linear sequences may be an important factor for establishing neuron en-
sembles specializing in the detection of word sequences. This allows for an
economic representation of word-pair sequences, largely independent of the
actual delay between the words within a sentence.

In Chapters 10–12, the idea roughly sketched here is more precisely for-
mulated, extended, and illustrated by putative grammar mechanisms. The
final section of this chapter may give a first idea how this proposal might
connect to syntactic theories and how it differs from them.

9.3 Sequence Detectors and Syntactic Structure

The postulate that word sequences are assessed by sequence detectors leads
to a novel view on syntactic processes. The dominating view in linguistics
has been that a hierarchical tree of syntactic category representations is
built up to parse a sentence and that the individual words of the sentence
are attached to the tree as its leaves (see Chapter 7). The tree would have the
sentence symbol S as its root, and branches would lead to phrase nodes and
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Figure 9.1. (a) A phrase structure repre-
sentation of the sentence “He comes.”
Lines represent structural relationships.
Abbreviations: Ppn: personal pronoun;
V: verb; Vs: verb suffix; Np: noun phrase;
Vp: verb phrase; S: sentence. (b) Puta-
tive neuronal circuit based on medi-
ated sequence detection. Circles rep-
resent functional webs. Labels close to
circle indicate the morphemes repre-
sented by word webs (upper line) and
the sequences of lexical category mem-
bers sequence detectors are assumed
to be sensitive to (lower line). Thin and
thick lines represent qualitatively differ-
ent neuronal connections between se-
quence detectors and word/morpheme
webs, respectively.

to lexical category nodes. Another example syntactic tree for a maximally
simple sentence, or sentence fragment, is presented in the upper diagram
of Figure 9.1. The phrase structure of the string “He comes” is used as an
example. As illustrated in Chapter 7 with different examples, this sentence
can also be broken down into noun phrase (Np) and verb phrase (Vp). The
noun phrase is, in this case, realized as a personal pronoun (Ppr), and the
verb phrase as verb stem (V) plus verb suffix (Vs).

The tree representation per se has the disadvantage that it cannot capture
one type of long-distance dependency called agreement (see Chapter 7). The
relationshipbetween the sentence-initial pronounand the sentence-final suf-
fix requires an extension of the concept of a two-dimensional tree structure.
As detailed in Chapter 7, linguists have proposed supplementary mecha-
nisms to model the interdependence of these elements, which, in the present
example, agree in person and number. The most popular approach proposes
that features of the items be transported through the branches of the tree to
mediate between its leaves. A disadvantage of this strategy is that it is not
economical: Two mechanisms – tree construction and within-tree transport
of features – are postulated, althoughonemay speculate that onemechanism
could equally well represent and process the multiple relationships between
the constituents of the sentence (see Chapter 7).

A syntacticmodel basedon sequence detectors replaces the tree construct
by a set of neuronal elements mediating between word webs (Figure 9.1,
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bottom diagram). Separate sequence detectors responding to word pairs,
in example (a) to the pronoun–verb sequence, (b) to the verb–verb suffix
sequence, and, in the very sameway, (c) to the pronoun–verb suffix sequence,
are envisaged to be activated by theword string. The activation of these three
sequence detectors would also represent and process structural information
about the word string. Each sequence detector would represent and, given it
is active, store the information that a particular pair of syntactically related
morphemes has recently been present in the input.

At first glance, this approach may appear more economical than the
syntactic-tree-and-feature-transport approachbecause it postulatesonlyone
unified mechanism, mediated sequence detection, which, in this case, can
replace two different mechanisms, for subordination and agreement in syn-
tactic trees.

Psychological phenomenon may provide additional support for the neu-
robiologically inspired idea that mediated sequence detection operating on
categories of words could underlie syntactic processing. An important ob-
servation is that previously perceived syntactic structures are being imitated
in subsequent verbal actions. This phenomenon attributed to a mechanism
dubbed syntactic priming occurs with above-chance probability in both con-
versations and controled experiments (Bock, 1986; Bock, Loebell, & Morey,
1992; Pickering & Branigan, 1999). The phenomenon is independent of
whether or not the two sentences share words. A double object sentence
as a prime (“showed the children the pictures”) yields later production of
other double object sentences (“gave the butcher the knife”), and a simi-
lar priming effect can be observed for the prepositional object paraphrase
(“showed the pictures to the children”). It has been pointed out that certain
aspects of syntactic priming are difficult to explain on the basis of some of
the available syntactic theories (for discussion, see Pickering & Branigan,
1999).

It is obvious that imitation of sequences of words from similar lexical
categories can be explained easily and straightforwardly based on the notion
of sequence detectors operating on categories of word representations. If
sequence detectors play a role in both the detection andproduction of strings
of words from given lexical categories, the explanation of syntactic priming
can be based on primed sequence detectors. Priming of these neuronal webs
by an incoming sentence enhances the activity level of these neuronal units,
thus later enhancing the probability that similar word sequences will be
produced.

There cannot be any doubt that networks made up of neurons can realize
important aspects of the serial order of events. It is, nevertheless, impor-
tant to point to some of the neurocomputational research that investigated
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in detail the mechanisms discussed here. There is a long history of work
exploring the capabilities of associative networks, which has been sparked
by theoretical proposals (e. g., McCulloch & Pitts, 1943) and empirical re-
sults (e.g., Reichardt & Varju, 1959). Willwacher (1976, 1982), for exam-
ple, presented an early implementation of a single-layer network capable
of learning and retrieving letter sequences, and Buonomano (2000) recently
showed that a variety of precise delays between events can be learned and
represented in an associative network consisting of excitatory and inhibitory
neurons that are organized in one neuronal layer. Some researchers have in-
cluded into their simulationsmuchdetail about the specific features of the se-
quencesunder study, suchas complexgraspingorwalkingmovements (Cruse
& Bruwer, 1987; Cruse et al., 1995), and about neuronal responses as re-
vealedbyneurophysiological investigation (Kleinfeld&Sompolinsky, 1988).

Apart from single-layer associative networks, more complex networks
have been used with some success. Elman used an architecture that includes
hierarchically organized layers, one of which is reciprocally connected to an
additional so-called memory layer where information about past events can
accumulate. This architecture proved particularly fruitful for modeling serial
order of language elements (Elman, 1900; see Chapter 6). Dehaene used
a three-layer model, including one layer where sequence detectors could
develop very similar to the ones discussed here in the context of syntactic
processes (Dehaene, Changeux, & Nadal, 1987).

Despite these successes in modeling serial order relationships in neural
models, it should be kept in mind that the successful application of a net-
work to a problem of serial order does not clearly imply that the relevant
mechanisms on which sequence production or detection is based have been
uncovered. For some simulation approaches it remains to be shown whether
the crucial mechanism is direct sequence detection by delay lines or, as an
alternative, mediated sequence detection relying on separate neuronal units
devoted to the processing of serial order information. This can be decided
by looking closely at the behavior of individual neurons included in the
network.

The model of sequence detection discussed here makes specific predic-
tions on the outcome of neurophysiological experiments that have, as to
the author’s knowledge, not been carried out yet. The considerations on
syntax offered in this section would suggest that it might be advantageous
to have neuronal units available that respond specifically to a sequence of
events A and B, but that their response is largely independent of the delay.
A further prediction might be that the relevant delays range between 0.2
seconds and tens of seconds. The model discussed here would suggest that
such sequence detectors responding to specific word sequences would be
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particularly common in the left perisylvian cortex. Furthermore, the neuro-
biological approach may provide a brain-based explanation of neurophysi-
ological and metabolic changes in brain activity related to the processing
of syntactic information (Caplan, 2001; Friederici, Pfeifer, & Hahne, 1993;
Hagoort, Brown, & Groothusen, 1993; Indefrey et al., 2001; Moro et al.,
2001; Neville et al., 1991; Osterhout & Holcomb, 1992). This issue will be
raised again in Chapter 13.

After the illustration of how sequence detectors may provide a basis for
grammar, it now becomes important to formulate the proposal in a more
general way.



CHAPTER TEN

Neuronal Grammar

Large, strongly connected groups of neurons were proposed to form the
neurobiological substrate of higher cognitive processes in general and lan-
guage in particular. If the reader wishes, the ultimate answer to the question
of language, the brain, and everything was suggested to be neuronal ensem-
ble. Different authors define terms such as neuron ensemble, cell assembly,
and neuronal group in different ways, and therefore a new term, functional
web, was proposed and its meaning clarified (see Chapters 2, 5, and 8). There
is support for the concept of functional webs from neurophysiological and
neuroimaging experiments on language and memory (see Chapters 2 and 4).
In this chapter, the notion of a functional web is used as a starting point for
a serial-order model. The elements of this model are called neuronal sets.
Neuronal sets are functional webs with additional special properties that are
relevant for serial-order processing. Neuronal sets can represent sequences
of words and are then called sequence sets (or alternatively, sequencing units,
or sequence detectors). New terms are introduced to distinguish the entity
that has empirical support (functional web) from the theoretical concept
developed (neuronal set).

In this chapter, the notions neuronal set and sequence set are explained
and applied to introduce a putative basic mechanism of grammar in the
brain. Properties of functional webs are first briefly summarized, and then
the concept of a neuronal set is defined as a special type of functional web.
The process of the detection of word sequences is spelled out in terms of the
ordered activation and deactivation of neuronal sets. The possible neuro-
biological correlate of lexical categories is discussed.

168
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10.1 The Story So Far

A functional web is a widely distributed group of cortical neurons that are
strongly connected to each other (see Chapter 2). Because of its strong in-
ternal connections, the web is assumed to act as a functional unit, that is,
stimulation of a substantial fraction of its neurons lead to spreading activity
and finally to full activation of the set. This full activation is called ignition.
Although after an ignition has taken place refractory periods of neurons and
other fatigue effects again reduce the excitation level of the set, activity in the
web is proposed not to die out completely. The strong internal connections
still allow activity to be retained in the web. A wave of activity may rever-
berate in the set, as proposed by Hebb (see Chapter 8). Results of studies of
cognitive processes using noninvasive physiological recordings are consis-
tent with the view that ignition and reverberation are successive processes
reflected in stimulus-evoked cortical potentials and induced high-frequency
activity (see Chapter 4).

It is important to note the differences between the concepts of rever-
beration and ignition. Ignition is a brief event, whereas reverberation is a
continuous process lasting for several seconds or longer. Ignition of a func-
tional web involves all of its neurons, or at least a substantial proportion of
them, whereas reverberation can be maintained by small neuron subgroups
within the set being active at given points in time. Ignition does not imply
a fixed spatiotemporal order of neuronal activity. In contrast, reverberation
is characterized by a fixed sequence of neuron activations, a defined spatio-
temporal pattern of activity within functional webs. Ignition would be the
result of the overall strong connections within a web, and reverberation
would be made possible by its strongest internal links envisaged to provide a
preferred highway for spreading neuronal activity, so to speak. Importantly,
two distinct types of activation of a web are postulated. In addition, there
is the possibility that the web is in an inactive state – that is, that it stays at
its resting level. Therefore, a functional web can have three activity states:
It can rest, reverberate, or ignite.

10.2 Neuronal Sets

Neuronal sets are functional webs characterized by a greater variety of ac-
tivity states.

If different functional webs are connected to each other, the excitatory
processes of ignition and reverberation in a given ensemble likely influence
other webs directly connected to it. Through connections between webs,
which are assumed to be much weaker, in the average, than their internal
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connections, one set of neurons can have an activating effect on the other.
This between-web stimulation does not necessarily mean that there is
a long lasting effect in the second set. A continuously reverberating and
autonomous wave of activity is not necessarily generated in the stimu-
lated set, and an ignition only takes place if the activation from outside
is substantial, above an ignition threshold. Subthreshold activation of a web
as a result of input from one or more other sets is called priming at the
neuronal level. Neuronal sets are conceptualized as functional webs that can
exhibit priming. Thus, neuronal sets are characterized by four different types
of possible activity states: ignition (I), reverberation (R), priming (P), and
inactivity (0).

To clarify the main differences between terms used in this book to refer
to neuron groups of different kinds, Table 10.1 gives an overview. The
terms neuron group, cell assembly, functional web, neuronal set, and, finally,
sequence set or web refer to subcategories with increasingly narrower
definitions.

The term priming must not be mixed up with priming at the behavioral
level (e.g., semantic priming; see Chapter 5), although it is possible that the
neuronal mechanism is the cause of the behavioral phenomena (Milner,
1957). Because later chapters deal with neuronal mechanisms, the term
priming usually refers to the neuronal level unless otherwise indicated.

For a network formed by many neuronal sets, with stronger and weaker
connections between the sets, it appears plausible to assume that different
activity states of one set may differentially affect other connected sets. Be-
cause ignition is a substantial excitatory process, it may affect other directly
connected sets, or neighbor sets, regardless of how strong connections are
between the sets. In contrast, the less powerful process of reverberation, to
which less neurons contribute at any point in time, may be visible in neigh-
bor sets only if between-set connections are strong. Ignition is assumed to
prime connected neighbor sets, whereas reverberation is assumed to prime
neighbor sets only if the connection between the sets is strong.

In the state of reverberation, a neuronal set is similar to aMcCulloch–Pitts
neuron of threshold one with one self-connecting loop. However, as already
mentioned in Chapter 2 and later, neurophysiological evidence does not
support the notion of a neuronal element exhibiting constantly enhanced
activity over longer periods of time (Fuster, 1995). Instead, activity levels
of memory cells in many cases exhibit an exponential decrease of activity.
If the memory cells reflect the activity state of larger sets, it makes sense
to assume that also the larger sets show exponential decline of activity with
time if the set is in its reverberatory state. The activity level A of a neuronal
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set Si at time t may be described by Eq. (1).

A(Si, t) = A(Si, t0) e−c�t

= A(Si, t0) e−c(t−t0) (1)

where t0 is the point in time when the set has received excitatory input from
neurons outside the set, �t is the time difference between t and t0, A(Si, t0) is
the amount of activity it exhibited at t0, and c is a constant determining the
slope of the exponential decrease of activity (c can be assumed to be 1 here).
The larger �t, the smaller the exponential term e−c�t . In essence, when
reverberating, the neuronal set continuously loses activity, and this activity
decline is assumed to be exponential.

As in many network simulations (see Chapter 6), the time continuum is
sliced into discrete time steps. This is done for illustration and simulationpur-
poses. In reality, the exponential decrease of activity is probably continuous
rather than in discrete steps.

If a set receives excitatory input from outside, an ignition may result. If
the input is not sufficient for reaching the ignition threshold, the set is merely
being primed. In contrast to ignition and reverberation, priming of a given
set depends on input from other sets. Priming therefore terminates as soon
as the input has ceased.

One may question this assumption, because excitatory postsynaptic po-
tentials are known to last for tens of milliseconds after an action potential
has arrived (see Chapter 2). However, activity dynamics of neuronal sets
involved in processing serial order of words would probably operate at a
much longer time scale (see Chapter 8). If the time steps considered in a
model of sequence detection are on the order of 30 or so milliseconds, ex-
citatory postsynaptic potentials can probably be considered as momentary
phenomena.

Again, the momentary process of priming is distinguished from the long-
lasting process of reverberation. Certain forms of behavioral priming
(e.g., repetition priming) would therefore need to be attributed to rever-
beration rather than to priming at the neuronal level. From a neurobio-
logical point of view, the concept of priming as it is used in psychology
may correspond to a variety of different neuronal mechanisms (see Mohr &
Pulvermüller, in press, for further elaboration).

Under priming, the various excitatory inputs to a given set from its ac-
tive neighbors summates at each time step. Inputs from neighbor sets that
reverberate or ignite are being received at the same time through different
input fibers of the neurons of the set, and this can lead to spatial summation
in its neurons. One may also say that the neuronal set as a whole summates
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the various simultaneous inputs so that its overall activity level increases.
If additivity of activity is assumed, the following equation gives the activity
level of a set Si at time t, which received input from j other sets Sj one time
step before:

A(Si, t) = 	 j A(Sj, t − 1) (2)

where A(Sj, t − 1) indicates the amount of excitatory stimulation a set Sj

sends to set Si at a given time step t − 1 and which arrives at Si at t. Although
Eq. (2) may give a rough idea about the real processes, these are likely more
complex because the underlying assumption of additivity is idealized.

If an already reverberating set receives stimulation from outside, the ex-
citatory effects of the reverberation itself and the inputs from other sets are
again assumed to summate.

A(Si, t) = A(Si, t0)−c(t−t0) + 	 j A(Sj, t − 1) (3)

This formula is one way to express that two main sources of excitation of
a neuronal set are (a) its internally reverberating excitation and (b) the
input to the set through afferent connections from other neurons – that is,
through priming. As an alternative to mere summation, the activity provided
by reverberation and priming may interact in a more complex manner.

As in theartificial neuron-likemachinesproposedbyMcCullochandPitts,
the integrated activity can be used as a criterion for the decision about fully
activating a neuronal set. If the activity level summed over space and time
exceeds a certain value, the ignition threshold θ , then the set ignites. After
its ignition (I ), and everything else being equal, the set starts to reverberate
again at a given reverberation level, R1. To state this briefly:

A(Si, t) > θ ⇒ A(Si, t + 1) = I ⇒ A(Si, t + 2) = R1 (4)

The double arrows denote causality and temporal succession. One time step
after the threshold is reached, an ignition occurs which is, again after one
time step, followed by the reverberation process.

In essence, neuronal sets are assumed tohavequalitatively different possi-
ble activity states. At each point in time, a set is characterized by one activity
state from the set AS of possible activity state types:

AS = {0, P, R, I} (5)

Again, 0 is the resting level; I is full activation or ignition; R represents
reverberation, which follows ignition; and P is priming caused by the ignition
or reverberation of a different but connected neuronal set.

Whereas 0 and I refer to single activity states, P and R denote sets
of possible states. As Eqs. (1) and (2) imply, there are different levels of
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reverberation and priming. The set R of reverberatory states is defined by
the exponential function Eq. (1) and, therefore, there is, in principle, an
unlimited number of possible activity states.

R = {R1, . . . , Ri , . . . , Rn}; R1 < θ, Rn > 0 (6)

There is no upper limit for the number n of the possible reverberatory states
Ri because decline of activity is continuous, and Ri is therefore from the set
of positive real numbers. Thus, theoretically speaking, there are uncountably
many possible states Ri . From this, it follows that a neuronal set cannot be
considered a finite state device because a finite state device is defined as
having only a finite number of possible states.

Nevertheless, a set of neurons with infinitely many possible activity states
is unlikely to exist in reality. The noise available in all biological systems
cancels the minor differences between similar states so that, in fact, it is only
possible to distinguish a finite set of states. The influence of the noise depends
on its ratio to the signal. If a neuronal set consisted of a very large number
of neurons, each stimulated by statistically independent noise, it would be
possible to minimize or even cancel the effect of random noise to each in-
dividual neuron by averaging activity over all elements of the set at each
point in time (see Chapter 2). Given good signal-to-noise-ratios are being
computed, the number of possible activity states can therefore be assumed
to be high, although not infinite. The number of distinguishable states of
reverberation of a set is limited by the signal-to-noise ratio of the system.

A similar point as the one made above for reverberation can be made for
levels of priming as well. As implied by Eq. (2), there is no principled upper
limit for the number of members of the set P of states of priming.

P = {P1, . . . , Pi , . . . , Pn}; P1 < θ, Rn > 0 (6)

Although the number of inputs to a neuronal set is limited, n can be high
because each input can be strong or weak, depending on connection strength
and the activity level in the stimulating set. Because this activity level of the
stimulating sets can vary, the input to the primed set varies as well.

Although there are theoretical and empirical reasons to conceptualize
neuronal sets as networks with properties as described by Eq. (1) to Eq. (5),
certain simplifications appear necessary to illustrate the functioning of gram-
mars composed of neuronal sets. In this and the following two chapters and
the related Excursuses, grammar circuits are introduced. These are kept as
simple as possible. The circuits and their functions are designed to provide
comprehensive examples of the computational perspectives of grammars
formulated in terms of neurons. The following simplifications are made to
allow for straightforward and well-intelligible illustration:
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(1) Only a few states of reverberation (labeled R1, R2, R3, etc., or, al-
ternatively, R, R′, R′′, etc.) and priming (P1, P2, . . . , or P, P ′, . . . ) are
mentioned explicitly in the examples that follow.

(2) Continuous activity decrease with time [Eq. (1)] is ignored except if a
new level of activity is being introduced. R1 denotes the highest ac-
tivity level in a network at a given point in time (irrespective of its
absolute value); R2 denotes the second highest activity level, just one
step below; R3 refers to the third-highest levels; and so on. The same
applies for levels of priming.

(3) Spatiotemporal summation of activity and the criterion for ignition
is simplified.

Again, this is done to maximize intelligibility of the formalisms and make
computations less complex and therefore easier to illustrate.Theexponential
activitydeclineofneuronal setswith time is proposed tobe crucial for storage
of serial-order information.

10.3 Threshold Control

In Chapter 5, it was argued that for a cortex-like network to operate prop-
erly, it is necessary to assume a regulation mechanism that keeps the activity
level within certain bounds. A feedback regulation mechanism can be as-
sumed to adjust the thresholds of individual neurons by way of providing or
removing background activity to move the cortical activity level close to a
target value. This mechanism has been called the threshold control mecha-
nism (Braitenberg, 1978a; Braitenberg & Schüz, 1998; cf. Chapter 5).

Here, it is assumed that the regulation mechanism detects fast activity in-
creases and removes backgroundactivity to the cortex if a substantial activity
increase is detected. If the level of activity is generally low, the mechanism
provides additional excitation. As emphasized in Chapter 5, other criteria
for activation of the regulation mechanism can easily be imagined, and at
this point, it is not clear which of the several possibilities is actually realized
in the real brain. However, because it is evident that a feedback regulation
mechanism of some kind is necessary, one of the several options must be
chosen for realistic modeling.

A criterion based on activity increase can be realized in a network without
difficulty. The global activity state summed over all neurons in the network
at a time point t could be compared to global activity at an earlier time
(e.g., one time step earlier, at t − 1). Only if the difference exceeds a certain
value is inhibitory input to the network provided. An even simpler crite-
rion for activity increase can be introduced on the basis of the following
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consideration. The most extreme activity increase is probably present in a
network of neuronal sets if one or more sets ignite after being in the rest-
ing state 0. Therefore, such fast activity increase may be assumed to cause
the regulation mechanism to become active and initiate a process of global
inhibition affecting the entire network.

Compared to the ignition of an inactive set, the activity change is smaller
if an already primed or reverberating neuronal set ignites. Ignition implies
simultaneous activity of the majority of the neurons in the set. The num-
ber of neurons in a preactivated set that become active during an ignition
(in addition to those already being active) is therefore smaller compared
to a previously inactive set that ignites. It is assumed that full ignition of
a neuronal set at rest activates the threshold control mechanism, whereas
the smaller activity increase induced by the primed ignition of an already
preactivated or primed set does not. The symbol I∧ is used to refer to a full
ignition that subsequently activates threshold regulation, whereas I denotes
ignition without any consequences for the threshold regulation machinery.

The expression preactivity of a set is used to refer to any activity state
different from rest (0) and ignition (I); that is, either reverberation (R) or
priming (P).

A full ignition I∧ leads to global inhibition in the network. This is realized
as follows: When I∧ occurs in one set, all preactivity states of other sets – that
is, reverberation and priming levels – is diminished. R1 and P1 are changed
to R2 and P2, and, generally, all states n are changed to n + 1. Recall that the
number gives the rank in thehierarchyof activity states, 1 beinghigher than2.
A full ignition I∧ reducing preactivity states therefore changes all states Rn

and Pn to Rn+1 and Pn+1, respectively.
If inhibition happens regularly, each reverberating set loses activity over

time. Thus, a threshold regulation mechanism becoming effective with con-
stant frequencymay cause constant activity decrease, as describedbyEq. (1),
in preactivated neuronal sets. Furthermore, a global inhibitory mechanism
could guarantee that the slopes of activity decline are the same in different
sets, an assumption relevant for the pushdown memory mechanism focused
on in Chapter 12 and Excursus E5 (see also Pulvermüller, 1993).

As mentioned, a threshold regulation mechanism can also have an excita-
tory effect. It is assumed that if activity levels in all reverberating and primed
neuronal sets are generally low, additional global excitation is provided by
the regulation mechanism. All preactivity levels therefore become higher.

Because the formulation of preactivity states refers to relative activity
levels (e.g., “R1” meaning “best activated set,” not a particular absolute
activity level), the activating function of the regulation mechanism is built
into the formulation, so to speak. One or more sets is always at the highest
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level of reverberation and priming. A global increase of activity shows up
only as relabeling of activity levels if there is no neuronal set in the network
exhibiting the highest levels of reverberation and priming (R1 and P1). In
this case, the numbering is adjusted so that the highest activity level is 1.

10.4 Sequence Detection in Networks of Neuronal Sets

Based on which wiring would a neuronal unit respond to a sequence AB
of events but not to BA? As outlined in Chapter 9, one could have strong
connections froman input unitα, specifically responding to theoccurrenceof
an A in the input, to a sequence detector, and between the sequence detector
and β, the neuronal unit responding to the occurrence of a B in the input.
Through these strong bottom-up connections, information about activity
of both α and β could influence activity of the neuronal set γ mediating
sequence detection.

A few terminological issues should be mentioned at this point. Neuronal
sets that respond specifically to the ordered sequence of activations of two
other sets are called sequence sets. The words sequence detector and sequenc-
ing unit are also used to refer to neuronal sets mediating sequence detection.
If the sequence set γ only responds to the event “first α, then β,” but not to
the reverse sequence, the event A (to which α responds) is called the earlier
event and the event B (to which β responds) is called the later event.

The issue of mediated sequence detection has already been addressed in
thecontextofneuralnetworks (Chapter6) andbrainmechanismsof serial or-
der (seeChapter 9).Aspointedout, there aredifferentmechanismsavailable
for realizing sequence detection. In McCulloch–Pitts networks, sequence
sensitivity is established by connections, from event detectors α and β to
the sequence detector γ , with different conduction delays. Delay neurons
were introduced to guarantee the delay (see Section 6.1). The Reichardt–
Varju theory proposed low–pass filtering of the signal from one of the event
detectors (responding to the earlier event) as a possible mechanism crucial
for sequence detection (Egelhaaf, Borst, & Reichardt, 1989; Reichardt &
Varju, 1959). In this case, the delay of the earlier signal would be provided
by a mathematical transformation carried out by nerve cells.

A further possibility is that sequence sensitivity is merely the result of
connection strength between event and sequence detectors, and to the act-
ivity dynamics of the former. Assume, for example, that the event detector
β responding to the later event B has stronger connections to the sequence
detector γ than α which responds to the earlier event A. Because of the
strongerβγ connection, anyactivity inβ excitesγ more strongly thanactivity
in α. Assume further that α and β are characterized by the same exponential
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decline functionof reverberating activity [Eq. (1)].Now, ifAoccurs beforeB,
the declined small signal through theweakαγ connection summateswith the
full strong signal through the βγ connection. This sum is greater than the
βγ input alone. If B occurs before A, the declined strong signal through
the βγ connection summates with the not degraded weak signal through
the αγ connection. The latter sum is smaller than the βγ signal as soon
as the degradation of the strong input through βγ is larger than the full
weak input through αγ . Thus, if the decline function is steep compared to
the difference between the strong and the weak full signals, the summed
input to γ is greater if A occurs before B than in response to the reverse
sequence of events. Direct connections from both α and β to γ are sufficient
for providing γ with serial-order information. The threshold for activating
γ can be adjusted so that it responds to the activation sequence “first α, then
β,” but not to the reverse sequence.

In summary, different mechanisms may mediate the sensitivity to serial-
order information of neurons and sets of neurons. Because the issue of which
of the alternative mechanisms underlie grammar processing in the human
brain is still far frombeingaddresseddirectly byempirical research, it suffices
to postulate a mechanism of mediated serial-order detection carried out at
the level of neuronal sets (see Chapter 9). The exact details of how this
mechanism is realized are left for future research.

Information flow from event to sequence detectors is required for me-
diated serial-order detection. This could be implemented by unidirectional
connections from word webs to sequence sets. However, bidirectional con-
nections between neuronal sets is always assumed to be the default in the
present context. The motivation for this is two-fold: One reason comes from
neuroanatomical and neurophysiological studies (see Chapters 2 and 8).
If long neuronal connections in the cortex are considered the substrate
of grammar-relevant mechanisms, one-directional connections are proba-
bly the exception rather than the rule. If two cortical areas are connected
to each other in one direction, they usually exhibit the reciprocal connec-
tion as well (Pandya & Yeterian, 1985; Young et al., 1995). At the level of
local cortical circuits, Abeles and colleagues (1993) found evidence for re-
verberatory loops, a fact implying bidirectional rather than unidirectional
links between many of the neurons in the circuit. Because neuroanatomical
studies indicate that most connections, local and between areas, are recipro-
cal, unidirectional connections between large distributed neuronal sets are
less likely (see the reciprocicity principle in Chapter 2). The default assump-
tion should be reciprocal connections. Still, the reciprocal connections may
be asymmetrical; that is, stronger in one direction than in the other. This is
taken into account later in this chapter.
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The second reason for assuming bidirectional links is psycholinguistic
in nature: It appears that when listening to a sentence, the first words
usually lead one to generate hypotheses about the next. In some cases,
however, words occurring later in a sentence help disambiguate or fully
understand earlier sentence parts. The verb in “Betty switched” can be un-
derstood in different ways, and it is only after perception of later sentence
parts that the appropriate reading can be determined. The final part of the
sentence, “her shopping mall,” would lead to one interpretation of the verb,
whereas if the final part of the sentence is “her TV off” would elicit another.
This can be modeled by backward connections from sequence sets to the
word webs.

For these reasons, neuroscientific and psychological in nature, one may
prefer having activity spread in both directions, back and forth, through the
representation of a sentence being heard, parsed, and understood. Recip-
rocal connections are therefore assumed to connect word webs to sequence
sets and sequence sets among each other.

The reciprocal connections between word webs and sequence sets is
assumed to be asymmetrical. The proposed connection in one direction
would be stronger than the connection in the other. If two sets are connected
reciprocally but one of the sets usually becomes active before the other, it
may be that the connections from the first to the second set become stronger
than the links back from the second set to the first. This is an unavoidable
conclusion if the following assumptions are being made: (a) Hebbian cor-
relation learning takes place, that is, synaptic strengthening is strongest if
simultaneous pre- and postsynaptic activity occurs; (b) all conduction times
are non-zero; (c) some conduction delays equal frequent delays between
ignitions of two sets (Miller, 1996). Together, these assumptions motivate the
assumption of asymmetry in reciprocal connections between neuronal sets.

In this view, information about possible input sequences is represented
in a network (i) by links between neuronal sets and (ii) by the direction in
which connections are stronger, assuming that the connection is strong in
one direction and weak in the other.

Distinguishingonlybetween“strong”and“weak”connections is certainly
another simplification. Strength of synaptic connections in the brain can
take a large number of different values. However, this minimal distinct-
ion between connection strengths allows for complex syntactic processing
in neuronal grammar, as exemplified later. The additional advantages of
assuming more degrees of freedom for connection strengths is mentioned
occasionally in this text, but is not explored systematically.

Furthermore, the assumption that all reciprocal connections between
word webs and sequence sets are asymmetric may turn out to be too strong.
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Figure 10.1. Two input units or word webs connected to a se-
quence set. All circles represent neuronal sets that canbeprimed,
can ignite and reverberate after their ignition. (Top) Strong con-
nections link input unit α to the sequence detector, and the se-
quence detector in turn to set β. Weak connections run in the
opposite direction. The sequence detector becomes active if it
is stimulated twice at a time.

In addition, there may be neuronal sets that are sensitive to both possi-
ble sequences of two events, AB and BA. These neuronal sets are realized
as reciprocal symmetric connections to their input units. This kind of And
detectormaymake it easier tomodel languages inwhich there is nopreferred
order of constituents.

The upper diagram in Figure 10.1 presents a sequence set connected
with two input units or word webs. This network is assumed to be capa-
ble of sequence detection, that is, it exhibits a certain activity pattern that
can be taken as an indicator that a string in the input is consistent with
the network structure. In linguistic terms, this may be similar to the judg-
ment that the string in the input is grammatical or well formed. This net-
work differs from those discussed in earlier chapters because all circles in
Figure 10.1 denote neuronal sets that can reverberate, ignite, and be primed
by other sets. In earlier diagrams, circles represented neurons, local clusers of
neurons, or cell assemblies with less sophisticated activity dynamics
(see Table 10.1).

In the upper diagram of Figure 10.1, thick and thin arrows are used to in-
dicate relatively strong or weak connections, respectively. The weaker con-
nections make the diagrams more complex, in particular if numerous sets
and connections are part of it. The weak connections are therefore omit-
ted, as in the lower diagram of Figure 10.1, which is supposed to have the
same meaning as the upper diagram. The same difference exists between
the upper and lower diagrams in Figure 10.2. In the diagrams at the bottom,
and in all subsequent figures, arrows indicate that there is a strong connec-
tion in the direction of the arrow and a weaker connection in the reverse
direction. Double arrows may indicate symmetrical connections.
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Figure 10.2. Input units connected through two
sequencing units: a forward-looking unit αf and a
backward-looking unit βp. Sequencing units are du-
plicated to make formulation of neuronal grammars
easier.

In summary, sequence sets may specifically respond to serially ordered
ignitions of two neuronal sets corresponding to words (word webs). The
mechanism of mediated sequence detection requires information flow, and
therefore connections, from input units (e.g., word webs) to sequence detect-
ors (e.g., sequence sets). The sequence detecting set and the event detectors
are assumed to be linked reciprocally to each other; however, with asym-
metrical weights. Stronger connections are assumed in the direction of the
usual activity flow, from the event detector of the earlier event to that of
the later event, compared to the respective links in the opposite direction.
Although it is clear that the mechanism sketched here is in need of both fur-
ther theoretical elaboration and empirical support, it nevertheless becomes
possible to explore its function in an envisaged grammar network.

10.5 Activity Dynamics of Sequence Detection

The basic idea put forward here is that word webs and the sequence sets
connected to them can respond in a specific manner to a sequence of words
and fail to do so in response to the same words presented in a different order.
The mechanism this is grounded in is the response of the sequence set to
sequences it is prepared to detect. If the sequence set γ is connected to both
the early event’s web α and to the late event’s web β, and if γ needs two
inputs to become active, ignition of α may first prime γ , so that the ignition
of β can later fully activate γ . The primed ignition of the sequence set would
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then be the neuronal indicator of the fact that the input was in accord with
the network structure.

Before examining how a network composed of word webs and sequence
sets would operate, it is necessary to introduce a few assumptions about
activity dynamics within neuronal sets and activity exchange caused by con-
nections between neuronal sets.

Each word or morpheme in the input activates its input unit or word web
that, as a consequence, ignites and thereafter stays in the state of reverberat-
ion. As already mentioned, ignition and reverberation of one neuronal set
are assumed to have different priming effects on other sets connected di-
rectly to the igniting or reverberating circuit. Reverberation causes priming
only through strong connections. Ignition causes activity changes through
all connections, strong and weak.

Ignitions are assumed to spread from input units to sequence sets, but
only to preactivated ones. Thus, to activate a sequence set, it first needs to be
primed, or be in the reverberatory state, and then a second strong activating
input caused by an ignition must reach it. The latter assumption is somewhat
similar to the assumption of a threshold of two of McCulloch–Pitts neurons.
Summation of activity already present in a web and the afferent input to it
has been specified by Eq. (3). Clearly, if preactivity is low, the second input to
the sequence set may not cause it to reach the ignition threshold. Therefore,
ignitions are allowed to spread only to a sequence set if it reverberates or
is being primed at high levels of R or P. These assumptions are elaborated
further later.

The reader is invited to consider how the network in Figure 10.1 operates.
To this end, the changes of activity states in the course of a sequence of inputs
are illustrated.

Suppose the sequenceAB is in accordwith thenetwork structure,whereas
BA is not. An input sequence in accord with a network structure is called
a congruent input, whereas a sequence without corresponding wiring in the
network, and not otherwise represented, is called an incongruent input. This
is analogous to the linguistic classification of strings as grammatical, or well
formed, vs. ungrammatical, or ill formed. In contrast to the linguistic distinc-
tion, which relies on judgments of native speakers of a language, the terms
congruent and incongruent are defined on the basis of putative neuronal cir-
cuits. In the circuit in Figure 10.1, the following processes may occur and
contribute to sequence detection.

Network response to a congruent input AB is as follows:

(1) The word A occurs in the input, and the word web (or input unit)
α ignites.
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(2) Because α was not primed and thus exhibits unprimed or full ignit-
ion I∧, the threshold regulation mechanism is activated. However,
at this point, there is no other activated set, and therefore threshold
regulation has no effect. All other sets stay inactive.

(3) The ignition of α temporarily primes its connected sequence de-
tector and input unit. This does not cause an ignition of the se-
quence set because it had been inactive and would need two inputs to
ignite.

(4) After its ignition, the activated set α reverberates at the highest re-
verberation level R1. For some time, its reverberation primes the
sequence set that receives strong connections from α continuously.
Because there are also strong connections from this sequence set to
the other word web, β, that represents a possible successor word B,
this set β is primed, too. At this point, one input unit, α, reverberates,
and both the sequence detector and the second input unit β are being
primed.

(5) B occurs in the input and the primed input unit β therefore ignites.
This is nowaprimed ignitionbecauseβ had continuouslybeenprimed
before as a result of α’s ignition and reverberation and the strong
connections from α to β.

(6) The ignition of β is communicated to the sequence detector. Because
it is still being primed by the reverberating α, it responds with an
ignition as well.

(7) Finally, ignition spreads back to the reverberating input unit α.

These would be the processes envisaged to occur when the network is
presented with a congruent “grammatical” string AB. The important point
is that the strong left to right connections in Figure 10.1 guarantee preactivat-
ion of the second input unit. This makes its ignition a primed ignition and,
therefore, the threshold regulation machinery is not invoked. Ignitions can
finally spread backward throughout the activated network, and the primed
sequence set also ignites.

Next, the behavior of the network when an “ungrammatical” string BA
is being presented is considered.

Network response to an incongruent input BA is as follows:

(1) The word B in the input causes β to ignite.
(2) This is a full ignition I∧ without effect on the otherwise inactive net-

work.
(3) The ignition causes temporary priming of the sequence set as a result

of backward spreading activity. Assuming that the ignition is a brief
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event and backward spreading of activity is faster than the pace of
the input elements, this temporary activation vanishes before another
input unit is activated.

(4) The word web β’s ignition terminates, and this set reverberates at the
highest reverberation level R1. The sequence set and the other input
unit, α, are not being primed, because the connections they receive
from β are weak.

(5) The word A occurring in the input causes an unprimed full ignition
I∧ of α. This means that the activity state of α changes from 0 to I.

(6) The strong increase in activity in the net caused by the full ignition
activates the threshold controlmechanism.The level of reverberation
of the already active unitβ is therefore reduced from thehighest level,
R1, to a lower level, R2.

After full ignition of α, it is, in this case, not possible that ignitions spread
to the sequence detector, because it is not in the primed or reverberating
state when α ignites. The three neuronal sets are left at different states of
reverberation and priming. Set α reverberates at R1 and set β at R2; the
sequence detector is primed by α and thus exhibits the highest priming level
P1. No terminal wave of ignitions spreading through the network occurs, and
the set specialized for sequence detection fails to ignite.

Note, again, the main differences between the two examples: In the case
of the congruent string, there is priming of sequencing and input units re-
presenting possible successors. Such priming is not present when the deviant
string is processed as a result of the direction of strong connections. Preac-
tivation of the second input unit leads to its primed ignition (instead of full
ignition), which does not cause the threshold regulation mechanism to be-
come active. Finally, processing was followed by a wave of ignitions running
from β to the sequence set and back to α, leaving all neuronal sets in the
highest state R1 of reverberation. In contrast, the backward wave of activity
is not created by the ill-formed string, and the preactivated input units finally
reverberate at different levels, R1 and R2.

At this point, it appears that a network of neuronal sets designed in
this way exhibits three phenomena after a canonical string is presented.
These three phenomena do not occur together when an ill-formed string
is being processed. The phenomena are functionally and causally related
within the given network architecture. Although the phenomena are func-
tionally related, they may be envisaged to be the basis of different cognitive
processes.

Phenomenon1 is that the input units and the sequencedetector connected
directly to the input units have ignited and therefore reverberate at a high
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level. More generally, for each input unit activated by an element of the
input string, at least one group2 of sequence sets it is directly connected with
is in a high state of reverberation. If one or more sets of sequence detectors
connected directly with an input unit are reverberating at high levels of R
(either R1 or R2)3, the input unit is called satisfied.

Phenomenon 2 is that all reverberating input units the word webs act-
ivated by the string in the input are themselves at the highest level R1 of
reverberation. Neuronal sets reverberating at R1 are called visible.

Phenomenon 3 is that all the sets that did ignite in response to parts of the
string in the input have finally participated in a continuous wave of ignitions
running through the network. This terminal wave of ignitions is initialized
by the ignition caused by the last element in the input string. The ignition
wave is said to synchronize the neuronal sets involved.

Out of the three phenomena – satisfaction, visibility, and synchroniza-
tion – not a single one is met if the network in Figure 10.1 is presented with
the input BA. No synchronization took place as part of the processes caused
by the input. One of the input units is not visible: β is left at R2 rather than
R1. Also, both input units are not satisfied, because the only sequence set
they are connected to is primed rather than reverberating at a high level. In
contrast, all three conditions are finally met when the well-formed string AB
is processed. This simple example illustrates basic mechanisms of sequence
detection that are also relevant in the more realistic linguistic examples ex-
plained in the Excursuses.

In summary, three criteria can be proposed for acceptance of an input
string by a network of neuronal sets:

(i) All input units activated by the string are satisfied
(ii) All of them are visible
(iii) All neuronal sets activated are synchronized

If these criteria of satisfaction, visibility, and synchronization are reached,
the network is assumed to “accept” the string and then deactivate the entire
representation.

2 In this example, there is only one sequence set. However, in the next section, it is argued
that each input unit (representing a word or morpheme) must be connected to one or more
sets of sequence detectors. These sets are supposed to be essential for disambiguating string
elements in the input.

3 The motivation for allowing R2 in sequence detectors here becomes more obvious in fol-
lowing sections in which the processing of lexically ambiguous words is addressed. Briefly,
if a word is used twice and as member of different lexical categories, two sets of sequence
detectors are assumed to be reverberating, but only one of them is allowed to reverberate
at R1.
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10.6 Lexical Categories Represented in Neuronal Sets

10.6.1 Why Lexical Categories?

The primary task of a syntax network is to show a particular activity pattern
when input elements occur in a well-formed or grammatical string. The least
that the neuronal elements detecting a string AB must achieve is finding out
thatPropositions (i)–(iii) are correct. (Recall that theactivationofaneuronal
unit can be described as the verification of the statement that the entity the
neuronal element represents was present in the input of the neuronal unit
[cf. Section 6.1; McCulloch & Pitts, 1943; Kleene, 1956].)

(i) A occurs
(ii) B occurs
(iii) A occurs before B

Verification of Statements (i) and (ii) can be achieved by input units, the
neuronal sets that respond specifically if given morphemes, words or mean-
ingful word parts, are heard or read. As detailed earlier, a complex word,
such as switches, can be broken down into meaningful units, in this case
switch and the suffix -es, that can realize the plural morpheme or the third
person singular present verb suffix. Therefore, input units are assumed to
respond specifically to either words or morphemes. If input units are con-
ceptualized as neuronal sets, it is clear how the knowledge that a given word
has occurred is kept in memory. The input unit α activated by a word or
morpheme A in the input verifies and stores the piece of information that A
occurred.

To make it possible for the network to decide (iii), whether A occurred
before B, it appears straightforward to assume neuronal elements that spe-
cialize in sequencedetection, such as the sequencedetectors or sets proposed
earlier. The activity of a neuronal sequence detector would then mean veri-
fication of Statement (iii), that A occurred before B, by the network.

One may therefore postulate sequence sets for word or morpheme se-
quences. Examples would be neuronal sets responding specifically to the
morpheme sequences “the machine” or “switch . . . on.” However, if each
possible word sequence or word pair sequence of a language were to be
represented by specific sequence sets, their number would be astronomi-
cally high. An obvious solution to overcome this problem is suggested by all
grammar theories. The solution is to categorize words into lexical categories
and base serial-order algorithms on these grammatically defined word cate-
gories (see Chapter 7). The members of one of these categories can replace
each other in particular sentence contexts without changing the grammatical
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status of the sentence. If lexical elements, words, and morphemes, are
grouped into 100 or so lexical categories, the number of sequence detectors
necessary would be greatly reduced, because sequence sets could connect
to a few category representations instead of an extremely large number of
pairs of input units. This strategy may therefore offer a less costly solution
to the problem of sequence detection (see Chapter 9).

Unfortunately, however, this solution implies that the basic task of decid-
ing whether an input sequence AB is congruent becomes more complicated
than indicated at the beginning of this section. It would now consist of ver-
ifying the following statements:

(i) A occurred
(ii) B occurred
(iii) A belongs to lexical category a
(iv) B belongs to lexical category b
(v) The element of class a occurred before the element belonging

to class b.

Statements (iii) and (iv) must still be spelled out in terms of neurons.

10.6.2 Lexical Ambiguity

The categorization of a word or morpheme into a lexical category may be
achieved by links connecting the neuronal set representing the lexical item
with neurons representing lexical categories. When a word is perceived,
an input unit specializing in detecting this particular word ignites. It then
activates a strongly connected set that also receives strong connections from
sets representing other words of the same lexical category as the word that
occurred in the input. In this case, categorization of the perceived word
would be straightforward.

However, the issue of assigning lexical categories to word forms is com-
plicated by the fact that many words can be members of different lexical
categories. Here, it becomes necessary to distinguish between a word form
or morpheme at the surface and the surface element classified as a particular
type of lexical and syntactic unit. A word such as beat can be categorized as a
noun or as a verb (the beat vs. to beat). Words of this kind, that is, word forms
that can belong to different lexical categories, are called lexically ambiguous.
A closer look shows that there are different homophonous verbs to beat that
differ in their valence, that is, the number of complements they require. The
issue of lexical ambiguity and that of homophonous verbs differing in their
valence is addressed in detail in Chapter 7 in the context of dependency
grammar.
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Following are more example sentences in which the word form beat is
used as member of different lexical categories:

(1) The beat resonates.
(2) The heart beats.
(3) Betty beats Hans.
(4) Betty beats Hans with a stick.
(5) Betty beats Hans up.

In (1), beats is used as a noun; in (2)–(5) beats is used as a verb. In (2), only one
complement noun phrase is required, whereas another verb beat, sharing the
word form with the item in (1) and (2), appears to require two complements,
and in (4) even three. Finally, the verb beat in (5) takes a verb particle as
its complement, in addition to two nouns. The different serial-order con-
straints of the homophonouswords have their counterpart in differentmean-
ings. The word can be paraphrased by rhythm in (1), pulsates in (2), defeats
in (3), hits in (4), and hurts in (5).

The serial-order constraints of these different but homophonous words
can be characterized using syntactic rules, such as the dependency rules
(6)–(10).

(6) N (Det /*/)
(7) V1 (N1 /*/)
(8) V14 (N1 /*/ N4)
(9) V145 (N1 /*/ N4, Prep)
(10) V14p (N1 /*/ N4, Vpar)

Dependency rule (6) means that the word used as a noun requires one com-
plement, a determiner to its left. Rule (7) says that the one-place verb re-
quires a noun in the nominative case to its left, and Rule (8) specifies an
accusative noun as an additional complement of a different verb type. In (9)
and (10), two more verb types are defined with additional complements to
their right, a preposition or a verb particle. (For further explanation of the
abbreviations used and details about syntactic algorithms, see Chapter 7).

Evidently, the word form beat is not the only one to which one of the
Rules (6)–(10) apply. Each of these rules operates on a large subcategory of
nouns and verbs.

This consideration makes it obvious that assigning a word A to a lexical
category a is closely tied to specifying which kinds of words B1, B2, B3, . . . are
required to occur – and therefore usually occur – together with word A.

Extending this idea from words to morphemes, one can state that each
verb stem not only requires noun complements, but that it also requires a
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verb suffix Vs, which also depends on the case and number of the subject
noun. The verb subcategory definitions would therefore be as exemplified
in the formulas (11)–(14).

(11) V1 (N1 /*/ Vs)
(12) V14 (N1 /*/ Vs, N4)
(13) V145 (N1 /*/ Vs, N4, Prep)
(14) V14p (N1 /*/ Vs, N4, Vp)

Verb complements such as affixes, nouns, and verb particles follow verbs,
although at different distances. Similar statements can be made for nouns
and other lexical categories. A nominative noun, N1, usually occurs after a
determiner, Det, and before the verb, whereas an accusative noun is usually
placed after an element of certain verb subcategories, as summarized by (15)
and (16).

(15) N1 (Det /*/ V)
(16) N4 (V, Det /*/)

There is, in principle, no limit for the level of detail one introduces in lex-
ical categorization. Distinctions can be made between different noun types
according to their grammatical case – nouns in the cases of nominative N1,
genitive N2, dative N3, and accusative N4 – or ordinary nouns, N, from
proper names, Prop, and pronouns, Pro. More fine-grained lexical catego-
rization can also be motivated by the fact that the subcategories (e.g., nouns,
proper names, and prepositions) are subject to different serial-order restric-
tions. More fine-grained differentiation of lexical categories can also involve
semantic criteria, distinguishing, for example, between the objects that can
be the subject or object of beating. Clearly, more fine-grained distinctions
increase the number of to be distinguished lexical categories. Current de-
pendency grammars propose approximately 100 different lexical categories
and subcategories.

The contrast between common nouns and proper names may be used as a
final example of a more fine-grained distinction of lexical categories. Articles
occur before common nouns but usually not before proper names, Prop. The
proper names used in the nominative and accusative cases may therefore be
characterized by (17) or (18). Standard nouns have been characterized by
(15) or (16).

(17) Prop1 (/*/ V)
(18) Prop4 (V /*/)

This formulation isdifferent fromusual formulations independencygram-
mars. For formal reasons, grammar theories define the dependency relation
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as asymmetrical. If A is the dependent constituent and B is the “govern-
ing” constituent, the opposite is not possible. If the noun is the dependent
category and the verb governs it, the reverse is not the case. However, com-
parison of the examples used here [e.g., (11) and (15)] shows that this is not
so in the present formulation. The dependency relation is assumed to be
based on reciprocal connections between word webs and sequence sets. For
this reason, it is defined as symmetrical in the present context. The noun and
the verb would therefore be considered to be interdependent, and the same
would apply for the verb and its suffix. One may want to speak about mutual
dependency here. If two lexical categories a and b are interdependent, the
dependency relation can be expressed by two rule types, (19) and (20).

(19) a (/*/ b)
(20) b (a /*/)

The idea that lexical categories come in one canonical order is, of course,
a simplifying assumption. For some of the serial-order regularities used here,
exceptions can easily be found (e.g., “Off went her hat”). Additional detail
must be introduced todescribe these, and thiswouldbepossibleby specifying
additional regularities by further algorithms.

10.6.3 Lexical Categories as Sets of Sequence Sets

Because lexical categorization of a particular word is so closely tied to the
question about which lexical categories occur regularly in the vicinity of the
element in question, it may be fruitful to answer the question of lexical cate-
gorization in terms of sequence regularities. For this purpose, a sequence set
can be conceptualized as a neuronal set specialized in detecting a sequence
feature. A sequence feature is a pair of elements of categories a and b in the
order “first a then b.” A sequence feature would be present in an input string
regardless of how long the lag is between the occurrence of the member of
category a and that of the member of category b. The sequence detector
ignites only if a given sequence feature is present in an input string. After
its ignition, the sequence detector stays in a state of reverberation, thereby
storing the sequence feature in active memory.

A lexical category representation can now be defined as the union of
several sequence detectors, as a set of sequence sets. Examples would be as
follows: The category of a nominative noun would be represented by two
sequence detectors, one detecting that the element in question followed an
article and the other examining whether it is followed by a verb. Accusative
nouns may be represented by the union of sequence detectors, one of which
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is sensitive to a transitive verb of a certain kind preceding the element in
question, and the other detecting a preceding determiner. The representa-
tion of the category of a transitive particle verb may include sets sensitive
to the word followed by a verb suffix, an accusative noun, and a particle.
Essentially, for each lexical category label occurring in a bracket of one of
the postulated dependency rules, a corresponding sequence detector can be
postulated at the neuronal level.

Some of the postulated sequence sets connected to a particular word
representation would, so to speak, “look to the past” – that is, be sensitive
to particular inputs preceding the word, whereas others would “look for-
ward into the future” – that is, be sensitive to the word followed by other
elements. Thus, a lexical category a could be represented by both “future-
oriented” or “forward-looking” sequence features, a f 1, a f 2, . . . , a f n, and
by “past-oriented” or “backward-looking” features, ap1, ap2, . . . , apm. The
neuronal representation of the lexical category would include the corres-
ponding future- and past-related sequence sets, α f 1, α f 2, . . . , α f n, and αp1,
αp2, . . . , αpm, respectively.

In the Rules (6)–(20), each lexical category label in the brackets would
be analogous to a sequence set. A lexical category label left to an asterisk
between slashes corresponds to a backward-looking sequence set, and a
lexical category label to its right corresponds to a forward-looking sequence
set. It is clear from Rules (6)–(20) that words and lexical categories can
be characterized by varying numbers of sequence features, some categories
only exhibiting future-oriented features and others only showing regular
relationships with their past. This will be further illustrated in Section 10.6.5
in the context of Figures 10.3 and 10.4.

Distinguishing between past- and future-oriented sequence detectors im-
plies a slight modification of the view put forward in Figure 10.1. There, only
one sequence detector was introduced for detecting the sequence AB. In the
present proposal, this unit would be replaced by two sequence detectors, a
future-oriented detector α f receiving strong input from the input unit α, and
a past-oriented detector βp strongly projecting to the word web β (Fig. 10.2).
In addition, strong connections from α f to βp and the corresponding weaker
backward connections must be postulated. Recall that all connections are
assumed to be bidirectional but asymmetrical. Essentially, this modification
amounts to a duplication of sequence detectors that does not change ba-
sic functional properties of the networks. The modification is introduced to
make descriptions of neuronal grammar easier.

A summarizing remark on the symbols used for referring to linguistic
and neuronal elements: Word forms and grammatical morphemes are
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labeled by capital Latin letters, and for lexical categories, lower-case let-
ters are used. Greek letters are used to refer to neuronal sets representing
words or morphemes. Sequence sets may be labeled by a lower-case Greek
letter (indicating a lexical category the represented feature is part of) plus an
index. A “p” or “f” (indicating whether it is past- or future-oriented, respec-
tively) and a number may appear in the index. Sequence detectors can have
several labels if they belong to different lexical category representations.

10.6.4 Neuronal Requirements of a Grammar Machine

The following paragraphs present an estimate of the neurobiological re-
quirements of the envisaged machinery of lexical categorization and subcat-
egorization of words in a language.

In principle, the number of past- and future-oriented sequence detectors
per lexical category representation may be large, but it is, in fact, difficult
to find lexical categories with more than five complement categories. In de-
pendency grammars, verbs, which probably represent the lexical categories
with the largest number of complements, are sometimes assumed to have up
to four complements (Eisenberg, 1999; Heringer, 1996; Tesnière, 1959). An
example would be the verb form “feed” in (21).

(21) Peter feeds Hans soup with a spoon

Counting the verb suffix “s” as an additional complement, the number of
complements would be five in this case. Now, each input unit representing a
word form or morpheme can be strongly connected to all the sequence de-
tectors included in the representations of its possible lexical categories. Take
the extreme case of a five-complement verb, which is lexically ambiguous
and can be classified, as a function of context, into one of five different lexical
categories, each with another set of five complements. In this case, the input
unit of the word form would need connections to 25 sequence detectors. It
is not unrealistic to assume that for each word form representation, such a
small number of connections are established during language acquisition.

Assuming a language including 100,000 word forms or morphemes, each
of which is part, on average, of two out of 100 lexical categories, each defined
by five sequence features. To represent the vocabulary of this language, with
each word stored by a corresponding neuronal set, 100,000 input units would
be required one for each word. As mentioned, free pair-wise recombination
of the 100 lexical category labels results in 10,000 possible pairs. However,
the grammar network would not need most of these because most of the
possible sequences of categories would not occur regularly. To represent
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Table 10.2. Attempt at an elementary description of neuronal grammar
at different levels. Linguistic entities are listed with their assumed
macroneuronal realization in neuronal sets. The number of neurons
involved at the microneuronal level is also estimated. According to this
estimate, the grammar circuits require surprisingly few neurons. The
following assumptions underlie the computations: One neuronal set
includes 100,000 neurons. One language includes 100,000 words. The
words of a language fall into 100 different lexical categories. Each lexical
category is characterized by 10 or less sequence features.

Linguistic Macroneuronal: sets Microneuronal: neurons

Word/morpheme 1 input unit each 105 neurons
Sequence feature 1 sequencing unit 105 neurons
Lexical category <10 sequencing units <106 neurons
Lexicon 105 input units 1010 neurons
Grammar 103 sequencing units 108 neurons

107 connections between sets

the 100 lexical categories, each with a maximum of five complements, 500
sequence detectors would be required. Doubling the number of sequence
detectors, as suggested for illustration purposes, would result in a maximum
of 1,000 sequence sets. Thus, 1,000 sequence detectors would be required
for representing a complete grammar in the way outlined here. The number
increases if more lexical categories are being postulated.

Nevertheless, the preliminary result is that the number of word or mor-
pheme representations would by far outnumber the number of sequence
detectors necessary. Assuming that the size of a neuronal set is 100,000 neu-
rons, the maximum number of neurons of the vocabulary or lexicon would
be 1010 and the maximum number of grammar neurons making up sequence
detectors would be 109. These numbers of neurons are available for language
processing in the cortex. Table 10.2 summarizes the present estimate of the
“size” of the serial-order machinery. Note again the strikingly low number
of neurons required for wiring syntactic information.

The number of axonal connections between input and sequence sets
would probably be much larger than the number of neurons involved. For
connecting the 100,000 input units to their proposed five category represen-
tations, each of which is made up of five sequence detectors, a few million
connections linking input and sequence sets would be required. Since most
cortical neurons have above 104 synapses, the large number of connections
should not constitute a problem. Note that not all neurons of a set need
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to connect to another set to establish a strong functional relationship be-
tween both sets. If there are 107 macro-level connections between neuronal
sets each constituted by 1,000 axons, the number of neuronal links would
be 1010, thus only a small percentage of the ∼1015 axons of the neurons
involved. Again, the proposal appears realistic.

According to these estimates, a number in the range of 105 neuronal sets
is necessary for representing thevocabularyor lexiconof a language,whereas
themorenarrowlydefinedgrammarnetwork, that is, theneuronal ensembles
specifically representing serial-order information, would be much smaller.
Only if a substantially higher number of lexical categories is postulated
(e.g., to 10,000 categories), the number of necessary sequence detectors
would reach the number of stored words or morphemes (105). Thus, an
increase in the estimate of the number of word categories and sequence de-
tectors leads only to a relatively small increase of the size of the required
network. The introduction of new sequence detectors responding to ad-
ditional features of a string opens up the possibility of representing more
word categories, including, for example, semantic subclasses of lexical cate-
gories, in an economical way.

10.6.5 Lexical Disambiguation by Sequence Sets

A neuronal set representing a word form such as beat or switch, which,
depending on within-sentence context, is part of one of several lexical cat-
egories, can now be assumed to be linked closely to all the neuronal sets
representing these alternative lexical categories. However, for each of its
occurrences, the word form should be classified as belonging to only one of
the categories. This requires a mechanism deciding between the neuronal
sets representing alternative lexical categories to which a given word can be
assigned. The mechanism can be realized by a regulation mechanism, for ex-
ample, mutual inhibition between the alternative representations of lexical
categories. The most active lexical category representation would therefore
become fully active and the competitor category representations would be
suppressed.

More precise criteria that could allow for categorizing a word form A as
either a member of lexical category a or b could be the following: A could be
classified as a member of a if all sequence sets included in the representation
of the a category have ignited a few time steps earlier, and if there is at
least one sequence detector included in the representation of b that did not
ignite. This allows only for deciding between sets of sequence detectors, each
of which includes specific sequence sets. However, if the representation of
one lexical category representation includes the set of feature detectors of
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Figure 10.3. Putative neuronal organization of lexical categories. An input unit representing
the word form switch is connected to three competing lexical category representations,
as indicated by ovals in different tones of gray. The three alternative lexical categories are
nominative noun, accusative noun, and transitive particle verb. Each category representation
consists of two or more sequence sets, indicated by small circles. Each of the sequence
sets responds specifically to a different feature of the context, as indicated by questions.
Inhibition between lexical category representations is provided by an inhibition mechanism.
Modified from Pulvermüller, F. (2000). Syntactic circuits: how does the brain create serial
order in sentences? Brain and Language 71, 194–9.

the other [as would be the case for V1 and V14, cf. (7) and (8)] the decision
criterion must be refined. For example, if the last inactive sequence detector
included in the representations of both a and b ignite at the same time, the
set with the larger number of sequence detectors wins.

This or a similar “winner-takes-all” dynamics can be implemented by a
network of lexical category representations, each composed of one or more
sequence detectors if inhibitory connections are present between all repre-
sentations of lexical categories. Figure 10.3 sketches the putative neuronal
wiring of three homophonous words. Figure 10.4 presents the same wiring
with the more abstract labels used in Section 10.6.3. In this illustration, one
input unit, the neuronal counterpart of the word form, is connected to three
sets of sequence sets. These sets are indicated by ovals in different shad-
ings of gray. The ovals are labeled by Greek letters, each of which would
be thought to represent one of the lexical categories the homophones can
be part of. Each set comprises two to four sequence detectors labeled by
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Figure 10.4. Putative neuronal organiza-
tion of lexical categories: more abstract
formulation. An input unit is connected
to three competing lexical category rep-
resentations, α, β, and γ , each consist-
ing of two to four sequence sets labeled
by a Greek letter plus index. The sets
of sequence sets organizing lexical cat-
egories inhibit each other so that only
one of them can become fully active to-
gether with the input unit. (A more con-
crete case is discussed in Fig. 10.4.)

Greek letters plus index. To guarantee inhibition between lexical category
representations, the sequence detectors would be connected reciprocally to
additional neuronal elements that would be connected among each other by
inhibitory connections. This inhibitory wiring scheme is reminiscent of the
one proposed for corticostriatal circuits (see Fig. 5.2). The inhibitors would
be activated only if all the sequence sets included in their respective lex-
ical category representation were active at a time. Furthermore, this type
of between-category inhibition would become effective only if a word form
activates more than one lexical category representation at a time. If all se-
quence sets included in a lexical category representation reverberate at the
same time, they coactivate the inhibitor that, in turn, feeds excitation back
to the sequence sets. The input from the inhibitor would not be assumed to
be essential for maintaining enhanced activity levels in sequence detectors
[see principles (A3) and (A3’) below].

As emphasized, inhibitory interaction between alternative lexical cate-
gory representations of a word form is needed for disambiguation of lex-
ically ambiguous word forms. Although no data are available that would
allow for narrowing down the possibilities for realizing mutual inhibition of
lexical representations, a mechanism of this kind is a necessary component
of a neuronal grammar. This wiring scheme may have a possible brain basis
in corticostriatal connections and inhibition in striatum, but could also be
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realized by other direct or indirect inhibitory links between cortical repre-
sentations.

How would such a circuit actually solve the task of categorizing a lexically
ambiguous word form as a member of one of its possible lexical categories?
The “decision” should be made by a circuit including mutually exclusive sets
of sequence detectors, each representing one of the possible lexical cate-
gories. To answer this question, consider again the more concrete example
of the word form switch. Depending on the context in which it occurs, it can
be classified, for example, as a noun in the nominative or accusative case, N1
or N4, or as a transitive particle verb, V14par. The characteristics of these
lexical categories can be expressed by dependency rules formulated earlier
in this section, repeated here as (22)–(24) for convenience.

(22) N1 (Det /*/ V) Nominative noun
(23) N4 (V, Det /*/) Accusative noun
(24) V14par (N1 /*/ Vs, N4, Vpar) Transitive particle verb

This formulation in terms of syntactic algorithms can be translated into the
language of neuronal sets, as illustrated by Figure 10.3.

The alternative lexical categories specified by (22)–(24) are represented
by sets of sequence sets, as indicated by ovals at different gray levels. Each
complement required by one of the three possible lexical categories of the
word form has its corresponding sequence detector in the figure. The mutual
inhibition of lexical category representations ensures that only one of the
three alternative sets of sequence detectors is active with any occurrence of
the word form switch.

One of the sequence feature detectors, the uppermost on the left in the
figure, responds to the word form switch that after an article (or determiner)
occurred in the past. It ignites if a word form that can be used as an article
had occurred and the word form switch (or any other word form that can
function as a noun) follows it.On theupper right is a sequence set responding
to the word switch followed by a verb. This sequence detector can be thought
of as checking the near future for any word form that can be used as a verb.
Because it is being primed by the occurrence of switch, it ignites when a verb
follows it. If both the past-oriented sequence set responsive to an article
and the future-oriented sequence detector targeting a verb have ignited, the
complete representation of the nominative noun category (oval in dark gray)
reverberates. The word form unit is therefore satisfied and assigned, by the
network, to the respective lexical category. This happens in response to a
string such as (25).
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(25) The switch broke.

The neuronal representations of the words in italics are assumed to be linked
to the word web of switch. Similar processes take place if a verb and an article
both precede the word form switch, as in sentence (26).

(26) Betty turned the switch on.

In this case, two past-oriented sequence sets, primed by determiner and
verb, respectively, ignite when the word form switch occurs.

If the word form switch occurs after another word that can be used as a
noun, the sequence detector on the lower right ignites. Given the word form
is also followed by a verb suffix, still another noun (in the accusative case)
and a particle, three more sequence sets sensitive to future events ignite
(after being primed by switch). These would be processes triggered by the
input string (27).

(27) The man switched the engine off.

In this case, the word form switch would ignite in close vicinity to the ignition
of all sequence detectors defining the neuronal representation of the lexical
category of a transitive particle verb.

In response to the example sentences, sequence detectors from nontarget
lexical category representationsmay also ignite. For example, when sentence
(27) is presented to the circuit fragment depicted inFigure 10.3, the sentence-
initial article primes the uppermost sequence detector on the left, whereas
the second word of the sentence, the noun man, primes the sequence set
at the lower left. The word from switch in the input ignites both primed
sequence detectors. Nevertheless, the further evidence accumulated when
the additional words of the string (27) are processed activates all sequence
detectors of only one lexical category representation, that of the transitive
particle verb. Between-category inhibition is assumed to minimize activity
in the competing lexical category representation.

It should bementioned that this simple description glosses over a few facts
that may complicate the operation of a mechanism of this type. In the ear-
lier formulation in rules (22)–(24), different noun types marked for nomina-
tive or accusative case were distinguished. Making this distinction based on
the surface form of words is perhaps impossible in English, because nom-
inative and accusative case are not overtly marked in this language. Fur-
thermore, the verb suffix may also not be realized; for example, in the first
person singular present case. In English, lexical subcategorization may pri-
marily rely on serial order information. Further relevant information about
lexical subcategories may be extracted from phonetic properties of spoken
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language. The distinction between grammatical cases is most obvious in
languageswhere these areoverlymarked, for exampleby specific inflectional
suffixes.

After the input unit of a word has ignited and therefore reverberates, it
may be possible that a large number of future-oriented sequence sets, which
are part of representations of possible lexical categories of the word, are
primed. This activity is transmitted to all of the sets representing words of
lexical categories that can be successors of this word. A rather large num-
ber of input units are therefore primed. Nevertheless, a successor word se-
lects and fully ignites only one of the sequence feature detectors connecting
its representation to that of switch. If only one of the possible successor
words whose input units are primed occur in the input, the respective in-
put unit exhibits primed ignition and ignitions spread back to the input
unit of switch. In this case, the input unit is synchronized with (part of) the
verb representation. This happens until all sequence sets of the verb repre-
sentation have been ignited and therefore reverberate. Inhibition between
lexical category representation finally suppresses the competing category
representations.

These examples illustrate that in a network of neuronal sets, both for-
ward and backward flow of activity can contribute to disambiguation and
classification of lexically ambiguous words into one of the lexical categories
they can be part of. The classification can be complicated; for example, if a
word exhibits multiple possible relationships with many other elements of a
string, or if two word forms with the same lexicosyntactic properties occur
in the same sentence. Some of these problems are addressed in the more
formal reformulation of the proposal in the next section and in Chapters 11
and 12.

The general idea put forward in this section is that the possible classi-
fications of a first element A in a string allow to “nominate” (by priming)
potential successors B1, B2, . . . , which, if one of them is chosen (i.e., ig-
nites), in turn contributes to disambiguation of the initial element A, thus
“approving” one of its possible context-sensitive classifications. The idea is
very simple and is motivated by neuroscientific considerations. It appears
necessary and may be fruitful to spell out its possible brain basis in more
detail. The mutual nomination and approval of classifications of ambiguous
elements occurring in a string requires reciprocal connections between their
context-sensitive representations.

Note that this ideahas somerelationship towhatDilthey (1989), aphiloso-
pher, called thehermeneutic circle– that is, thedevelopmentof ahigher-order
understanding of a symbol, or chain of symbols, on the basis of the processing
of a second symbol whose interpretation is, in turn, influenced by the earlier
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symbols. In the present illustrations, only crude lexicosyntactic classifications
(noun or verb) and subclassifications (one- or two-place verb, nominative
or accusative noun) were made, but, of course, they have semantic implica-
tions. The idea may well be extended to more fine-grained semantic distinc-
tions. Disambiguation of an earlier element is achieved by the occurrence of
(a set of) later elements with which it has a regular serial-order relationship,
and conversely, the later element(s) can also be classified based on informa-
tion provided by the earlier element. For this to operate, activity caused by
symbols in the input must be assumed to reach at least the representation of
possible successors of the symbol and must be allowed to flow back from the
successors’ representations to the representation of the original one. This
mechanism can be spelled out in the language of neuronal sets.

10.7 Summary: Principles of Neuronal Grammar

Formaking scientificprogress, theorizing is necessary, andanewlydeveloped
model needs to be illustrated in a concrete manner. To define functional
principles in a way that would make computer simulation and animations
possible, some of the assumptions must be made more precise. To this end,
arbitrary decisions are sometimes necessary. To focus on a concrete example,
there is no strong reason to assume, as proposed here, that activity of a
particular input unit only primes input units of its possible direct successors.
A two-step or higher-order priming process would also be possible, although
computationally more demanding. As a second example, it is necessary to
restrict activity in the network, but there are several options for choosing
the exact criterion for activating the threshold control mechanism.

Recall that it is the primary purpose of the present considerations to
demonstrate syntactic competence in neuronal networks that may be housed
in the brain. (The fact that they could be organized slightly differently is
irrelevant for this purpose.) Consideration of alternative possible neuronal
mechanisms is, of course, highly relevant. It is possible, or even likely, that
details of the networks proposed here are incorrect as descriptions of actual
circuits in the brain. They can be modified once the necessary experiments
have been performed.

A few terminological remarks are necessary before the principles as-
sumed to underlie the dynamics of the proposed circuits can be formulated.
The principles may reflect properties immanent to the human central ner-
vous system. Without making this assumption, one may prefer to consider
themaxioms of the grammar networks proposed. Six axioms, (A1)–(A6), are
formulated, some of which will be reformulated later. The predicate S (x, y)
specifies activity state x at time step y of neuronal set S. Although there are,
in principle, infinitely many different activity states (see Section 10.2), only

d d d
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four types are distinguished: rest (0), ignition (I), reverberation (R), and
priming (P). As described in Section 10.2, different levels of reverberation
are called R1, R2, R3 (or R, R′, R′′) and so on, with indices giving the rank in
the activity hierarchy. Larger numbers therefore mean lower activity levels.
Priming levels are labeled in the same manner, as P1, P2, P3 (or P, P ′, P ′′).

Now, a basic set of assumptions is as follows: The initial activity state of
all sets is rest, 0. If there is no input to an inactive neuronal set, it stays in
state 0. If a set is reverberating, it stays at its reverberation state Ri– although,
as discussed inSection 10.2, its absolute level of activitymay fall offwith time.
Ignition, I, and priming, P, are short-lived events. I is immediately followed
by reverberation (R1), and priming by inactivity (0). After an ignition, there
is a period of reduced excitability preventing too-frequent ignitions. The
double arrow (⇒) means “causes and is followed by.”

These assumptions can be expressed by (A1).

(A1) Spontaneous changes of activity in set S

(i) S (0, t) ⇒ S (0, t + 1)
(ii) S (I , t) ⇒ S (R1, t + 1)
(iii) S (Pi , t) ⇒ S (0, t + 1)
(iv) S (Ri , t) ⇒ S (Ri , t + 1)
(v) Refractoriness: If S (I , t), then S cannot ignite at t + 1 or at t + 2.4

The effect of priming at time t has vanished one time step later, at t + 1.
Therefore, input at t to a set exhibiting state P but receiving no additional
input at t essentially has the same effect at t + 1 as input to a set at rest.

Spontaneous activity changes as summarized in (A1) are one factor deter-
mining network dynamics. There are four possible causes of activity states
in neuronal sets that will be considered.

(a) External input to input units.
(b) Activity flow between sequence sets and input units.
(c) Interaction between neuronal sets and threshold regulation.
(d) Inhibition between sets in the case of processing of ambiguous words.

Input to the network from outside by an element of an input string is
called external stimulation, E. External stimulation of an input unit causes
it to ignite and reverberate later. The primed ignition I of an already highly
active unit contrasts with the stronge full ignition I∧ of a previously inactive
unit. S (E, y) denotes the input E at time y to set S.

4 This principle overrides the principles formulated by (A3) and (A4):Immediately after an
ignition, a set cannot go back to I.
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(A2) Activity change in an input unit S caused by external stimulation

(i) S (0, t), S (E , t) ⇒ S (I ∧, t + 1)
(ii) S (P1, t), S (E , t) ⇒ S (I , t + 1)
(iii) S (Pi , t), S (E , t) ⇒ S (I ∧, t + 1)

if i > 1
(iv) S (R1, t), S (E , t) ⇒ S (I , t + 1)
(v) S (Ri , t), S (E , t) ⇒ S (I ∧, t + 1)

if i > 1

The difference between full ignition I∧ – as specified by (A2) (i), (iii), and
(v) – which activates threshold regulation [see (A6)] and primed ignition I
[cf. (ii) and (iv)] which has no additional global effect on network dynamics,
is important.

Clearly, if priming or reverberation levels are very low, their effect be-
comes negligible. Therefore, the principles addressing priming and reverber-
ation effects on ignition must be specified with regard to the activity levels
for which they apply. Regarding principle (A2), this cut-off is assumed to be
below P1 and R1 – that is, only the highest levels of priming or reverberation
contribute to neuronal processing in the network as specified by (A2). Also,
slightly lower levels of activity (P2 and R2) are assumed to play a role in the
interaction of neuronal elements as specified by (A3) and (A4). Levels of
priming and reverberation below R2 and P2 (and sets exhibiting only such
low levels) are called invisible.

Both input and sequence sets, receive internal stimulation – that is, ex-
citation through connections from other sets. A long arrow (→→) is used
to indicate a bidirectional link with stronger connections in the direction of
the arrowhead. Recall that direction and strength of connections between
input and sequence sets carry information about the input strings that are
accepted by the network.

Ignition of a set spreads through all connections to sets already exhibiting
a high activity level (i.e., reverberation or priming at rank 1 or 2). If Sq is less
active or at rest when set Sp ignites or reverberates, activity of Sp primes Sq

only if the connection from Sp to Sq is strong. In this case, priming affects not
only strongly and directly connected sequence sets, but priming is further
communicated to the next input unit also.

(A3) Activity changes caused in Sq through a connection between Sp and Sq

(i) Sp (I , t), Sq (Ri , t) ⇒ Sq (I , t + 1)
only if i = 1 or i = 2

(ii) Sp (I , t), Sq (0, t) ⇒ Sq (P1, t + 1)
only if Sp →→Sq
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(iii) Sp (Ri , t), Sq (0, t) ⇒ Sq (Pi , t + 1)
only if Sp →→Sq

(iv) Sp (Pi , t), Sq (0, t) ⇒ Sq (Pi , t + 1)
only if Sp →→Sq and Sp is a sequence set

Spreading of activity through connected sets needs time. If external stim-
ulation reaches an input unit, it ignites one time step later, and during the
following time steps, priming is exerted on its future-oriented sequence set,
which in turn prime connected past-oriented units projecting onto further
input units. Thus, there is a lag of four time steps between the occurrence
of a symbol in the input and priming of the representations of its possible
successors in the string. Only if three or more time steps separate the oc-
currence of two consecutive symbols in the input is the priming machinery
effective.

To pronounce a word consisting of one syllable, it takes approximately
150 ms or more although some inflectional affixes may be realized as even
shorter events. To allow for three time steps between the activity waves
caused by two one-syllabic words that directly follow each other, the “time
steps” assumed for the present syntactic derivations need to correspond to
50 ms or less of real time, corresponding to a frequency of 20 Hz or higher.
This applies, for example, to the spreading of priming from one input unit to
its sequence set and to additional input units, or to the spreading of ignitions
from one set to a neighboring primed set. There are also longer-lasting ac-
tivity processes in the present neuronal grammar machinery. For example,
the backward spreading wave of ignitions representing an entire sentence
would be a much longer-lasting process, and importantly, the reverberation
of a set is assumed to last at least for tens of seconds.

In the derivations shown next, it takes up to seven time steps after activa-
tion of an input unit by external stimulation until all relevant computations
have been performed. Only then will the system have reached a steady-state
in which spontaneous activity changes have come to a rest. To avoid effects
that are related to the exact timing of incoming words – pauses or slight
variation in the speed of speaking not considered here – the next input from
outside should reach the network when it has settled into a stable state, that
is, only after seven time steps. Thus, to be on the safe side, it may be best
to conceptualize the time steps in the present computations as even shorter
intervals, of some 20–30 ms of real time in real networks. This corresponds
to a frequency of ∼30–50 Hz.

One remark relevant to subsequent example simulations is necessary
here: If there are several past-oriented sequence sets in a lexical category
representation, then (A3iii) and (A3iv) must be modified as follows: Priming
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of an input unit of a possible member of such a lexical category is achieved
only if all the past-oriented sequence sets of the lexical category representa-
tions are primed. The level of priming is calculated as the average of activity
levels exhibited by the sets exerting priming on the input unit. If the average
is not a natural number, the next smaller number is chosen.

More complicated issues in the activation dynamics of the proposed syn-
tactic circuits must be addressed. Imagine that two sets feed into a third
one. How would their activity states interact with the recipient to yield new
states?

If a given set Sr is inactive but receives excitatory input from two other
sets Sp and Sq, simultaneous input through both connections may summate.
To change the state of a sequence set from inactivity to reverberation, at
least two simultaneous inputs are necessary. One input caused by an igni-
tion is necessary and the other input may also be ignition related, or may be
mediated by reverberation or priming communicated through strong con-
nections.

(A4) Activity changes caused in Sr through connections with Sp and Sq

(i) Sp (I , t), Sq (I , t), Sr (0, t) ⇒ Sr (I , t + 1)
(ii) Sp (I , t), Sq (Ri , t), Sr (0, t) ⇒ Sr (I , t + 1)

only if i = 1 or i = 2, and Sq →→Sr

(iii) Sp (I , t), Sq (Pi , t), Sr (0, t) ⇒ Sr (I , t + 1)
only if i = 1 or i = 2, and Sq →→Sr , and Sq

is a sequence set

Thus, two simultaneous excitatory inputs, one of which must be an ignit-
ion, causes a given set to be “switched on” – that is, to ignite and reverberate
later. In this case, R and P again exert their influence only through strong
connections, and only if their activity rank is high (R1 or R2; P1 or P2).

Only if ignitions in two sets are exactly synchronous can they cause an
additional ignition in a connected third set according to principle (A4i). Be-
cause the duration of words in spoken sentences and the delays between
them (and the scanning times for individual words during reading) can vary
substantiallywithout affecting sentence comprehension, it would not bewise
to base the network’s grammaticality judgments on variations of timing
of neuronal activation processes caused by the speed of the language in-
put. Therefore, only axioms (A4ii) and (A4iii) are relevant in the following
derivations. As mentioned, short time steps are assumed for the computa-
tions in the network so that the network settles into a stable state by the time
a new input unit is activated.

Global network dynamics may exert an additional important influence
on the computations performed by syntactic circuits. Threshold regulation
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is activated by full ignition [see axiom (A2i)] and leads to reduction of all
levels of reverberation from Ri to Ri+1. Additional activations of threshold
regulation reduce the level to Ri+2, Ri+3, and so on. Levels of priming are
affected in the same way. The regulation mechanism may also enhance neu-
ronal activity if its level is low. In the present formulation, reverberation and
priming levels are just relabeled so that the highest levels are always R1 or
P1. Nevertheless, lower activity levels are not adjusted so that not all levels
between the maximal and minimal level are necessarily present at all times
(e.g., the only states may be R1 and R3).

(A5) Threshold regulation

(i) if a full ignition I∧ of an input unit happens at t, then for all reverber-
ating S:
S (Ri , t) ⇒ S (Ri+1, t + 1)

(ii) if there is no ignition or reverberation at R1 at t, then - for all rever-
berating S:
S (Ri , t) ⇒ S (Ri−1, t + 1)

Because priming is caused by reverberation [as specified by (A3iii)] and by
ignition (A5), implies parallel adjustment of priming levels.

As detailed in Section 10.6 (the section on lexical representations), alter-
native lexical categories of a given word or morpheme must exclude each
other.Thepostulated inhibitionmechanism is assumed toexclude simultane-
ous ignition of two lexical category representations connectedwith one input
unit. Also, if part of a lexical category representation ignites or reverberates
at R1, activity of competing lexical category representations connected with
the same input unit are assumed to be reduced. The respective input unit
must be active (at I or R1) and thereby enable category inhibition.

(A6) Inhibition between two lexical category representations α and β con-
nected to an active input unit S that ignites or reverberates at R1:

(i) Ignition of S can only spread to sets included in either α or β. The
most strongly activated representation wins.

(ii) If one or more sets included in α but not in β ignite at t, then no set
included in β and not included in α can exhibit I , P1, or R1 at t + 1.

(A6i) is formulated without giving an exact criterion for calculating activ-
ity levels of lexical category representations, because it is only occasionally
relevant in the circuits here (cf. Section 10.5.4). To decide which already ac-
tive alternative category representation, α or β, ignites, the average activity
level of the active sets in α and β can be chosen as an additional criterion.
If activity strength is calculated by averaging, three sets at R1, P1, and R2

have a higher average level (1.3) than two sets at R1 and R2 (average: 1.5).
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If both competing category representations exhibit the same average level of
preactivity, ignition spreads to the larger set (the one with the larger number
of sequence sets).

In Chapter 12, the principles formulated by (A2)–(A6) are modified to
improve the present version of a neuronal grammar.

It is important that principles (A1)–(A6) are thought to reflect biological
propertiesof thenervous systemdescribedat the level ofneuronal ensembles
and their interactions. Some of them are closely related to the established
neuroscientific principles discussed in Chapter 2 or to the mechanisms out-
lined in Chapters 5, whereas others are based primarily on brain-theoretical
postulates (see earlier discussion). Principles (A1)–(A6) can be viewed as
high-level functional consequences of neurophysiological properties of neu-
rons and the way they are connected neuroanatomically in the human brain.
If this view is correct, the principles reflect neuronal structure and function
as determined by the human genome.



CHAPTER ELEVEN

Neuronal Grammar and Algorithms

This chapter addresses the question of how to translate grammatical algo-
rithms into the language of neuronal sets.

11.1 Regular Associations, Associative Rules

There has been some discussion about the question of whether the human
mindandbrain use neuronal principles and connections for processing gram-
matically related information, or whether it uses rules and algorithms spec-
ified by grammar theories (Elman, Bates, Johnson, Karmiloff-Smith, Parisi,
& Plunkett, 1996; Pinker, 1994). This proposal suggests that these positions,
which are sometimes considered to exclude each other, are, in fact, both
correct. This is not meant in the sense that there are two modules or sys-
tems, one for neural networks and the other one for rule algorithms (Pinker,
1997), but in the sense that rules are abstract descriptions of the neuronal
machinery, as they are, without any doubt, descriptions of aspects of human
behavior and action (Baker & Hacker, 1984).

If rules and algorithms are adequate descriptions of aspects of human be-
havior and action, they must have a basis in neuronal structure and function.
As stressed in the discussion of the McCulloch–Pitts theory (Section 6.1),
a neuronal network can be reformulated using calculus or by a logical
formula. It is therefore reasonable to ask which putative neurobiological
counterparts exist for syntactic rules and, conversely, how a neuron circuit
sensitive to serial order can be adequately described algorithmically.

The cortex is an associative memory and would therefore be difficult to
imagine it ignoring the correlation of words and morphemes in its input.
Rather, it may use the information about correlation of word pairs for set-
ting up sequence sets and their connections to the representations of word
groups whose members can be replaced by each other in a given context.

207
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The neuronal grammar wired up in this manner may finally exhibit prop-
erties very similar to aspects of rule descriptions in grammar theories. One
type of grammar model, dependency syntax, can, after some modification,
be translated straightforwardly into the language of neurons, as has earlier
been suggested and is elaborated further in this chapter. Neuronal grammar
may be rooted in and limited by general principles immanent in neuronal
function.

From one viewpoint, each individual neuron performs a logical compu-
tation (Section 6.1), and therefore greater neuron ensembles would do so
as well. Strongly connected neuron ensembles are particularly well suited
to represent the elements of logical or algorithmic operations, because they
exhibit discrete activity states. The functional web or neuronal set either
ignites ordoesnot.This functional discreteness canbeassumed tobepresent,
although in different contexts of background activity, the exact boundaries
of the neuron set may slightly vary.

The equivalence of algorithmic descriptions and neuronal circuits can be
illustrated by spelling out linguistic rules and regularities in the language
of artificial neurons. For example, the rules of regular past-tense formation
and the regularities underlying past-tense formation of irregular verbs can
be contrasted using a neuronal automaton, and individual connections and
connection bundles can be correlated with the storage of information about
rules and exceptions (see Chapter 6; Pulvermüller, 1998). This chapter fur-
ther illustrates the equivalence of algorithmic descriptions and networks by
providing fragments of neuronal grammar depicted as neuronal circuits, and
also as algorithms.

The close relationship between a description in terms of syntactic algo-
rithms and a description of properties of syntactic circuits is also evident
from the summary of Chapter 10. There, principles underlying dynamics
of neuronal grammar were presented in the form of axioms (A1)–(A6). A
reader who prefers algorithms to neuronal networks is free to take these ax-
ioms to express assumptions simply that allow for economical modeling of
abstract syntactic processes. From a neurobiological perspective, however,
these same axioms are, in the best case, correct descriptions of principles
of neuronal dynamics in the human brain. In this case, the algorithmic and
neuronal formulations would be near equivalent.

Axioms (A1)–(A6) may formulate what all grammar circuits have in com-
mon: their putative common ground in properties of the neurobiological
machinery. In this chapter, the focus is on the specific adjustments necessary
for representing a particular language. To speak a language, one must not
only have a largely intact brain, but must one also have learned words, their
assignment to lexical categories and subcategories, and the restrictions that
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apply to ordering them in time. Clearly, axioms (A1)–(A6) have implications
for the possible temporal ordering, but they also allow for some language-
specific variation. The assumption is that the latter can be learned on the
basis of Hebbian associative learning principles.

11.2 A Formalism for Grammar Networks

As already emphasized, syntactic circuits in the human brain, the neuronal
side of grammar, can be characterized by

� neuronal and grammatical principles (see Section 10.)
� formulas representing language-specific regularities and wiring.

This section shows how the formulation can be adjusted so that for each
formal statement of the second type, there is a neuronal circuit or con-
nection pattern to which it refers. The assumption is that there are 1 : 1
correspondences between linguistic representations and neuronal entities
(e.g., neuronal sets) and between linguistic processes and neuronal processes
(Pulvermüller, 1992).

As mentioned, the formulas representing linguistic regularities (and
wiring schemes) use symbols for terminal elements, which refer to word
forms and affixes actually occurring in sentences (cf. Chapter 7). In addi-
tion, nonterminal symbols for lexical categories (referring to word and affix
types) are used. As detailed, words and morphemes, the terminal elements,
have their putative organic basis in word webs or input units, whereas lexical
categories, one type of nonterminal symbol, are realized as sets of sequence
sets – “sequence supersets,” so to speak.

What follows now is one possible statement of neuronal grammar in terms
of algorithms. Three types of formulas are specified: assignment, valence,
and sequence formulas.

Assignment formulas specify the correspondence between word forms
or affixes and lexical categories. This many-many assignment function (Bar-
Hillel, Perles, & Shamir, 1961) is specified by a set of assignment formulas,
each giving one or more lexical elements and the lexical category to which
they belong. A double arrow (↔) is used to denote the assignment relation.

(1) A, B, C, . . . ↔ a

By (1), the lexical elements A, B, C, and so on are assigned to lexical category
a. Each lexical element, word, or morpheme can be assigned to more than
one lexical category.
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Assignment formulas are proposed to be organized in the brain by recip-
rocal but asymmetrical connections between input units and a collection of
sequence sets.

Valence formulas, included in a language-specific neuronal grammar,
specify properties of a lexical category in terms of sequence features.

(2) a (p1, p2, . . . , pm /∗/f1, f2, . . . , fn)

By (2), lexical category a is characterized as having m backward sequence
features (briefly, backward features) specifying categories regularly occur-
ring within a sentence before an element of category a occurs. The n forward
sequence features (briefly, forward features) specify what must be expected
in the future given an element in the input is classified as member of lexical
category a. The asterisk between slashes indicates the relative position of
the element assigned to a. This is similar to giving the valence of a lexical
category and listing how many of the complements must occur to the left and
right of a member of the category. Therefore, (2) is called a valence formula.
Note that no order of the preceding elements pi is implied, as there is no
preferred order of the elements f j following the member of the category a.

The neuronal substrate described by valence formulas would be the
backward- and forward-oriented sequence sets connected to input units of a
certain kind. These input units frequently share their neighbors in sequences
of ignitions. They represent members from a given lexical category.

Sequence formulas specify individual sequence features and have the
following form:

(3) a ( fi )→→ b (pj )

The long arrow (→→) can be read “connects to.” In neuronal grammar,
this type of connection provides an important mechanism of serial ordering.
Sequence formulas have their putative neuronal equivalent in reciprocal but
asymmetric connections between sequence sets.

The following two sequence formulas would be relevant for storing the
knowledge that certain types of English nouns and verbs follow each other
[see (4)], and that certain types of English verbs are followed by a particle
[see (5)].

(4) N (f ) →→ V (p)
(5) V (f ) →→ Vpart (p)

Sequence formulas can be inserted into valence formulas to yield a de-
scription of lexical categories in terms of which other categories are required
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to the left and right. For example, inserting formulas (4) and (5) into (6) yields
formula (7).

(6) V (p /∗/ f )
(7) V (N /∗/ Vpart)

Formula (7) implies that an element categorized as an English verb (V)
of a particular subtype can come with a preceding noun (N) and another
element following it that can be categorized as a verb particle (Vpart).
Clearly, theverbcategorymeanthere is an intransitiveparticle verb (V1part).
Derivations of sequence and valence formulas such as (7) are called rules
of neuronal grammar and resemble valence rules used in dependency gram-
mars (see Chapter 10 for discussion of common features and differences).

Assignment formulas can also be inserted into valence formulas or into
rules.By inserting the assignment formula (8) intoRule (7), theword-specific
Rule (9) can be obtained.

(8) get ↔ V
(9) get (N /∗/ Vpart)

Rules of neuronal grammar provide descriptions of sentence structures.
Such structural descriptions are obtained by inserting valence formulas or
rules into eachother. The following set of abstract rules provides an example:

(10) c (b /∗/ e)
(11) b (a /∗/)
(12) e (d /∗/)

Inserting (11) and (12) into (10) yields bracketed complex rule (13).

(13) c [b (a /∗/) /∗/ e (d /∗/)]

The implications of (13) are the same as those of (11) and (12) applied after
(10).

11.3 Some Differences Between Abstract
and Neuronal Grammar

These examples of insertions of formulas into formulas may remind one of
what is possible with standard grammar algorithms. One may therefore want
to state that conventional grammars, for example, context-free rewriting
systems or dependency grammars (see Chapter 7) can be reformulated by



212 Neuronal Grammar and Algorithms

a language-specific version of neuronal grammar. However, this would be
incorrect for the following reasons.

First, a rewriting system allows for multiple use of the same rule and lex-
ical category representation. A rule can be used recursively in conventional
grammar models. This is not so in the present neuronal framework, in which
a given lexical category representation can be used only once in the course
of the analysis of a sentence. Chapter 12 addresses this issue and refines the
notion of a neuronal grammar so that repeated elements can be processed.
Furthermore, to provide evidence that neuronal grammars can competewith
traditional grammars in the description of natural languages, it appears of
particular interest to investigate whether the former are capable of process-
ing string types that are outside the reach of finite-state grammars, but are of
particular relevance in the description of natural languages, namely strings
with center embeddings. This problem is taken as a test case for an extended
version of neuronal grammar in Chapter 12.

The second reason is that it is always possible to introduce a rule such as
(14) into an algorithm, such as the rule defined by (10)–(12).

(14) b (/∗/ e)

This implies that, in a chain abcde defined by (13), there would be an addi-
tional relationship between the second and the last elements (b and e). On
the background of grammar (10)–(12), this would imply that an additional
serial-order constraint is introduced. The number of strings the grammar
accepts would become smaller.

There is no easy way to insert (14) into (13). Certainly, the new rule can-
not be inserted in the same manner as (11) and (12) are inserted into (10).
This is because all elements defined by (13) are already in the formula, and
what would need to be added by (14) is an additional relationship between
temporally and spatially distant elements. If the rule derivation is repre-
sented in a two-dimensional graph (or tree; see Chapter 7), the addition of
(14) to the system leads to crossings of lines in the graph, thus violating a
basic principle of many grammar theories. In neuronal grammar, the multi-
dimensional relationships between elements of a syntactic string can be
captured, although it is not easily captured by bracketed formulas or
trees.

The emphasis is on that the circuit side has the same feature. Also, the
circuit side of neuronal grammar is not subject to the restriction of two-
dimensional graphs. The circuits are diagrams realizing all the entities speci-
fied in the formulas of a fragment of neuronal grammar. Each lexical
element is represented as an input unit, each lexical category as a set of
sequence sets, and each directed link defined by sequence formulas is
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realized by an asymmetrical reciprocal connection between sequence sets. In
principle, the lines symbolizing neuronal links may cross, although one may
believe that it is preferable to choose displays in which unnecessary crossings
are avoided.

No general statements are made here about the generative capacity of
neuronal grammars except the following: Rule (15) specifies the set of
strings (16).

(15) b (a /∗/ c, d)
(16) {abcd, abdc}
The addition of a second rule, (17), increases the size of the set of possible
strings quite considerably to the set listed under (18).

(17) a (/∗/ f)
(18) {afbcd, abfcd, abcfd, abcdf, afbdc, abfdc, abdfc, abdcf}
Instead of two string types eight would now be included. This is because
only the slashes (not the commas) in valence formulas and rules indicate
sequential order. Note that this is a major difference between dependency
systems and neuronal grammars of the present formulation. In dependency
systems, a rule of the form “b (a, ∗ , c, d)” implies sequential order of all
four constituents so that only one string form – namely, abcd – would be
generated or accepted.

To exclude some of the eight string types defined by Rules (15) and (17),
additional rules would be necessary; for example, (19), which again restricts
the set of possible string types.

(19) f (/∗/ c)
(20) {afbcd, abfcd, afbdc, abfdc}
The ability of a set of neuronal grammar rules to produce different sequences
of the same lexical categories could be helpful for modeling properties of
languages. There are sentence types in which the serial order of certain con-
stituents is not constrained. Examples in English include double object con-
structions and sentences with transitive verbs that require particles, where
the ordering of the two complements can be changed, as shown by example
sentences (21)–(25).

(21) Betty puts a hat on.
(22) Betty puts on a hat.
(23) She rides on a bus to Bergamo.
(24) She rides to Bergamo on a bus.

In both cases, the sentences could bemodeledby a rule such as (15) [repeated
here as (25) for convenience].

(25) b (a /∗/ c, d)



214 Neuronal Grammar and Algorithms

Filling this abstract example with the concrete lexical categories used in
(21)–(24) results in (26) and (27), respectively.

(26) V14p (N1 /∗ / N4, Vpart)
(27) V1PP (N1 /∗ / Prep1, Prep2)

In both cases, the verb requires two elements in its near future – accusative
noun plus particle in one case and two different prepositions (Prep1, Prep2)
in the other. The order in which these must follow is, however, not fixed
in language use. To allow this same freedom in the formalism, valence for-
mulas with free placing of the elements to the right of the asterisk can be
advantageous.

As emphasized earlier, this formulation has some similarity to traditional
syntactic theories, namely to dependency grammars and valence theory
(Gaifman, 1965; Hays, 1964; Heringer, 1996; Tesnière, 1953). The underlying
idea that members of lexical categories require complements (and can actu-
ally be defined as requiring complements) that are members of other lexical
categories was expressed and systematically treated in Tesnière’s work, but
related ideas have been crucial in other grammar theories as well (e.g., cat-
egorical grammar; Ajukiewicz, 1936; Lambek, 1958, 1959). Formulas repre-
senting connections between input and sequence sets (assignment formulas)
are analogous to assignment rules or lexicon rules defining the lexical cate-
gories of words and morphemes. Rules of this kind are probably specified in
all major grammar theories. Descriptions of lexical category representations
(valence formulas) are inspired by and are somewhat similar to statements
specifying the valence of lexical categories and their dependencies, which are
typical of dependency systems (see Chapter 7). There is no obvious analo-
gon in grammar theories to the formulas representing connections between
neuronal sets (sequence formulas).

11.4 Summary

In conclusion, the neurobiological grammar circuits proposed here have an
equivalent formal description. This formalism is not equivalent to standard
rewriting syntax or dependency theory, although it exhibits family resem-
blance with both. The main difference is that each formula refers to a neu-
ronal device. Any attempt to simply reformulate the class of neuronal gram-
mars in the languages of phrase structure or dependency grammars results
in algorithms that produce trees with projection lines that cross or graphs
with loops, something prohibited in these grammar theories. It may be that
the present neurobiologicallymotivated proposal of syntactic algorithms can
open new perspectives for grammar theories.



EXCURSUS TWO

Basic Bits of Neuronal Grammar

How does neuronal grammar operate? The following examples further il-
lustrate the activation processes taking place in a network of neuronal sets
during perception of congruent or grammatically well-formed and incon-
gruent or ill-formed strings. This excursus aims to illustrate the principled
difference in network dynamics between the processing of congruent and
incongruent word strings, and further aims to introduce illustration schemes
for network dynamics that are used in later sections of the book (see E3–E5
Chapters 11, 13).

Although the general mechanism of serial-order detection, mediated se-
quence detection by sequence sets, is simple, the interaction of several neu-
ronal sets can become quite complex. To make their activity dynamics easy
to overlook, two strategies are used to illustrate processes in grammar net-
works. One strategy is to list activity states of all sets contributing to the
processing of a string at each point in time when a string element is present
in the input and shortly thereafter. Activity dynamics are therefore pre-
sented in the form of tables. A second strategy is to present the simulations
as animations. The animations, including illustrations of the three examples
presented in this excursus, are available on the Internet at this book’s ac-
companying web-page (http://www.cambridge.org).

E2.1 Examples, Algorithms, and Networks

Strings such as (1), (2), or (3) could be taken as examples for illustrating the
function of a simple grammar network.

(1) Betty get up.
(2) Betty switches . . . on.
(3) The set ignites.

215
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These strings are grammatical and one may envisage a grammar network
to “accept” them. This means that the presentation of the word chains
causes activity dynamics in the network that satisfies certain criteria. Cri-
teria for string acceptance in neuronal grammar networks are discussed in
Chapter 10 and are dubbed satisfaction, visibility, and synchrony. In this ex-
cursus, simple illustrations of network dynamics present in a neuronal gram-
mar during and after presentation of strings of these types are presented and
discussed.

The type of grammar network considered here accepts strings such as
(1)–(3) because it includes two sequence detectors, one of which responds
to the first and second elements of the respective string while the other
responds to the second word followed by the third. It is clear that such
sequence detectors would not only respond to these particular words, but
also to sequences of elements of larger word groups (see Chapters 9–11).
Although the first word pairs of sentences (1) and (2) could be detected by
the same sequence set, different sequence sets would probably be involved
in the processing of all other word-pair sequences.

If the order of these words is being changed, one may feel that the re-
sulting strings are less common than the strings (1)–(3). This is illustrated by
strings (4)–(9).

(4) Up get Betty.
(5) On . . . switches Betty.
(6) Ignites set the.
(7) Up Betty get.
(8) On . . . Betty switches.
(9) Ignites the set.

Not all of strings (4)–(9) are incorrect or grammatically deviant. However,
it is assumed that there is one type of grammar machine that accepts strings
such as (1)–(3) and does not respond in the same manner to (4)–(9). Again,
this is for exposition purposes. It is possible to introduce additional network
elements whose interaction may yield acceptance of other combinations of
thesewords aswell. For example, strings (5) and (8)maybe acceptedbecause
of such to be added sequence detectors.

A network composed of neuronal sets that accepts the well-formed
string (1) but rejects alternative combinations of the same words is shown in
Figure E2.1. The grammar depicted in Figure E2.1 can be rewritten by the
following set of formulas:

(10) Betty ↔ N (noun)
(11) get ↔ V (verb)
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Figure E2.1. Elementary grammar net-
work. Three word webs are connected
by two sequence sets. All simulations in
Excursus E2 are based on this circuit.

(12) up ↔ Vpart (verb particle)
(13) N (/∗/ f)
(14) V (p /∗/ f)
(15) Vp (p /∗/)
(16) N (f) →→ V (p)
(17) V (f) →→ Vpart (p)

There is correspondence between parts of the circuit and formulas
(10)–(17). The relevant input units are defined with regard to their respec-
tive category labels by assignment formulas (10)–(12). Valence formulas
(13)–(15) list the connection of each input unit to backward- and forward-
looking sequencing units, and sequence formulas (16) and (17) have their
network counterpart in the two horizontal arrows connecting two adjacent
pairs of sequence sets.

E2.2 Grammar Circuits at Work

Table E2.1 presents a sketch of activity dynamics in the network during the
processing of string (1), “Betty get up.” Table E2.1 and all the following
tables list the word webs at the top and are referred to by the word they
represent. To the left and right of each word, the sequence sets connected
to its word web are indicated. To the left of each word, its past-oriented
sequence sets are listed, and future-oriented sets appear to the right.

The left row of the table lists the time steps of the simulation. The second
column from the left gives the input to the grammar circuit – that is, the word
stimuli activating network elements. Global activity states are indicated in
the left column, also in capital letters.

For each time step (rows) and neuronal set (columns), the table matrix
lists activity states. For each input unit, activity states are listed between
slashes. For each sequence set connected directly to an input unit, activity
states are listed either to the left (past sets) or the right (future sets) of the
slashes. The activity states introduced in Chapter 10 are distinguished – that
is, ignition (I ), reverberation (R), priming (P), and rest (0). Full ignition
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Table E2.1. Time course of activation and deactivation of input sets (or
word webs) and sequence sets of Fig. E2.1 during processing of the
string “Betty get up,” which is congruent with the network structure.
Lines represent time steps. Time steps and input to the network are
listed on the left. In each column, activity states of an optional
past-oriented sequence set (p; to the left of slashes), of a word web
(between slashes), and of an optional future-oriented sequence set (f;
to the right of slashes) are shown. Time steps between inputs are
chosen so that activity spreads until stable states are reached. Letters
indicate ignition (I ), reverberation (R ), priming (P ), and rest (0). I∧

indicates full unprimed ignition, and P and R denote the highest levels
of priming and reverberation.

/Betty/f p/Get/f p/Up/

0 /0/0 0/0/0 0/0/
1 Betty /I∧/0 0/0/0 0/0/
2 /R/P 0/0/0 0/0/
3 /R/P P/0/0 0/0/
4 /R/P P/P/0 0/0/
5 gets /R/P P/I/0 0/0/
6 /R/P I/R/P 0/0/
7 /R/I R/R/P P/0/
8 /I/R R/R/P P/P/
9 /R/R R/R/P P/P/
10 up /R/R R/R/P P/I/
11 /R/R R/R/P I/R/
12 /R/R R/R/I R/R/
13 /R/R R/I/R R/R/
14 /R/R I/R/R R/R/
15 /R/I R/R/R R/R/
16 /I/R R/R/R R/R/
17 /R/R R/R/R R/R/
18 DEACTIVATE /0/0 0/0/0 0/0/

(I∧) of a word web is distinguished from primed ignition (I ). Reverberation
states are labeled by numbers indicating the rank of reverberation levels
in the activity hierarchy, R denoting the highest activity level, R ′ denoting
the next level below R, and R′′ indicating the third highest level. Note that
these labels differ from those used earlier (e.g., R1, R2), a change made to
make the present tables easier to survey.

The time steps where input is given to the grammar network are chosen
arbitrarily, and to avoid cross-talk of activity that depends on exact timing.



E2.2 Grammar Circuits at Work 219

The sentences should be accepted regardless of whether they are spoken
quickly or slowly, with or without pauses between words, and regardless of
whether additional constituents are being inserted between any two of the
words. Therefore, the crucial dynamics in the network should not depend
on exact delays between word inputs. As a rule, several time steps in which
activity is allowed to spread through the network lie between any two sub-
sequent inputs. The circuits are always allowed enough time to settle into
one of their stable states before a new input is computed.

Principles underlying activity dynamics have been explained in great de-
tail in Chapter 10 and are mentioned here only as far as they become rele-
vant in the individual derivations. The most important processes are as
follows:

� Words in the input activate word webs (ignition I if primed; full ignition
I∧ if not).

� After its ignition, a set reverberates.
� Ignitions spread to adjacent sets that are already strongly primed.
� Reverberating word webs prime their future sets, which in turn prime

their adjacent sequence set and word web.
� Full ignition of a set reduces the activity state of all other sets that are in

the state of reverberation or priming.

E2.2.1 Simulation 1: Acceptance of a Congruent String

Table E2.1 presents activity dynamics caused in the grammar network by
the congruent sentence (18).

(18) Betty get up.

This sentence is assumed to be consistent with the network structure in
Figure E2.1. It can be considered to be grammatical in English if it is used
to give a command or recommendation.

Input units are being activated one after the other at time steps 1, 5, and
10, respectively [following principle (A2) in Section 4.5]. At the same time,
they ignite (I ). After ignition of each input unit, its future-oriented sequence
detector is being primed [cf. principles (A3ii), (A3iii)]. Two time steps later,
priming is further transmitted to the right, where it affects input units of pos-
sible successor words (A3iv). This priming is important for later processing.
Crucially, it makes possible the primed ignition I of the input unit activated
by the next input word. When primed (rather than full) ignition takes place,
the threshold regulation mechanism is not invoked. Thus, threshold regula-
tion only occurs when the first input unit ignites (A2i, A5i). At time step 1,
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there are no preactivated sets at R1 or P1; therefore, threshold regulation
has no effect.

After primed ignitions at time steps 5 and 10, waves of ignitions are ini-
tiated that spread to the left, where sequencing units are in the states of
priming or reverberation (A3i, A4ii, A4iii). These backward activity waves
are of utmost importance in the present network type because they establish
coherence between-word webs directly connected by sequence sets. By this
mechanism, the network establishes a syntactic match, the complement re-
lation, between two words. Backward spreading of ignitions occurs between
time steps 5 and 8, and, again, between time steps 10 and 16. The “back-
ward transmission” of activity synchronizes input units. The last backward
spreading wave establishes synchrony among all neuronal sets activated in
the present simulation. It resets the reverberation levels of all participating
units so that they can be assumed to reverberate in a coordinated and well-
timed manner, or if spreading of the ignition wave is assumed to happen
rather quickly, even almost synchronously.

Ignitions of the leftmost sequence unit in the diagram (representing the
sentence initial proper name) at time steps 8 and 16 terminate the rightward
wave of ignitions. This is so because there are no remaining preactivated
units to which ignitions could spread and refractoriness applies (A1v). This
deactivation indicates that all syntactic matching processes were successful.

Finally, note that the criteria for “string acceptance” are met. After time
step 16, all input units are active together with their set of sequencing units.
Input units are therefore satisfied (criterion 1). All sets reverberate at the
highest level of R1. Therefore, they are called visible (criterion 2). Finally, a
coherentwaveof ignitions has involved all of them.The input units are there-
fore synchronized (criterion 3). Because the criteria of satisfaction, visibility,
and synchronization are reached, the string can be said to be accepted by the
network, and the active representations are finally being reset to 0. This
illustrates how the network accepts grammatical string (18), “Betty get up.”

E2.2.2 Simulation 2: Processing of an Incongruent String

What would be the network response to an ungrammatical or less regular
string? The word sequence (19) is not consistent with the network structure
and processing of this string will therefore be used as an example of the
processing of an “ungrammatical” word sequence.

(19) Up get Betty.

Intuitively, the network may detect the mismatch between string and
network structure by assessing that words occurring in direct or indirect
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Table E2.2. Time course of activation and deactivation of
input sets (or word webs) and sequence sets of Fig. E2.1
during processing of the string “Up get Betty,” which is
incongruent with the network structure. For explanation, see
Table E2.1. P ’ and R ’ indicate reduced activity levels, and P”
and R” further decreased activity states.

/Betty/f p/Get/f p/Up/

0 /0/0 0/0/0 0/0/
1 Up /0/0 0/0/0 0/I∧/
2 /0/0 0/0/0 0/R/
3 /0/0 0/0/0 0/R/
4 gets /0/0 0/I∧/0 0/R/
5 /0/0 0/R/P 0/R’/
6 /0/0 0/R/P P/R’/
7 /0/0 0/R/P P/R’/
8 Betty /I∧/0 0/R/P P/R’/
9 /R/P 0/R’/P’ P’/R”/
10 /R/P P/R’/P’ P’/R”/
11 /R/P P/R’/P’ P’/R”/

succession in this string do not match. The physiological indicator of this
fact in the simulation may be that presence of two string elements in the in-
put fails to cause ignition and reverberation of the sequence set connecting
them. If the string causes reverberation of all word webs, they should be left
at different levels of reverberation and fail to elicit a final wave of backward
ignitions synchronizing them. Table E2.2 illustrates how this is achieved by
listing the detailed sequence of activations and deactivations caused by the
input sequence.

The rejection of the string by the network – or failure to accept it – is
based primarily on the principle that weak connections (from right to left in
the network in Fig. E2.1) do not allow for priming (cf. principles A3iii and
A3iv). Because the input units are not primed, each exhibits unprimed or
full ignition I∧ when its respective word occurs in the input, at time steps 1,
4, and 8 (principle A2). Because full ignition activates the threshold control
mechanism, all activity states of other neuronal sets are lowered (A5i). This
process is effective at time steps 5 and 9, where the highest activity levels
P1 and R1 are lowered to P2 and R2, and these are decreased to P3 and R3.
Finally, because backward spreading of activity requires that the neuronal
sets to which activity spreads are at one of the highest levels of priming, no
backward spreading is initiated.
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In this case, not a single criterion from the three criteria required for
string acceptance is met. First, because the “bridge” of primed sequence
detectors is missing after the ignitions, no synchronization can arise. The
activity levels finally achieved are also different from each other, because
eachelement in the input elicited a full ignition, causing threshold regulation,
whichwas in turn a result of the lack of priming. Consequent to the unprimed
ignitions, threshold control is activated (A5i) so that the excitation levels of
the representations of earlier string elements are changed to lower levels
of priming. Therefore, two of the three input units finally reverberated at
lowered levels of R and were thus not visible. Furthermore, the three input
units ended up not satisfied – that is, they lack a full set of sequence detectors
at the highest reverberation level at the end of the computation processes.

A situation not covered by the comments in Chapter 10 arises in the
computations described in Table E2.2. At time steps 7 and 11, there are sets
that should exhibit two different activity states at a time. For example, there
is an input unit reverberating at R2 (or R ′) that, in addition, is primed at
a different level, P1 (or P). Dealing with this situation is discussed in more
detail in Chapter 12. In the tables in this Excursus, the level of reverberation
is taken into account and the additional priming is ignored.

E2.2.3 Simulation 3: Processing of a Partly Congruent String

A slightly different behavior of the same network is shown in Table E2.3.
Here, string (20) is processed.

(20) Up Betty get.

Again, this string is inconsistent with the network structure and should be
taken as another example of an ungrammatical string. Although the network
is not prepared to accept it as a whole, word string (20) includes a substring
for which a sequence detector would be available. The ordered word pair
“Betty get” is the initial part of congruent sentence (18). String (20) should
therefore be partly acceptable for the circuit.

The misplaced initial element fails to cause priming of representations of
subsequent elements. The ignition at time step 1 does not cause such priming
of theneuronal set corresponding to the secondword in the string.Therefore,
a full ignition I∧ occurs at time step 4. The reverberation level of the initially
activated set is lowered as a result of the activation of threshold control.

Because the activation processes following time step 4 finally lead to the
priming of the neuronal set representing the last element of the string in
the input, its presence in the input causes a primed ignition at time step 8,
followed by backward spreading of ignitions. This process can be considered
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Table E2.3. Time course of activation and deactivation of
input sets (or word webs) and sequence sets of Fig. E2.1 during
processing of the string “Up Betty get,” which is incongruent
with the network structure. For explanation, see Table E2.1. P ’
and R ’ indicate reduced activity levels and P ” and R ” further
decreased activity states.

/Betty/f p/Get/f p/Up/

0 /0/0 0/0/0 0/0/
1 Up /0/0 0/0/0 0/I∧/
2 /0/0 0/0/0 0/R/
3 /0/0 0/0/0 0/R/
4 Betty /I∧/0 0/0/0 0/R/
5 /R/P 0/0/0 0/R’/
6 /R/P P/0/0 0/R’/
7 /R/P P/P/0 0/R’/
8 gets /R/R P/I/0 0/R’/
9 /R/R I/R/P 0/R’/
10 /R/I R/R/P P/R’/
11 /I/R R/R/P P/R’/
12 /R/R R/R/P P/R’/

the network equivalent of a judgment that a substring of the stimulus is
coherent.

The backward wave of ignitions cannot spread to the neuronal set of the
first string element. Crucial for this is that there is, at time step 8, no priming
of the sequence detectors that could serve as a bridge between the relevant
input representations.

Final synchronization of all word webs therefore fails to take place. In
this case, however, the synchronization and visibility conditions are met
for the representations of the last two string segments. Nevertheless, two of
the three input units are not being satisfied and there is no synchronization
of representation of the well-formed string part and the misplaced particle.
Therefore, the network does not accept the string. Comparison of simula-
tions 2 and 3 shows that degrees of disagreement between network structure
and serial order of strings can be reflected in the sequence of activation and
deactivations in the grammar network.

These examples illustrate very elementary properties of a serial-order
circuit. To demonstrate that neuronal grammar circuits can process relevant
syntactic structures in a biologically realistic manner, it is necessary to con-
sider more complex and therefore more demanding examples. This is done
in Excursus E3.



EXCURSUS THREE

A Web Response to a Sentence

Simulationing sentence processing in grammar circuits is important because
it shows the processes that postulated by a neuronal grammar to occur in
the brain when congruent and incongruent word and morpheme strings are
processed. The examples discussed in Chapter 10 and Excursus E2 were in-
troduced to illustrate the working of the envisaged grammar machinery, the
principles of which are less obvious from a more complex simulation. How-
ever, the earlier examples can be considered to be toy simulations because
the strings under processing exhibit far less complexity than most sentences
commonly used in everyday language.

It is therefore relevant to look at more complex examples of neuronal cir-
cuits that may be the basis of syntactic knowledge and syntactic processing.
In this Excursus, a sentence discussed earlier in the context of conventional
grammarmodels (seeChapter 7) is again the target. First, thealgorithmicver-
sionof aneuronal grammarprocessing this and similar sentences is presented
and the corresponding network described. Subsequently, activity dynamics
caused in the grammar circuit by the sentence in the input are discussed.
An animation of this simulation is available on the Internet at the books
accompanying web page (http://www.cambridge.org).

We look first at sentence (1).

(1) Betty switches the machine on.

Putative syntactic structures possibly underlying the processing of sentence
(1) are spelled out in the context of dependency and rewriting grammars
(Section 7.5; Fig. 7.1). Also, a very tentative neurobiological circuit was pro-
posed earlier that may underlie the processing of (1). This earlier first-order
approximation at a grammar circuit must now be revised in the light of con-
clusions drawn in Chapters 10 and 11.

224
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In contrast to the toy examples used in Excursus E2, sentence (1) exhibits
nontrivial features, including the following:

� Discontinuous constituent made up by the verb and its particle
� Agreement between subject and verb suffix
� “Left branching” of the verb phrase.

As explained in Chapter 7, distributed words such as switch . . . on – called
particle verbs here because the verb root requires a particle (“on”) – are dif-
ficult to capture by syntactic tree structures. Transformations, feature trans-
port through the branches of trees or other additional mechanisms must be
assumed to make the relationship between the two distant lexical elements
manifest in the syntactic representation. The same problem arises for the
agreement between the proper name and the verb affix; again, two spatially
or temporally separate elements (the proper name Betty and the verb suf-
fix –(e)s) must be linked. Left branching refers to the fact that in a standard
phrase structure representation of sentence (1) as depicted in Figure 7.1, the
VP (or V′′) node carries two downward branches, one of which (the left one)
branches again. Multiple branches to the left have been proposed to give
rise to computational problems. It is relevant to confront neuronal grammar
networks with strings including discontinuous constituents, agreement, and
left branching, because these features can pose problems to grammars and
sentence processors.

Instead of postulating different syntactic mechanisms to capture rela-
tionships between adjacent and distant string elements, as most grammar
theories do, neuronal grammar bases short- and long-distance dependencies
on a single mechanism provided by sequence sets (cf. Chapters 9 and 10).
Constructions necessitating leftward branches in the context of rewriting
grammars may be analyzed differently within other grammar frameworks
(cf. Fig. 7.1). The “flat” representations of neuronal grammar, in which all
complement lexical items are each linked directly to the other, avoids the
assumption of leftward branching, at least for many sentence types in which
a conventional grammar may postulate such.

E3.1 The Grammar Algorithm and Network

As stressed earlier, depicting a grammar fragment as a network is not the
only way of representing it. The network can also be rewritten as an equiva-
lent set of formulas in which lines indicate connections between word webs
and neuronal sets processing information in the past or future that make
up lexical category representations. A neuronal grammar fragment that can
process (1) is given next. Three sets of formulas – assignment, valence, and
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sequence formulas – make up the algorithmic version of the grammar frag-
ment. For explanation of terms, see Chapter 7, and for an explanation of the
formulas, see Chapter 11.

The following assignment formulas specify a set of connections between
representations of morphemes and their respective lexical category repre-
sentations composed of sequence sets. Lexical categories are labeled by
abbreviations, and their full names are given in brackets.

(2) Betty ↔ Prop (nominative proper name)
(3) switch ↔ V (transitive particle verb)
(4) -es ↔ Vs (verb suffix)
(5) the ↔ Det (determiner)
(6) machine ↔ N (accusative noun)
(7) on ↔ Vpart (verb particle)

When extending the grammar to a larger vocabulary, it is necessary to clar-
ify these categories, some of which can be defined rather widely. All proper
names, for example, should be part of the proper name category. The cat-
egory of proper names would be closely related to that of ordinary nomi-
native nouns. The distinctive feature of the two would be the past-oriented
sequence detector of the ordinary noun category that responds to a pre-
ceding determiner, which is usually present with nouns that are not proper
names. Note that the distinction between proper and other names has syn-
tactic implications, but can be defined on the basis of semantic criteria as
well.

In contrast to very widely defined categories with many members, the
verb suffix category has only a few members. These members would be the
different realizations of the verb suffix signaling present tense, third person,
and singular. In written English, this suffix can be s or es, and in spoken
language, the s can be voiced or unvoiced and further context variants of the
acoustic pattern of the suffix can also be distinguished. These variants of the
morpheme could be realized in the model as overlapping sets, the abstract
representation of the third-person singular present suffix being represented
by the intersecting parts of these sets. (A similar proposal was made at the
semantic level in Section 5.2.3 to model family resemblance.) Vpart would
also be a very much restricted “lexical category.” It would only include one
verb particle because choice of a different particle would imply a different
meaning and grammatical implication of the particle verb.

The grammar fragment includes a set of lexical category representations
that can be defined as sets of sequence sets. The following valence formulas
define the lexical categories in terms of the sequence sets that constitute
them.
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(8) Prop (/∗/ f1, f2)
(9) N (p1, p2 /∗/)

(10) V (p /∗/ f1, f2, f3)
(11) Vs (p1, p2 /∗/)
(12) Det (/∗/ f)
(13) Vpart (p /∗/)
Each letter p (past set) refers to a sequence set sensitive to words or mor-
pheme from the lexical category preceded by words of a different category,
and each f (future set) refers to a sequence detector sensitive to a word or
morpheme of that category followed by an element of a different category.
Indices are used if more than one past- or future-sensitive sequence set is
present in any given lexical category set.

The reciprocal but asymmetric connections between all sequence sets are
specified by the following set of sequence formulas:

(14) Prop (f1) →→ V (p)
(15) Prop (f2) →→ Vs (p2)
(16) V (f1) →→ Vs (p1)
(17) V (f2) →→ N (p2)
(18) V (f3) →→ Vpart (p)
(19) Det (f) →→ N (p1)

Note that all past- and future-oriented sequence sets are connected. The
sequence and valence formulas taken together include the information that
lexical category representations are connected to each other directly.

The network equivalent to these formulas is presented in Figure E3.1.
Each small circle represents a neuronal set. Word webs, the neuronal units
processing words or morphemes, are listed in the top line with the word or
affix they are specialized for indicated. Below each word web, linked directly
by arrows, are the sequence detectors the word web is connected to. The
set of sequence detectors connected directly to a word web represents the
lexical category representation the word is part of. These direct connections
betweenwordweband sequence sets are specifiedbyvalenceandassignment
formulas. The horizontal connections between sequence sets correspond to
sequence formulas (14)–(19).

E3.2 Sentence Processing in Syntactic Circuits

Table E3.1 displays activity dynamics of the network processing sentence
(1). The reader is now invited to follow the activity waves through the net-
work. The principles underlying the dynamics are the same as in earlier
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Figure E3.1. Fragment of neuronal grammar that processes and accepts the sentence
“Betty switches the machine on.” (An equivalent formalism is provided in the text.)
Activation and deactivation dynamics of the network are shown in Table E3.1.

simulations (cf. Chapter 10 and Excursus E2). First, the global characteris-
tics of the activation and deactivation processes in this simulation are briefly
summarized. Finally, a few special features of this simulation are stressed.

E3.2.1 Global Characteristics

All activation and deactivation processes are described in a table organized
in the samewayas earlier activation tables of this kind. For adetaileddescrip-
tion of how activation tables represent spreading activity through a network,
see Section E2.2 in Excursus E2. The principles of neuronal grammar that
yield the activation and deactivation processes have been discussed in great
detail in Chapter 10 (e.g., in Section 10.7).

Each lexical element in the input activates its input unit. Here, the verb
suffix – the third-person singular present suffix realized, in this case, as
-es – is represented as a separate lexical element. Therefore, the five-word
sentence activates six word or morpheme webs in a given order. The time
steps at which word webs ignite are 1, 5, 10, 16, 20, and 29. As explained
earlier, when a new item is presented, the time steps are chosen such that
the network settles into a stable state before a new input is given. Each word
or morpheme in the input causes an ignition of the word web representing
it. Except for the first word, Betty, and the article the, the ignitions caused
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are primed ignitions, I, because the respective input units had already been
preactivated. The other two ignitions are full ignitions, abbreviated as I∧.

The ignitions change the activity states of other sets that are connected
directly to them.The ignition itself and the reverberation state followingeach
ignition produce priming of the directly connected sequence set sensitive
to information about future events. Spreading of priming is indicated by
changes of the inactive state, 0, to the state of priming, P. In Table E3.1, these
changes are indicated to the right of word webs ignited by external input.
Priming of strongly connected sets takes place after each ignition caused by
input, except for the last one (time step 29). Priming can be effective up to
the next word web connected to the reverberating input unit by sequence
sets ( future sets). Another way to express this would be to say that a word
prepares the circuit to perceive a word from a category whose members
frequently follow the word. However, if the next word web has more than
one connected sequence set sensitive to information available in the past
(labeled p plus index), all of its past sets need to be primed in order to cause
priming of the word web (cf. Section 10.7). Ignitions also momentarily prime
their directly connected sequence sets to the left. This temporary effect is
not covered by Table E3.1, except for in the cases in which it has long-lasting
consequences (traveling waves of ignitions).

An ignition caused by external input – the word or morpheme stimuli –
leads toadditionalprimed ignitions indirectly connected sets that arealready
in a preactivated state (that is, sets that already reverberate or are in the state
of priming at high levels). This leads to backward-traveling waves of activity,
from right to left in the table, which are said to synchronize the sets involved.
Backward activity spreading of primed ignitions occurs in the intervals of
time steps 5–8, 10–14, 20–27, and 29–38.

There is also the possibility of indirect influence of an ignition on other
neuronal sets via activation of threshold regulation processes. This becomes
effective only after the determiner the has been presented, following time
step 15. Activity levels of all preactivated sets in the network are reduced,
from R1 to the lower level R2, or from P1 to P2, as a consequence. As
in Excursus E2, the canonical activity levels R1, R2, R3 . . . and P1, P2,
P3, . . . are given as R, R′, R′′, . . . and P, P ′, P ′′ in the table.

After the sentence hadoccurred in the input, activity reaches a stable state
at stime step 39. At this point in time, the network has all its word webs or in-
put units reverberating at the highest reverberation level R (also called R1).
The visibility condition is therefore satisfied. In addition, all of the word
webs have highly active connected lexical category representations (i.e., sets
of sequence sets. This means that the condition of satisfaction is also met.
Finally, a terminal wave of ignitions spreading throughout all activated sets



Table E3.1. Time course of activation and deactivation of word webs and
sequence sets of Figure E3.1 during processing of the string “Betty
switches the machine on,” which is congruent with the network structure.
Lines represent time steps. Time steps and input to the network are listed
on the left. In each column, activity states of one or more past-oriented
sequence sets (p; to the left of slashes), of a word web (between slashes),
and of future-oriented sequence sets (f; to the right of slashes) are shown.
Time steps between inputs are chosen so that activity spreads until stable
states are reached. Content words are abbreviated (B. – Betty, s. – switch,
m. –machine). Letters indicate ignition (I ), reverberation (R ), priming (P ),
and rest (0). I∧ indicates full unprimed,ignition. P and R denote the
highest levels of priming and reverberation and P ′ and R ′ indicate lower
activity levels.

/B./f1,f2 p/s./f1,f2,f3 p1,p2/-s/ /the/f p1,p2/m./ p/on

1 Betty /I∧/0,0 0/0/0,0,0 0,0/0/ /0/0 0,0/0/ 0/0/
2 /R/P,P 0/0/0,0,0 0,0/0/ /0/0 0,0/0/ 0/0/
3 /R/P,P P/0/0,0,0 P,0/0/ /0/0 0,0/0/ 0/0/
4 /R/P,P P/P/0,0,0 P,0/0/ /0/0 0,0/0/ 0/0/
5 switch /R/P,P P/I/0,0,0 P,0/0/ /0/0 0,0/0/ 0/0/
6 /R/P,P I/R/P,P,P P,P/0/ /0/0 0,0/0/ 0/0/
7 /R/I,P R/R/P,P,P P,P/P/ /0/0 P,0/0/ P/0/
8 /I/R,P R/R/P,P,P P,P/P/ /0/0 P,0/0/ P/P/
9 /R/R,P R/R/P,P,P P,P/P/ /0/0 P,0/0/ P/P/
10 es /R/R,P R/R/P,P,P P,P/I/ /0/0 P,0/0/ P/P/
11 /R/R,P R/R/P,P,P I,I/R/ /0/0 P,0/0/ P/P/
12 /R/R,I R/R/I,P,P R,R/R/ /0/0 P,0/0/ P/P/
13 /I/R,R R/I/R,P,P R,R/R/ /0/0 P,0/0/ P/P/
14 /R/I,R I/R/R,P,P R,R/R/ /0/0 P,0/0/ P/P/
15 /R/R,R R/R/R,P,P R,R/R/ /0/0 P,0/0/ P/P/
16 the /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /I∧/0 P’,0/0/ P’/P’/
17 /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /R/P P’,0/0/ P’/P’/
18 /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /R/P P’,P/0/ P’/P’/
19 /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /R/P P’,P/P/ P’/P’/
20 machine /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /R/P P’,P/I/ P’/P’/
21 /R’/R’,R’ R’/R’/R’,P’,P’ R’,R’/R’/ /R/P I,I/R/ P’/P’/
22 /R’/R’,R’ R’/R’/R’,I,P’ R’,R’/R’/ /R/I R,R/R/ P’/P’/
23 /R’/R’,R’ R’/I/R’,R,P’ R’,R’/R’/ /I/R R,R/R/ P’/P’/
24 /R’/R’,R’ I/R/I,R,P R’,R’/R’/ /R/R R,R/R/ P’/P’/
25 /R’/I,R’ R/R/R,R,P R’,I/R’/ /R/R R,R/R/ P/P’/
26 /I/R,R’ R/R/R,R,P R’,R/I/ /R/R R,R/R/ P/P/
27 /R/R,I R/R/R,R,P I,R/R/ /R/R R,R/R/ P/P/
28 /R/R,R R/R/R,R,P R,R/R/ /R/R R,R/R/ P/P/
29 on /R/R,R R/R/R,R,P R,R/R/ /R/R R,R/R/ P/I/
30 /R/R,R R/R/R,R,P R,R/R/ /R/R R,R/R/ I/R/
31 /R/R,R R/R/R,R,I R,R/R/ /R/R R,R/R/ R/R/
32 /R/R,R R/I/R,R,R R,R/R/ /R/R R,R/R/ R/R/
33 /R/R,R I/R/I,I,R R,R/R/ /R/R R,R/R/ R/R/
34 /R/I,R R/R/R,R,R R,I/R/ /R/R I,R/R/ R/R/
35 /I/R,R R/R/R,R,R R,R/I/ /R/R R,R/I/ R/R/
36 /R/R,I R/R/R,R,R I,R/R/ /R/R R,I/R/ R/R/
37 /R/R,R R/R/R,R,R R,R/R/ /R/I R,R/R/ R/R/
38 /R/R,R R/R/R,R,R R,R/R/ /I/R R,R/R/ R/R/
39 /R/R,R R/R/R,R,R R,R/R/ /R/R R,R/R/ R/R/
40 DEACTIVATE /0/0,0 0/0/0,0,0 0,0/0/ /0/0 0,0/0/ 0/0/
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(time steps 29–38) follows the last stimulation by an element in the input.
The synchronization condition is therefore met as well. The sentence is in
accord with the structure of the circuit. Therefore, the activations induced
by the sentence are being terminated by the postulated deactivation process.

E3.2.2 Specific Features

It may be worthwhile to consider the following special features of the pro-
cessing of sentence (1) that address the three specific features of its syntactic
structure – namely, the included discontinuous constituent, the agreement
exhibited by two of its constituents, and the left branching attributed to it
by a phrase structure grammar (PSG).

The discontinuous constituent switch . . . on does not pose problems to
this processing device because the particle is bound to the verb by the same
kind of connection assumed between the verb and its other complements.
This is related to the fact that in a neuronal grammar, there is no motivation
to prohibit what would be crossings of projection lines in a PSG. Crossings
of projection lines are prohibited in rewriting systems, although there is
probably no biological motivation for this. Following time step 5 of this
simulation, the verb stem primes its connected sequence detectors that also
link it to a verb suffix potentially activated in the future. Priming of the verb
suffix representation becomes effective at time step 8, so that its activation
at time step 29 is primed ignition.

Also, the fact that choice of the verb suffix depends on both the subject
and the verb is transformed naturally into the network. Connections are
postulated from both the proper name Prop to the verb suffix Vs, and, in
the very same way, from the verb V to the verb suffix Vs. Neuronal gram-
mar treats agreement between verb and verb suffix in the same way as any
other dependency (cf. Chapter 9). Again, the point here is that dependency
relations need not be two dimensional, but can have as many dimensions
as required to describe cooccurrence of morphemes in sentences. In this
simulation, the process most important in this context – the priming of the
verb suffix representation by two sequence sets, one of them sensitive to the
earlier proper name and the other to the preceding verb – becomes effective
at time step 7.

The determiner the preceding the noun machine does not have a primed
neuronal representation when this word occurs in the input. This is because
the article’s web linked only to the noun’s web, and the noun web has not yet
been activated. A full, rather than primed, ignition is therefore achieved by
the determiner that reduces activity states of already active representations.
There is a danger that the already active and the newly activated represen-
tations will fail to be linked by synchronization processes, a situation that
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sometimes arises when a neuronal grammar processes a sentence structure
exhibiting left branching in a phrase structure representation.

Processing part of the left-branching structure of the string initially in-
duces full ignition because the representation of the article lacks any past
set and, therefore, there is no possibility to prime it before it ignites. At time
step 15, the initial sentence fragment Betty switches has been processed as a
coherent unit, that is, its representation has been synchronized and is visible.
As a result of the unprimed ignition I∧ caused by the article in the input at
time step 16, threshold regulation is activated and the visible elements are
pushed to a reduced level of reverberation R′ (or R2). The activity states
of most sets stay at a reduced level until the structure the machine is com-
pleted. At time step 20 and later, however, synchrony is established between
the word sets of the noun and article that reverberated at different levels of
R (R). The ignition wave initiated by machine in the input finally spreads to
the representations of both the initial sentence parts and the left-branching
parts, thus synchronizing all the then-active sets. This process takes place
during time steps 20–28 (cf. Table E3.1).

E3.3 Discussion of the Implementation and Simulation

This proposal of neuronal grammar circuits is but one step toward a brain-
compatible serial-order mechanism that could be relevant for syntactic pro-
cessing in the human brain. It is relevant to discuss future alternatives. The
following issues may require additional labor.

Although the network presented in Figure E2.1 can process string (1) and
may equally process versions of this string in which words and morphemes
have been replaced by other members of the respective lexical categories,
the mechanism must be further elaborated and differentiated in many ways,
as it contains some shortcomings, and different perspectives can be offered.

Clearly, the formulation of the present grammar allows for different word
order, not just for the one in sentence (1). Although the formulation can also
model sentence (20), it does not “accept” strings in which complements are
missing such as (21), or strings with different word order such as (22).

(20) Betty switches on the machine.
(21) Betty switches on machine.
(22) On switches Betty the machine.
(23) Betty switch the machine on -es.

However, the outlined network would also accept strings one would not
want accepted. Such “false positives” would include (23), for example. To
exclude their acceptance, the network must be refined.
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One perspective for further development is offered by the introduction
of connections of different strengths. Only one type of strong (forward)
and weak (backward) connection has been set up in the grammar networks
discussed in detail here. The present proposal could be further developed to
capture the fact that the verb suffix must occur directly after the verb stem,
whereas accusative noun phrase and particle can be placed later in the string.
In principle, differential connection strength could realize this. Connection
strength 1.0 could be postulated for the link of V to Vs, but a weaker link,
0.8, could be assumed between V and Vpart. The stronger links could then
be effective earlier and the weaker ones only later. This would not remove
the advantage of allowing for free placement of complements [cf. sentences
(1) and (20)] because connection strengths between a constituent and two
of its complements can always have the same value, thus leaving open which
constituentmust occur first. Because differential connection strengthswould
make the present computations more complex, this possibility is not dealt
with here in more detail.

One may argue that it might be a caveat of the approach proposed here
that not only the standard word order is possible in English, and this prob-
lem is evenmore virulent for other languages. The simple solution suggested,
however, is that different grammatical word orders of the same or similar
sets of constituents can be processed by different sets of sequence feature
detectors. An active and a passive sentence and a main clause and a subor-
dinate clause would therefore be characterized by distinct sets of sequence
detectors. As argued in Section 10.6.4, it is not costly to add sequence sets
for processing strings with different word order.

One may argue that the philosophy underlying this kind of sentence pro-
cessing has some relationship to standard grammatical theories and that
there is nothing in these computations that a modern grammar could not do.
This is clearly correct. By introducing concepts such as slash categories, or
operations such as movement or tree adjoining, the capacity of a grammar
algorithms have been greatly augmented, so that the claim cannot be made
that neuronal mechanisms cover strings that conventional grammars fail to
process.

A major difference between conventional syntax theories and neuronal
grammar is, of course, that the present proposal attempts to specify brain
mechanism on a concrete level. A further difference to a many standard
grammatical analyses lies in the fact that these grammars compute a tree
representation as an output, whereas the neuronal automaton has a group
of satisfied, visible, and synchronized neuronal sets activated and finally de-
activated. It is possible that this is, at a certain level of abstraction, equivalent
to one or more nonneuronal grammar algorithms. Chapter 11 claims that a
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certain modification of dependency syntax is equivalent to grammar circuits.
It is not impossible that slight modification of other grammar types lead to
descriptions that are compatible with the present concept of a neuronal
grammar.

A further criticism of neuronal grammar could be as follows: It could be
argued that the processes in grammar networks lead only to the activation
and grouping of representations of lexical items. This could be considered
to be similar to listing the lexical items included in a sentence together with
one bit of information about whether the string was grammatical. It may
be claimed that too much information about sentence structure and hierar-
chical relationships between lexical elements would be lost if computations
were preformed in this manner. The argument may therefore be that a tree
representation is preferrable because it preserves more structural properties
of the morpheme string – in particular, its hierarchy.

However, this putative critique does not appear to be appropriate. In
grammar circuits, word representations become active together with one of
their respective lexical category representations and their neuronal links.
Together with the activity dynamics of neuronal sets, these provide a struc-
tural characterization of the perceived string in much the same way as a
tree graph, but with the important difference of not being restricted to two-
dimensional representations. Furthermore, additional information becomes
available in the course of sentence processing. During the computations in
the circuits, informationabout relationshipsbetween lexical items is revealed
by the process of synchronization and the level of reverberation of the sets.
From the computation summarized in Table E3.1, it is clear that the first
three elements of the sentence belong together from the beginning because
they exhibit synchronization after the verb suffix leads to ignition of its input
unit. Also, the close relationship between noun and article becomes visible
in the adjacent ignitions of their input and sequencing units. In the final
synchronization process initiated by the last word in the input, information
about dependency relations between lexical items is revealed by the order in
which their representations ignite. Thus, it appears that the present frame-
work is quite capable of revealing information about dependency relations
in sentence structures, although the tree structure hierarchies are usually not
assumed in this type of grammar approach.

An additional advantage of this approach is that it offers a clear-cut
description of the sequence of activation and deactivation processes, the
sequence of groupings of constituents, and the temporal order in which
synchrony is being achieved in the course of the processing of a sentence.
Structural information about a sentence therefore unfolds over time in the
grammar circuit.



CHAPTER TWELVE

Refining Neuronal Grammar

This chapter takes the concept of a neuronal grammar developed earlier as
a starting point. The earlier proposal is partly revised and extended to cope
with problems put forth by natural language phenomena.

The three phenomena considered here are as follows:

� The distinction between a constituent’s obligatory complements and its
optional adjuncts.

� The multiple occurrence of the same word form in a string.
� The embedding of sentences into other sentences.

All three issueshavebeenaddressedoccasionallybefore; however, theywere
not treated systematically in the context of neuronal grammar. This requires
its own discussion because the necessary extensions lead to a substantial
revision of the previous concept of neuronal grammar.

The gist of the revision briefly in advance is as follows: In earlier chapters,
the relationship between sequence detectors and words in the input was
assumed to be static. The word web ignites and then, successively, one set
of its sequence detectors is recruited according to relationships the word
exhibits to words in its context, as they are manifest in regular co-occurrence
of lexical category members. Each word would recruit one of its connected
lexical category representations.However, if eachword formwere attributed
to one lexical category, it would be impossible tomodel the situation inwhich
one word occurs twice in different grammatical roles in a sentence. In this
case, the single word representation must store the knowledge about the
two occurrences, and the knowledge about the syntactic role the particular
word occurrences played in their respective contexts as well. Section 12.2
discusses a preliminary solution to this dilemma. The idea here is that each
word representation can exhibit several different activation states at a time.
Two different waves of activity spreading through the same neuronal set may
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allow for storing the fact that a given item was present twice. The proposed
mechanism can even operate if a lexically ambiguous word is used twice in
a sentence, as member of two different lexical categories.

An even more radical use of the neuronal grammar machinery is offered
inSection 12.3,where, finally, center embeddings are addressed.The solution
explored here is that links between word webs and sequence sets are fully
dynamic. The envisaged neuronal basis of the dynamic link is the traveling
of a coherent wave of activity that reverberates back and forth between
neuronal sets.

At the start, an important linguistic distinction between complements and
adjuncts is reviewed and a few thoughts about its neuronal basis are added
(Section 12.1).

12.1 Complements and Adjuncts

In Chapter 10, lexical elements were considered as units that “require” oth-
ers. If one lexical element is present in a string, its complements can also be
expected, with the converse also true – the “dependent” item also requires
the “governor.” This view gave rise to the concept of mutual dependence that
avoids the hierarchy implication. Nominative noun and verb are mutually
dependent. This is implemented by a reciprocal connection, with stronger
links in the direction of the normal succession of the elements (from nomi-
native noun to verb in English) than in the reverse direction. The postulate
of reciprocal connections between neuronal sets α and β is based on the
following assumptions:

� Large cortical neuron populations are connected to each other recipro-
cally.

� Strong correlation characterizes the occurrence of the words or mor-
phemes represented by sets α and β.

These issues are addressed in earlier chapters (e.g., Chapter 2, in which the
reciprocity assumption is discussed;Chapter 10, inwhichmutual dependence
is based on reciprocal asymmetric connections).

In contrast to the case inwhich two types of lexical elements are correlated
and usually cooccur, there are cases in which the occurrence of one lexical
element depends on the occurrence of the other, but the reverse is not true.
Whereas a noun (or proper name) and a verb usually co-occur, as in (1),
the relation between a relative pronoun and a noun/proper name should
probably be characterized as follows: If one occurs, the other is usually also
present, but the converse is not necessarily so.
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(1) Hans comes . . . .
(2) Hans who . . . .

The relative pronoun who can be added freely to any proper name referring
to a human being, but the relative pronoun necessitates the noun or a similar
element to which it can adjoin. If there is no noun or related item, no relative
pronoun can occur. The nonobligatory, to be a freely added element is called
a free adjunct. The distinction between obligatory complements and free
adjuncts is common in grammar theories (see Ajukiewicz, 1936; Haegeman,
1991; Hays, 1964; Tesnière, 1953).

Note again the asymmetry between the adjunct and the noun: The word
who used as a relative pronoun requires the occurrence of a noun or some-
thing similar (e.g., proper name, pronoun). The probability of finding who
after a noun is generally low, but if a relative pronoun who is present, it is
almost certain that also a noun or noun-like element (e.g., personal pronoun,
proper name) is in the string.

How would this characteristic asymmetry of adjuncts be realized in a
neuron circuit? Would it be realized through the same type of reciprocal
and directed connection as postulated for the links between mutual comple-
ments?

It is well established that coactivation of a pre- and postsynaptic neuron
leads to synaptic strengthening (see Chapter 2). However, presynaptic acti-
vation and postsynaptic silence can reduce synaptic weights dramatically.
This process is called homosynaptic long-term depression (see Tsumoto,
1992). The reverse situation can have a similar effect as well. In this case,
presynaptic silence while the postsynaptic neuron fires also reduces weights,
a process called heterosynaptic long-term depression. Both processes, ho-
mosynaptic and heterosynaptic long-term depression, can lead to a reduc-
tion of synaptic weights between two connected neurons. It is still under
discussion which of the two processes produces stronger synaptic weight re-
duction. However, there are theoretical arguments why, in a network made
up of distributed and strongly connected sets of neurons, one of the pro-
cesses should have a stronger effect than the other. From computer simula-
tions, it became apparent that for achieving stable functioning of a system
of cell assemblies, it was necessary to introduce a “post- not pre-” heterosy-
naptic rule of synaptic weight reduction (Hetherington & Shapiro, 1993).
One may therefore propose that presynaptic silence with postsynaptic firing
leads to the most pronounced reduction of synaptic weights. The assump-
tion that long-term depression is more effective if it is heterosynaptic (post-
not pre-) gives rise to a prediction on the neuronal implementation of free
adjuncts.
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If a neuronal element β is always active when α is active, but there are
many cases in which α is active while β is silent, then the connections from α

to β are assumed to suffer more from synaptic weight reduction than those
backward from β to α. This postulate is based on a “pre- not post-” rule of
weakening of synaptic connections. We assume here that the situation of a
lexical element of type b relying on the presence of another one of type a – as
the relative pronoun relies on the noun, or the who relies on Hans in example
(2) – is modeled in the network by unidirectional connections from neuronal
sets β to α. The idea here is that, although reciprocal connections between
sets can be assumed to be a default (see discussion in Chapter 2), learning
that a can appear without b, whereas b most frequently occurs together with
a, causes one of the two links to become ineffective.

The unidirectional links imply that ignitions can spread only from the
adjunct representation to the “mother”, but no significant amount of activity
can be transmitted in the opposite direction, from the mother representation
to the adjunct. The adjunct–complement distinction is an important one for
language functioning, and its putative neurobiological realization outlined
here plays a role in the syntactic circuits elaborated in this chapter and the
subsequent excursuses.

12.2 Multiple Activity States of a Neuronal Set

Multiple occurrence of lexical items and other syntactic objects is a genuine
characteristic of natural language. To allow words to occur repeatedly in a
string is at the heart of the view on language proposed by most mainstream
linguistic theories because, from this perspective, each language is consid-
ered to be a system that is enumerable recursively. This implies that rules
can be applied repeatedly in the analysis or synthesis of a sentence, and it
also implies that, in principle, the number of possible sentences is unlimited.
One may want to call this the linguistic infinity position or linguistic infinity
view.

The linguistic infinity view implies that sentences are, in principle, allowed
to have infinite length. Also, because the base vocabulary of each language is
considered to be finite, this view further implies that lexical items are allowed
to occur repeatedly within sentences, with no upper limit, in this case, for the
number of repetitions. Therefore, from this linguistic infinity perspective, it
appears imperative to specify possible mechanisms underlying processing of
multiple occurrences of morphemes. From a more realistic viewpoint, it also
appears advantageous to have a mechanism at hand that allows one to have
multiple occurrences of the same lexical element in well-formed strings.
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12.2.1 The Concept of Multiple Reverberation

How could a neuronal grammar process a sentence in which the word form
switch occurred twice? One would probably assume that the neuronal rep-
resentation of the word would become active for a second time when the
second occurrence of the word occurs in the input. However, to allow for
processing of sentence-related information at a later point in time, informa-
tion about both occurrences must be stored, and it would also be necessary
to store not only that they occurred but also which syntactic function they
had in their respective positions. The nontrivial task for a neuronal grammar
is illustrated using sentence (3).

(3) Betty switches the switch on.

In the context of this sentence, the word form switch can be assumed to
be used as a member of two lexical categories specified by the Rules (4)
and (5).

(4) V14p (Np /*/ Vs, N4, Vp)
(5) N4 (V, Ar /*/)

Thus, the word form is used both as transitive particle verb and as accusative
noun. Now the problem to be solved is at least two-fold: The network must
store the following facts:

(i) The lexical item occurred twice.
(ii) The lexical item occurred as member of two specific lexical cate-

gories.

In the networks defined here, a symbol in the input activates its input
unit and a set of sequence detectors. If a word form occurs twice but in
different syntactic functions – that is, as member of different lexical cate-
gories, a larger number of sequence detectors are activated in comparison
to the case of the same element occurring only once. However, according
to principle (A6) in Section 10.7, simultaneous ignition or reverberation at
R1 of two different lexical category representations connected to the same
input unit is not possible. Therefore, it is unclear how the network would
store items (i) and (ii). To allow processing of repeated use of the same
word form, a fundamental revision of the neuronal model appears to be
necessary.

One possible solution is that individual neuronal sets support multiple
simultaneous reverberations. The proposal is that several distinct waves of
well-timed activity can run simultaneously through a given set.
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After its ignition, a neuronal set is proposed to reverberate at R1. One
way to model reverberation is by using the paradigm of a huge neuron loop
in which not individual neurons but groups of neurons are connected in
such a way that the groups form a circle, or a more complex circuit includ-
ing many loops (Chapter 8). If there are directed connections between the
neuron groups, an active group activates the next group that, in turn, acti-
vates the next, and so on. Circulation and reverberation of activity results
in such a model of reverberatory synfire chains. Important assumptions are
that reverberations last for tens of seconds, and that two or more separate
reverberatory waves of activity in the same network do not interfere with
each other.

A few considerations on putative mechanisms underlying multiple rever-
beration may appear relevant here. A neuronal set has been proposed to
have an ordered inner structure, in the manner of a reverberatory synfire
chain (Chapters 8 and 10). A reverberating wave of activity in a neuronal
set may emerge after full activation of all neurons of the set because after
the ignition, refractory processes in strongly active neurons reduce the level
of activity, ultimately leaving only a small subset of neurons active. If an
igniting assembly includes a very strongly connected subset of neurons, its
kernel (Braitenberg, 1978a), these neurons are the first to become strongly
active, and therefore fatigue (e.g., refractoriness) is first present in this sub-
set. Shortly thereafter, the kernel neurons are the first to become active
again, because their refractoriness is already over at the time when most
other set neurons are still refractory. Therefore, reverberations should start
in the kernel and spread from there through the rest of the set. This would
be the situation in a neuronal set activated only once.

The putative mechanism of multiple reverberation is the following. If a
wave of activity already reverberates in the set, a second ignition as a result
of external stimulation does not disturb the first wave, but causes a second
distinct wave that also reverberates in the set at the same frequency, but
at a different phase. If, at the time of the second ignition, the set is in the
reverberating state, one group of neurons must be active and another set –
the subpart of the synfire chain that was active just one time step before –
must be in its refractory period. Therefore, it cannot take part in the second
ignition. For this reason, there is a group of neurons in the set that does not
participate in the second ignition. These neurons in the refractory group are
among the first that become active again after ignition ceases. If an ignition
usually results in one wave of reverberating activity starting in the kernel, in
this case there are two such waves that emerge after the second ignition of
an already reverberating set. Although wave one would be initiated in the
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kernel, the second wave would, so to speak, result from the “footprint” of
the earlier reverberation.

Itmaybe fruitful to explore these putativemechanisms further using com-
puter simulations of reverberatory synfire chains (Bienenstock, 1996). Such
simulation can further explore the idea that, if a neuronal set is conceptual-
ized as a reverberatory synfire chain in which well-timed waves of activity
resonate (see Chapter 8), more than one wave can reverberate at a given
point in timewithin any given set. The application of this idea to grammar cir-
cuits is explored further in Excursuses E4 and E5, in which more simulations
of the processing of sentences is discussed. In the following considerations,
it is assumed that input units – word and morpheme webs – can exhibit mul-
tiple states of reverberation as a result of multiple stimulation by external
input. Multiple activity states can also be postulated for sequence sets.

12.2.2 Some Revised Principles of Neuronal Grammar

A neuronal set can now be redefined as an entity that can exhibit several
simultaneous states of reverberation, priming, and ignition at any point in
time. An ignition induced by external input causes a wave of reverberation
within the input unit and the number of ignitions during a given period
determines the number of its reverberations. It is emphasized that there is,
at present, no evidence available supporting this postulate. This postulate –
or analternativebasis of anaccountof theprocessingofmultiple occurrences
of the same language element – is necessary in any approach to grammar
mechanisms in the brain.

As a consequence, the ignition of an already reverberating input unit
should not result in a primed ignition but in a new full ignition instead.
This makes revision of the principles outlined in Section 10.7 unavoidable.
Furthermore, it is not clear how the idea of multiple reverberations of input
units matches that of threshold regulation as specified by axiom (A5) in
Section 10.7. If full (unprimed) ignition I∧ reduces Ri to Ri+1, an additional
I∧ further diminishes all already established reverberation to Ri+2. Whereas
an input unit that is already in the state of reverberation usually exhibits
unprimed full ignition, it still exhibits primed ignition if being in a state of
priming at a high level.

To exclude overly strong activity because of multiple reverberation, a set
is only allowed one wave of reverberation at the highest level R1 at any
given time. If an ignition takes place while the set reverberates at R1, two
waves of activity emerge at R1 and R2, respectively. Next, input units are
assumed to produce multiple reverberation as a consequence of ignition
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by external input if they have already been in a state of reverberation Ri

before the ignition. Axiom (A2) must now be modified and reformulated
as (A2′):

(A2’) Activity change in an input unit S caused by external stimulation

(i) S (0,t), S (E ,t) ⇒ S (I∧,t +1)
(ii) S (P1,t), S (E ,t ) ⇒ S (I ,t +1)
(iii) S (Pi ,t), S (E ,t) ⇒ S (I∧,t +1)

if i > 1
(iv) S (R1,t ), S (E ,t ) ⇒ S (I R2,t +1)
(v) S (Ri ,t ), S (E ,t ) ⇒ S (I∧ Ri ,t +1)

if i > 1

where S (x1, x2, . . . xh, y) is a predicate with h + 1 places indicating the h
activity states (h > 0) of neuronal set S at time y. x1 can take the values 0, I,
or any level of R or P, and x2 to x1 can only take levels Ri or Pi , i > 1. Thus,
multiple activity states can be expressed, for example, by (6).

(6) S (I R3 R7, t )

This means that at time t , set S simultaneously ignites and reverberates at
R3 and R7.

There is, in principle, no upper limit for the number h of simultaneous
activity states. If axioms (A2′iv) or (A2′v) are allowed to be applied h times
to the same input unit, the unit exhibits h activity states simultaneously.
Although an abstract version of the model may postulate high numbers of
h, a realistic model would probably limit the number of each word web’s
simultaneous activity states to a few.

The model implies that any set receiving more than one inputs through
a strong connection from other sets can exhibit multiple states of priming.
This is so for the following reasons:

(i) An input unit Sp can reverberate at different levels.
(ii) If Sq receives strong connections from set Sp, priming of Sq is, as a

consequenceofdifferent levels of reverberation, strongerorweaker
as well.

This is implied by the earlier formulation of neuronal grammar in
Chapter 10 (see also Excursus E4). According to principles (A3iii) and
(A3iv), reverberation and priming of a set leads to priming of a strongly
connected set, and, if reverberation is at levels R1, R2, and so on, the prim-
ing levels are, accordingly, adjusted to P1, P2, and so on. Thus, levels of
activity are, so to speak, transported through strong connections. Briefly, the
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following modifications of principles (A3) and (A4) are proposed:

(A3’) Activity changes caused in Sq through a connection between Sp and Sq

(i) Sp (I ,t), Sq (0,t) ⇒ Sq (P1,t +1)
only if Sp →→ Sq

(ii) Sp (I ,t), Sq (Ri ,t) ⇒ Sq (I ,t +1)
only if i < 3

(iii) Sp (I ,t), Sq (Ri ,t) ⇒ Sq (P1 Ri ,t +1)
only if Sp →→ Sq and i > 2

(iv) Sp (I ,t), Sq (Ri R j ,t) ⇒ Sq (I R j ,t +1)
only if Sp →→ Sq, i < 3, and j > 2

(v) Sp (Ri ,t), Sq (0,t) ⇒ Sq (Pi ,t +1)
only if Sp →→ Sq

(vi) Sp (Ri ,t), Sq (R j ,t) ⇒ Sq (Pi R j ,t +1)
only if Sp →→ Sq, and i 
= j

(vii) Sp (Ri ,t), Sq (Ri ,t) ⇒ Sq (Ri ,t +1)
only if Sp →→ Sq

(viii) Sp (Pi ,t), Sq (0,t) ⇒ Sq (Pi ,t +1)
only if Sp →→ Sq, and Sp is a sequence set

(ix) Sp (Pi ,t), Sq (Pj ,t) ⇒ Sq (Pi Pj ,t +1)
only if Sp →→ Sq, Sp is a sequence set, and i 
= j

(x) Sp (Pi ,t), Sq (Pi ,t) ⇒ Sq (Pi ,t +1)
only if Sp →→ Sq, Sp is a sequence set

(A4’) Activity changes caused in Sr through connections with Sp and Sq

(i) Sp (I ,t ), Sq (I ,t), Sr (0,t) ⇒ Sr (I ,t +1)
(ii) Sp (I ,t ), Sq (Ri ,t), Sr (0,t) ⇒ Sr (I ,t +1)

only if i = 1 or i = 2, and Sq ➔ Sr
(iii) Sp (I ,t ), Sq (Ri ,t), Sr (0,t ) ⇒ Sr (P1 Pi ,t +1)

only if i > 2, Sp →→ Sr, and Sq →→ Sr
(iv) Sp (I ,t ), Sq (Pi ,t), Sr (0,t ) ⇒ Sr (I ,t +1)

only if i = 1 or i = 2, Sq →→ Sr, and Sq
is a sequence set

(v) Sp (I ,t ), Sq (Pi ,t), Sr (0,t ) ⇒ Sr (P1 Pi ,t +1)
only if i > 2, Sp →→ Sr, Sq →→ Sr, and
Sq is a sequence set

(vi) Sp (P/Ri ,t ), Sq (P/R j ,t), Sr (0,t ) ⇒ Sr (Pi Pj ,t +1)
only if i > 2, Sp →→ Sr, Sq →→ Sr, (and
sets exhibiting P at t are sequence set)

(vii) Sp (P/Ri ,t), Sq (P/Ri ,t), Sr (0,t) ⇒ Sr (Pi , t +1)
only if i > 2, Sp →→ Sr, Sq →→ Sr, (and
sets exhibiting P at t are sequence set)
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Briefly, according to this proposal, each neuronal set is allowed to exhibit
multiple activity states. Input units can exhibit several reverberations and
can exhibit multiple priming at a time, depending on their history of external
stimulation and the amount of priming they receive through connections in
the network. In contrast, sequence sets can exhibit ignition, reverberation,
or priming, and in addition, they can exhibit multiple additional priming.
In activity tables, different activity levels of one set are written on top of
each other, the highest activity level appearing in the top line and the lower
activity levels in the lines following (see tables in Excursuses E4 and E5).

These formulations include occasional redundancies. For example, (3′iv)
follows from (3′ii) and (3′iii) if both principles are applied at the same time
and if they are assumed to act independently on different levels of reverbera-
tion. Such “additivity” of processing at different levels of activity is assumed
from now on. This amounts to considering each neuronal set as a pushdown
store with the possibility of storing several hierarchical activity tags that
are stored and retrieved independently (Pulvermüller, 1993, 2002). Only the
highest activity tags denote “visibility” of the respective activity state and
have an immediate influence on ongoing computations.

Note that in the present context activity states of sets, rather than the sets
themselves, are called visible. What has been called a visible set earlier would
now be a set with a visible activity state.

If an input unit has ignited repeatedly as a result of external input, it ex-
hibits several reverberation states at a time. If the input unit is connected
to more than one lexical category representation, more than one of these
representations can be activated – coding the information that the repeated
element in the input has been classified as member of different lexical cat-
egories. To specify inhibitory interactions between competing lexical cate-
gory representations in the case of multiple reverberation of one input unit,
principle (A6) must be extended. The additional assumption proposed next
excludes simultaneous preactivity at levels R1 or P1 of two category repre-
sentations connected to one input unit.

(A6’) Inhibition between two lexical category representations α and β con-
nected to an active input unit S (which ignites or reverberates at R1):

(i) Ignition of S can spread only to sets included in either α or β. The
most strongly activated representation wins.

(ii) If one or more sets included in α but not in β ignite at t, then no set
included in β and not included in α can exhibit I , P1, or R1 at t +1.

(iii) If all sets included in α but not in β are reverberating at R1 at t, then no
set included in β and not included in α can exhibit P1 or R1 at t +1.
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Criteria for deciding which of two alternative lexical category representa-
tions is more active (A6′i) are discussed in Chapter 10. Axioms (A6′ii) and
(A6′iii) would be thought to imply that activity levels P1 or R1 of sets in β

drop to P2 or R2, respectively. Note the modification introduced by (A6′iii).
In the case of multiple reverberation of input unit S, it is now possible to have
priming effects of reverberation R1 exerted on α, whereas priming effects
of a simultaneous reverberation Ri – at a lower level of Ri , i > 1 – can still
be effective and affect β.

Intuitively, (A6′i)–(A6′iii) can be attributed to a process of inhibition
between lexical category representations that may be “enabled” by an input
unit that represents an ambiguous symbol, as detailed earlier.

The simulations presented in Excursuses E4 and E5 show these principles
at work on sentences.

12.3 Multiple Center Embedding

Apart from multiple occurrence of individual lexical items, the organization
of complements and adjuncts and the representation of lexical category in-
formation, a fundamental language problem that can be solved by humans
but by no other species, arises in the parsing, analyzing, and understand-
ing of center-embedded sentences. Sentence (7) is an example of how a
neuronal grammar consisting of neuronal sets can process multiple center
embeddings.

(7) Betty who John who Peter helps loves gets up.

One may question whether this is, indeed, a correct English sentence.
One may hold that multiple embeddings of this kind are highly unusual,
play no role in conversations, and are considered bad style, even in written
language. Therefore, why should a grammar model focusing on the putative
brain mechanisms care about them?

The reason is historical. Chomsky (1957, 1963) rejected neuronal finite
state automata as devices for describing languages, a main reason being
that they fail at processing recursively enumerable languages with multiple
center embeddings. Context-free rewriting systems were necessary, he then
argued. This led to a paradigm shift, from neuronal (finite-state) to abstract
(pushdown) automata. Sentences such as (7) were, so to speak, the flagships
of the paradigm shift.

In this context, it is claimed that aneuronal grammar is capableofhandling
these then crucial strings. Readers who believe that strings such as (7) are
ungrammaticalmay tolerate someelaboration of this issue here for historical



246 Refining Neuronal Grammar

reasons. The intention is to show that this string type cannot be used to
ground arguments against neuronal models of syntax.

One further extension of the framework is necessary for allowing the
network to process center-embedded sentences. According to Braitenberg
(1996), some words included in the category of grammatical function words
may have a special neuronal representation in that their activation not only
implies excitation of a defined neuronal set, but also has an effect of the
activity state of the entire brain. An example would be words that prepare
the listener to process larger more complex sentence types. Processing of
more complex structures may require that activity levels are lowered more
than usual to avoid the undesirable consequence of having too much activity
and the concomitant interference of activity patterns (cf. Section 5.1).

Words that signal the occurrence of complex string types are, for example,
relative pronouns such as that, who, whom, or which that occur at the start
of the subordinate clause. These and other words that, so to speak, change
(or “translate”) a main sentence into a subordinate sentence have been
labeled translatives in approaches to dependency grammar (Heringer, 1996;
Tesnière, 1959). Because such words warn the listener that there is much
more information to come than in an ordinary sentence, it can be postulated
that they lead to downward regulation of brain activity. A simple way to
model this in a neuronal grammar automaton is to change the global activity
level whenever an element of the translative category occurs in the input.

Translatives such as that and who could therefore have a strong deactivat-
ing effect, similar to activation of threshold control by unprimed ignition. It
is assumed here that their occurrence in the input activates threshold con-
trol regardless of their previous state of activity, and even more strongly
than unprimed full ignitions do. The translative-induced activity change is
labeled I∧∧, implying double activationof threshold controlwith the ignition
in the context of translatives. Principle (A5) is adjusted to this assumption
as follows:

(A5’) Threshold regulation

(i) If a full ignition I ∧ of an input unit S happens at t, then for all rever-
berating S:
S (Ri ,t) ⇒ S (Ri+1,t +1)

(ii) If there is no ignition or reverberation R1 at t, then for all reverberating
sets S:
S (Ri ,t) ⇒ S (Ri+1,t +1)

(iii) External stimulation of an input unit S t representing a translative
causes double activation I∧∧ of threshold regulation, and for all sets
S reverberating at t :
S t (I∧∧,t ) ⇒ S (Ri+2,t +1)
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Excursus E5 discusses processes in a neuronal grammar circuit induced by
a sentence with multiple center embeddings in greater detail.

12.4 Summary, Open Questions, and Outlook

This chapter refines the approach to neuronal grammar proposed in Chap-
ters 10 and 11. The main points relate to a putative neurobiological distinc-
tion between obligatory complements of a word and its free adjuncts. The
adjunct relationship is proposed to be realizedbyunidirectional connections,
an assumption that is not in conflict with the neuroanatomical reciprocity
principle because it is based on unlearning of existing connections. Multi-
ple reverberation was proposed to be possible in neuronal sets. This radical
statement is not motivated by empirical data, but the perspectives it offers
appear to be a necessary component of any approach to language. There
may be alternative candidate neuronal mechanisms for this, but they must
first be found. Ignition caused by external input is proposed to lead to an
additional activity wave traveling in a word web or input unit. The machinery
that may support the processing of center-embedded sentences is discussed
in detail, although there is doubt whether this sentence type is of importance
in ordinary language use. The ideas and proposals put forward in this chapter
are further explored and elaborated in the context of two more simulations
detailed in Excursuses E4 and E5.

Considering this approach to grammar in the brain as a whole, general
criticisms can be made. Its obvious limitations can be taken as desiderata
and questions for future research. For example: The important question of
how a neuronal grammar can be learned is addressed only in passing. The
postulate is that there is a small set of neuronal principles underlying syn-
tactic knowledge. These principles, or at least relevant aspects of them, are
grounded in neurophysiology and neuroanatomy and are, as such, geneti-
cally determined, or at least under strong influence of the genetic code. In
Chapters 10–12, the postulate is that the neuroscientific principles on which
grammar rests include complex aspects of neuronal wiring and function as
follows: The specialization of neuron ensembles as sequence sets and word
webs, the distinct types of activity states of neuronal sets and their “push-
down dynamics,” the criterion for string acceptance and the other principles
formulated by principles (A1) and (A2′)–(A6′). Everything beyond these
neuronal mechanisms – namely, the connections between word webs and
sequence sets and the connection between different sequence sets – are as-
sumed to be the result of associative learning. At this point, it appears one
of the most important desiderata to spell out these learning mechanisms in
greater detail. Closely connected to this issue is the question of how syntactic
category representations could develop and how their mutual inhibition is
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established. Some preprogrammed information may be relevant here as
well. Another open question addresses the mechanisms on which the cri-
teria for string acceptance are based. What kind of neuronal device could
check whether the three criteria postulated are all met? These points are
relevant for developing further the present proposal.

There is a multitude of important linguistic issues as well that are not
addressed here. Among them are questions about the connection between
the computation of the structure of a sentence and that of its semantics and
about mechanisms underlying the speech acts performed by using sentences.
There are open questions about dynamic relationships between word forms
and meaning, such as between pronouns and their referents, and about the
relationship between the meanings of consecutive sentences. All these is-
sues are not addressed in this book. However, the general perspective on
syntactic–semantic interaction the present approach may offer should be
sketched briefly.

The proposal in Chapter 4 and elsewhere was that words are repre-
sented as distributed neuron webs. The information concerning the form
and meaning of a word are processed within one functional system. Be-
cause form and meaning representations are tightly linked, the serial-order
machinery – what is called neuronal grammar – influences both form and
meaning representations. The input provided by sequence sets may primar-
ily reach the word form representations of word webs, but because the form
and meaning representation of a word are closely connected, the serial-
order machinery ultimately exerts an influence on the semantic parts of the
word webs as well. The idea is that it is the very connection to the net-
work of sequence detectors that modifies activity in word webs in a way that
also has an effect on the semantic parts of the cell assemblies. This could
be a neuronal route to the interaction of form-related and semantic infor-
mation. Again, this must be developed and translated into algorithms and
networks.

From a formal linguistic point of view, networks consisting of neuronal
sets can accept many of the strings defined by one-sided linear grammars.
After all, they are a further development of finite-state networks. It has also
been argued that some sets of strings that are outside the reach of finite
state grammars (the set of center-embedded strings) and even outside the
reach of context-free rewriting systems (certain sentences with subject–verb
agreement and particle verbs) can be accepted and processed successfully by
neuronal grammar. However, a more precise definition of the sets of strings
that can be processed by neuronal grammar may be desirable.

One important issue neglected here is the generation of a sentence: all
simulations focus on network dynamics induced in a network by a string in
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the input. To work out the productive side of neuronal grammar constitutes
another entry in the list of to-be-solved tasks.

As mentioned, many syntactic phenomena classic approaches to syntax
can handle are not discussed here in the context of neuronal grammar mech-
anisms. It may be useful, however, to list syntactic phenomena addressed
briefly in this chapter that have been addressed in detail on the basis of cir-
cuits. This does not imply that the solutions offered are considered optimal
or satisfactory.

� Lexical category and subcategory
� Valence
� Dependency between adjacent constituents
� Long-distance dependency
� Distributed word and discontinuous constituent
� Subject–verb agreement
� Adjunct relation
� Multiple word use in a sentence
� Resolution of lexical ambiguity
� Subordination
� Multiple center embedding.



EXCURSUS FOUR

Multiple Reverberation for Resolving
Lexical Ambiguity

This excursus illustrates circuits motivated by the proposals discussed in
Chapter 12. The abbreviations used here and the representation of activ-
ity dynamics in table form are the same as those used in Excursuses E2
and E3.

With the extensions of the grammar circuits proposed in Chapter 12, it
now becomes possible to treat sentences in which the same word occurs
twice and as member of different lexical categories, such as sentence (1).

(1) Betty switches the switch on.

In Chapter 10, Figures 10.3 and 10.4 are used to sketch a putative neuronal
correlate of the syntactic category representations that may be connected
to the representation of the word form switch. Two of the lexical categories,
transitive particle verb, here abbreviated as V, and accusative noun, here
abbreviated as N, are relevant for the processing of the syntactically ambigu-
ous word used in sentence (1). The homophonous words and their lexical
categories are characterized by the assignment formulas (2) and (3) and the
valence formulas (4) and (5).

(2) switch ↔ V (transitive particle verb)
(3) switch ↔ N (accusative noun)
(4) V (p /∗/ f1, f2, f3)
(5) N (p1, p2 /∗/)

Figure E4.1 shows the entire network used for sentence processing. The
representation of the ambiguous word form is doubled for ease of illus-
tration. This figure is almost identical to Figure E3.1, which dealt with a
similar sentence. Table E4.1 presents activity dynamics of the sets involved
in processing the ambiguous word and its two lexical categories. The overall
network dynamics are very similar to those in the derivation illustrated in

250
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Figure E4.1. Fragment of neuronal grammar that processes and accepts the sentence
“Betty switches the switch on.” (An equivalent formalism is provided in the text.) Aspects
of activation and deactivation dynamics of the network are shown in Table E4.1.

Table E3.1, with the exception that in this case, one item is processed twice.
Because the processes are so similar, the specific features of the double pro-
cessing of the lexically ambiguous word are focused on here.

In contrast to the earlier derivation, Table E4.1 displays only activity
states of the input unit representing the repeated element and the relevant
sequence sets directly connected to it. An additional difference in the no-
tation must be mentioned: The multiple activity states in one neuronal set
are written on top of each other, with the higher activity state always listed
above the lower state. Each individual neuronal set now becomes similar to
a local pushdown stack that can share activity states with other such stacks.
This derivation exploits this for only one set, theword form representation of
switch. In Excursus E5, the pushdown machinery is used to a greater extent.

There are two sets of sequence sets representing the accusative noun, N,
and the transitive particle verb, V. These category representations are as-
sumed to exert inhibition on each other, as specified by (A6′). The effect
of inhibition is the channeling of ignitions to only one of the alternative
category representation, as specified by (A6′i). This type of channeling of
ignitions occurs at time steps 15, 18, 23, and 26 of the simulation. Suppression
of reverberation and priming levels caused by ignitions in the representa-
tions of competing lexical categories is another important mechanism that
becomes effective at time steps 17 and 25.
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Table E4.1. Time course of activation and deactivation of word webs and
sequence sets of Figure E4.1 during processing of the string “Betty
switches the switch on,” which is congruent with the network structure.
Lines represent time steps. Time steps and input to the network are listed
on the left. In each column, activity states of three past-oriented
sequence sets (p; to the left of slashes), of a word web (for the word form
switch), and of three future-oriented sequence sets (f; to the right of
slashes) are shown. The two leftmost sequence sets (labeled Det/ and Vt/)
make up the lexical category representation of an accusative noun, and
the other four sequence sets (Prop/, /Vs, /N4, /Vpart) make up that of a
transitive particle verb. Time steps between inputs are chosen so that
activity spreads until stable states are reached. Letters indicate ignition
(I ), reverberation (R ), priming (P ), and rest (0). I∧ indicates full unprimed
ignition. P1 and R1 denote the highest levels of priming and reverberation.
Numbers >1 following P or R imply lower activity ranks, with higher
numbers indicating lower activity levels.

N(p1) N(p2) V(p) V(f1) V(f2) V(f3)
Det/ Vt/ Prop/ /switch/ /Vs /N /Vpart

0 0/ 0/ 0/ /0/ /0 /0 /0
1 Betty input unit of Pn “Betty” ignites (full I∧)
2 0/ 0/ P1/ /0/ /0 /0 /0
3 0/ 0/ P1/ /P1/ /0 /0 /0
4 switch 0/ 0/ P1/ /I/ /0 /0 /0
5 0/ 0/ I/ /R1/ /P1 /P1 /P1
6 0/ P1/ R1/ /R1/ /P1 /P1 /P1
7 -es input unit of Vs “-es” ignites (primed I)
8 0/ P1/ R1/ /R1/ /I /P1 /P1
9 0/ P1/ R1/ /I/ /R1 /P1 /P1
10 0/ P1/ I/ /R1/ /R1 /P1 /P1
11 the input unit of “the” ignites (full I∧)
12 P1/ P2/ R2/ /R2/ /R2 /P2 /P2

13 P1/ P2/ R2/ /P1/ /R2 /P2 /P2
/R2/

14 switch P1/ P2/ R2/ /I/ /R2 /P2 /P2
/R2/

15 I/ I/ R2/ /R1/ /R2 /P2 /P2
/R2/

16 R1/ R1/ R2/ /R1/ /R2 /I /P2
/R2/

17 R2/ R2/ R2/ /I/ /R2 /R1 /P2
/R2/

18 R2/ R2/ I/ /R1/ /I /R1 /P1
/R2/ /P2 /P2
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N(p1) N(p2) V(p) V(f1) V(f2) V(f3)
Det/ Vt/ Prop/ /switch/ /Vs /N /Vpart

19 R2/ P1/ R1/ /R1/ /R1 /R1 /P1
R2/ /R2/ /P2 /P2 /P2

20 on input unit of “on” ignites (primed I)

21 R2/ R2/ R1/ /R1/ /R1 /R1 /I
/R2/ /P2 /P2 /P2

22 R2/ R2/ R1/ /I/ /R1 /R1 /R1
/R2/ /P2 /P2 /P2

23 R2/ R2/ I/ /R1/ /I /I /R1
/R2/ /P2 /P2

24 R2/ I/ R1/ /R1/ /R1 /R1 /R1
/R2/ /P2 /P2 /P2

25 R1/ R1/ R2/ /I/ /R2 /R2 /R2
P2/ /R2/

26 I/ R1/ R2/ /R1/ /R2 /R2 /R2
P2/ /R2/

27 R1/ R1/ R2/ /R1/ /R2 /R2 /R2
P2/ /R2/

28 DEACTIVATE 0/ 0/ 0/ /0/ /0 /0 /0

Two of the sequence sets directly connected with the input unit of the
ambiguous word form switch are also directly connected to each other. The
backward-looking sequence detector of the N designed to detect a preceding
V are directly connected to the forward-looking sequence detector of V
sensitive to a follower N on the right. This leads to a circle in the network,
as sketched by (6).

(6) switch →→ V (f2) →→ N (p2) →→ switch

The circle can give rise to reverberation of activity between neuronal sets.
It is this loop that explains why, after activating the verb representation
together with the word form switch, the network later tends to classify it
as a noun. At time step 6, N (p2) is being primed through this loop, and at
time steps 14–15 and 23–24, ignitions spread through it, notably in different
directions.

The derivation from time steps 1–5 is standard. The first occurrence of
the word form is classified as a verb, because it has been preceded by a
proper name (Prop). The verb suffix (Vs) provides further support for this
classification (steps 8–10). The determiner (Det) in the input causes full
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ignition and therefore reduction of all activity levels. At this point, sequence
sets being part of the lexical category representation of N have accumulated
more activity [they exhibit priming levels of P1 and P2 (average: 1.5), respec-
tively, whereas all activity levels of the competing category are at P2 or R2

(average: 2)].
Therefore, the next ignition of the input unit representing the word form

switch ignites only the sets included in the N representation [according to
(A6′i) – see time step 14]. Notably, classification of the second occurrence
of the repeated word as an N provides further support for the correctness
of the classification of its first occurrence as a verb. This is expressed by the
ignition of V (f2) at step 16, which leads to ignitions of almost all sequence
sets included in the verb category representation. This ignition also reduces
the activity levels of the competing and reverberating lexical category rep-
resentation [as stated by (A6′iii)].

After presentation of the final word in the sentence, a wave of ignitions
spreads through the network causing synchronization of the already visible
and satisfied sets. It is noteworthy that during the spreading process, the hier-
archy of reverberation of the two competing lexical category representations
is again being changed (time steps 24–25).

This example demonstrates that a network composed of neuronal sets
can process sentences in which a word form occurs twice but as a member
of different lexical categories. The processing not only includes “accepting”
the string, but a spatiotemporal pattern of activity also arises that includes
information about the hierarchical organization of the sentence and the
assignment of morpheme tokens to lexical categories. Most notable is the
dynamic linking of the word-form representation with its alternative lexical
category representations in the course of the processing of a sentence that
includes an ambiguous word.

One may still ask many further questions, however; for example, about
how three or more occurrences of the same word form would be processed.
Nevertheless, the proposed framework poses no a priori limit to the number
of occurrences of a word, and there appears to be no principled reason
why a network composed of neuronal sets should be unable to deal with
a construction in which a given word form occurs more than twice. The
introduced examples may suffice for illustrating perspectives of the present
approach.



EXCURSUS FIVE

Multiple Reverberations and Multiple
Center Embeddings

This excursus presents and discusses a very complex sentence, which is actu-
ally a word chain whose status as a grammatical sentence may be questioned.
The interested reader may nevertheless find it relevant to glance at the pro-
cesses, because of the prominent role sentences of this type played in the
history of language science. The present circuit proves that a string with cen-
ter embeddings can be processed by neuronal grammar. There is nothing
in the neuronal algorithm that would restrict the number of embeddings
possible. Clearly, however, such restrictions apply for biological systems.

Consider sentence (1).

(1) Betty who John who Peter helps loves gets up.

Figure E5.1 presents the network representations of the elements of this sen-
tence, word webs and sequence sets, and their mutual connections, whereas
Table E5.1 shows the derivation. It becomes obvious from the table that
this derivation draws heavily on multiple activation of sequence sets. As in
Excursus E4, the table lists multiple activity states of each neuronal set at
each time step, with the highest activity state listed at the top. Note that,
according to the present proposal, each neuronal set can be considered a
store in which multiple entries can be placed on each other. A similar pro-
posal was made by Schnelle (1996b). The little “stacks” of symbols represent
the entries in the pushdown memory characterizing each set. The maximum
“height” of a stack is three levels.

The algorithmic equivalent of the network in Figure E5.1 follows. The
lexical items are assigned to the following categories:

(2) Who ↔ Tr (translative)

255
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Figure E5.1. Fragment of neuronal grammar that processes and accepts the sentence
“Betty who John who Peter helps loves gets up.” (An equivalent formalism is provided
in the text.) Activation and deactivation dynamics of the network are shown in Table E5.1.

(3) Betty, John, Peter ↔ Prop (nominative proper name)
(4) helps, loves ↔ Vsub (subordinate transitive verb)
(5) gets ↔ Vip (intransitive particle verb)
(6) up ↔ Vpart (verb particle)

With these assignment formulas, a simplification is made compared with
the grammars in earlier chapters. Verb suffixes are again treated as parts
of the verbs. This is done to shorten the derivation. Previous examples had
shown how noun–verb agreement is modeled. The same applies to a more
elaborate version of the present grammar.

The lexical categories are characterized by the following valence
properties:

(7) Tr (/∗/ f)
(8) Prop (/∗/ f)
(9) Vsub (p1, p2 /∗/)
(10) Vip (p /∗/ f)
(11) Vpart (p /∗/)
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This proposal implies that verbs inmain clauses and in subordinate sentences
are attributed to distinct lexical categories. The main clause verb would
search for its complements in the past and future, so to speak, whereas a
verb in a subordinate clause would restrict search to the past.

Connections between sequence sets are expressed by the following se-
quence formulas:

(12) Tr (f) →→ Vsub (p2)
(13) Prop (f) →→ Vsub (p1)
(14) Prop (f) →→ Vip (p)
(15) Vip (f) →→ Vpart (p)

Formulas (13) and (14) denote the same connection; sets Vsub (p1) and Vip
(p) are considered identical. Therefore, these formulas could, in principle,
be replaced by (16), which then refers to a connection shared between the
two alternative representations of the two distinct lexical category represen-
tations of verbs appearing in main and subordinate sentences, respectively.
Also, the sequence detector V(p) is shared by all verb representations.

(16) Prop (f) →→ V (p)

Note again that in the present grammar fragment, a distinction is made
between ordinary verbs in main clauses and verbs in subordinate sentences
(Vsub),whichareassumed to take translatives as their complements.Transla-
tives take theplaceof the accusativenounas the verb complement.However,
in contrast to ordinary accusative nouns that must appear to the right of the
verb, translatives are placed to the left of transitive verbs. This motivates the
postulate of a distinct set of sequence sets for the new lexical category Vsub.

To model this, some grammars introduce transformations, movements, or
other sophisticated and costly procedures. In the proposed neuronal gram-
mars, the solution is different. Each transitive verb is supplied with two
distinct sets of sequence features. The “standard” form (10) is characterized
by nominative and accusative complements occurring to the left and right
of the verb, respectively, and the probably less-frequent subordinate form
(9), in which both complements occur to the left and one complement is a
translative.

Postulating a small number of additional sets of sequence features for
lexical categories appears less costly than introducing new operations, such
as transformations or movements (see Chapter 10, Section 10.6.4). After
all, the number of sentence forms consisting of the same lexical categories
but differing in their order is small in English. Introduction of distinct sets
of sequence features for verbs occurring in sentence forms such as active,
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passive, question, and relative clause therefore do not lead to too heavy a
burden on the grammar machinery. It is also important to recall that intro-
ducing new sets of sequence sets is not a problem in the present framework.
The development and definition of a system of lexical categories along these
lines is left for future research.

The possible brain basis of free adjuncts of a sentence constituent is ad-
dressed in Section 12.1. In the present example sentence, the translatives
are adjuncts that can be freely added to any noun. Thus, their respective
neuronal sets should not exhibit a strong reciprocal connection with the
neuronal set representing the word whose adjunct they can be considered.
The sets realizing noun and transitive adjunct would connect via weak unidi-
rectional links. These allow for contributing to the reactivation of the mother
noun after a subordinated sentence has been processed. The present simu-
lation does not cover adjunct connections because their introduction ne-
cessitates further elaboration of the algorithm and table. Because in the
present formulation, reactivation of the mother is possible on the basis
of threshold regulation [axiom (AS′)], such elaboration appears avoidable
here.

Example sentence (1) exhibits a feature discussed in Section 12.2, themul-
tiple occurrence of a word form. In this case, the translative is used twice in
the course of the analysis of a sentence. In the example simulation shown in
Table E5.1, its double use is reflected in the double activation of its neuronal
set starting at time step 13 and ending at time step 25. Because in this sim-
ulation the pushdown mechanism separates the processing of the different
levels of embedding of the sentence, one of the transitive occurrences – or
tokens is processed together with the first embedded sentence and the other
occurrence with the innermost sentence embedded in both others. This is
another illustration of how multiple occurrences of the same item can be
processed in a neuronal grammar. Note the dynamical grouping of active
representations into sets of sets that interact.

Further crucial steps in the derivation displayed in Table E5.1, the net-
work’s processing of a sentence with multiple center embeddings, are as
follows: Ignitions of input units of translatives occur at time steps 5 and
13. As a consequence, there is double activation of threshold control, and
therefore all “visible” activity states of other sets in the network become
“invisible” – that is, their activity levels are reduced by two levels. At time
step 5, reduction is to levels R3 and P3, and at time step 13, even levels be-
comeas lowas R6 and P6. In otherwords, the information about the elements
that were most active in the device’s memory is now being “pushed down”
to a lower level of activity, where the activity states are no longer “visible.”
Once again, this is analogous to the operation of a pushdown mechanism.
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According to the modified proposal in Chapter 12, each neuronal set can be
considered to include independent pushdown memories.

Because ignitions can be transmitted only through the network to visible
sets, or, more precisely, to visible activity levels of sets, ignitions can only
affect the sets reverberating and primed at the highest levels of R1, P1,
R2, and P2 (see Chapter 10 for discussion). After all the input units of
one of the three embedded sentences have been activated, the respective
neuronal elements whose states are visible are synchronized and satisfied.
This becomes effective separately for the three sentences embedded into
each other, at time steps 25, 32, and 46, respectively. In the table, the relevant
activity levels at these time steps are highlighted in bold print. After separate
synchronization of each of the three sentences, the respective synchronized
parts of the complex sentence, that is, the embedded clauses, are deactivated
sequentially (time steps 26, 33, and 47). The three sentences are therefore
processed separately, as if they were not embedded into each other, but
appeared in an ordinary manner one after the other instead. Note, however,
that this analysis leaves open the question of coreference relations between
nouns and translatives.

After deactivation of the representations of embedded sentences, sev-
eral sets reverberate or are primed at low levels of R or P. At this point,
the threshold machinery (A5′) must increase activity levels so that the most
active sets become visible. As already mentioned, however, strictly speak-
ing, this adjustment of levels is redundant because according to the present
assumptions the highest activity levels are visible, regardless of what their
absolute values actually are (cf. Chapter 10). If the most strongly activated
sets are deactivated, the sets with the next lower levels of activity automa-
tically become visible. Thus, the changes at time steps 27 and 34 are simply
the result of relabeling of activity levels rather than the result of real activity
changes. Nevertheless, as emphasized in Section 5.1, from a neurobiological
perspective it appears necessary to postulate a mechanism for the regula-
tion of activity levels of neuronal elements by both decreasing and increasing
activity. Also, this appears advantageous for yielding activity values within
the range of optimal functioning. For these reasons, the assumption of a
threshold regulation device that can provide both global activation and de-
activation is maintained, although one aspect of it may be considered redun-
dant in the present derivations. In real neuronal structures, the regulation
device may have the effect that the visible activity levels are always at about
the same level.

Several problems cannot be solved by the present network and exten-
sions are necessary. As earlier examples of grammar circuits, the present
grammar fragment again produces some false-positive errors. This may be
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improved by more fine-grained adjustments. The transitives would, accord-
ing to the present concept, provide the main mechanism for separating the
processing of the embedded constructions. However, there is the problem of
disambiguation of translatives, because, for example, the word form who can
be used not only as translative connecting a superordinate to a subordinate
sentence but also as an interrogative pronoun in who questions. This may
not appear to be a difficult problem, and the neuronal connections modeling
the adjunct relation and the priming they support may offer perspectives on
solving it. Yet an even worse problem appears to be that overt translatives
are not obligatory in English, as in string (17).

(17) The woman John loves gets up.

For these cases, a mechanism must be specified that does not rely on overt
translatives. One possibility is to postulate that in this case, sequence de-
tectors strongly activate threshold regulation instead of individual words. A
further open question concerns the interaction of the proposed serial-order
machinery with the semantic representations of words. These and numerous
other aspects must be addressed in the future (Crespi-Reghizzi et al., 2001).

After considering this example, the following general concluding remark
appears appropriate. Neuronal grammar can accept strings, including center
embeddings, by grouping embeddedphrases into synchronized assemblies of
neuronal sets. This provides a basic structural analysis of complex sentences.
It is important that there is, in the present grammar, no upper limit for
the number of embeddings or the number of elements assigned to any given
lexical categorywhose representation is being activatedmultiply, in principle
without upper limit for the number of reverberations. Thus, there is the
possibility of producing longer and longer strings of lower and lower levels
of embedding, and new lexical elements can easily be added to the grammar
fragment. There is no theoretical reason for excluding such excessive use of
the pushdown machinery. The only reasons are empirical in nature.

From this excursus, it appears relevant to keep in mind that neuronal
grammar can accept at least certain subsets of strings defined by context-
free rewriting systems. It appears that the flagship sentence structure from
the linguistic wars against neuron-based finite state grammars can travel
calmly in the light of neuroscientific knowledge and theorizing.



CHAPTER THIRTEEN

Neurophysiology of Syntax

Models are only as good as the tools available for testing them. Is there
any perspective on testing the proposals about syntactic brain processes
discussed to this point?

13.1 Making Predictions

One obvious prediction of the neuronal grammar framework is that the
cortical processes following a sentence in the input are of different types.
Such process types include the following:

� Ignitions of word webs
� Ignitions of sequence sets
� Downward or upward regulation of activity by threshold control
� Reverberation and priming of neuronal sets

It may be possible to investigate these putative processes using neurophys-
iological recording techniques. Because the relevant activation and deact-
ivation processes likely occur within tenths or hundredths of a second, it is
advisable to use fast neuroimaging techniques in the investigation of serial-
order information processing.

At first glance, one straightforward way of transforming any of the men-
tioned simulations into predictions about neurophysiological processes ap-
pears to be by calculating sum activity values at any time step of a simulation,
and by thereby obtaining a series of activity values.

However, this strategy is not so straightforward as it appears at first glance
because several parametersmust be chosenbeforehand.The relativeweight-
ing of the activity states is one set of parameters that appears to distinguish
between pronounced activity changes – those induced by ignitions and reg-
ulation processes – and smaller ones – as, for example, those caused by the
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spreading of priming or reverberation. As an additional set of parameters,
the time constants of individual processes must be specified. The time con-
stants of the postulated processes, such as an ignition and the spreading of
priming, must be chosen. Furthermore, in Excursuses E4 and E5, full ignit-
ions and the subsequent regulation of cortical activity contracted into one
time step. This is reasonable to avoid lengthy simulations, but because the
regulation process is the consequence of the strong activation process, it is
necessary to separate the two processes within a model designed to make
exact predictions on the time course of cortical activation and deactivation.
Predictions from the simulations cannot be 1 : 1 conversions.

13.2 Neuronal Grammar and Syntax-Related Brain Potentials

A principled prediction made by the model is that after a word is present in
the input, the word web ignites before its connected sequence sets. However,
this prediction is not easy to test. Because preactivated sequence detectors
can give rise to the priming of word webs, the same word appearing in
different contexts not only activates different sets of sequence sets, but the
ignition of its own word web may also differ as a function of context. It is
of utmost importance here to choose appropriate baseline conditions for
comparison.

A further clear prediction is that syntactically well-formed and ungram-
maticalword strings elicit differential brain responses.Theprocesses induced
in circuits of neuronal grammar by syntactically well-formed (congruent)
sentences can be compared with the effect of syntactic violations in (incon-
gruent) strings. As a first step, this can be done purely on the basis of the
model simulations. Comparison of these processes (see Excursus E2) shows
that the physiological differences between grammatical and ungrammatical
strings should be three-fold.A situation is considered inwhich one particular
word or morpheme fits in syntactic context 1, but yields an ungrammatical
string in context 2.

The first postulate would be that different types of ignitions should occur:
primed ignition in the case of the congruent sentence, but full unprimed
ignition after the item has been placed incorrectly. The activation of the
unprimed word web should give rise to a more substantial activity increase
compared to the primed ignition in the grammatical context. Therefore,
there should be evidence of stronger activity increase in the cortex when a
word is placed in a context in which it is syntactically incorrect compared to
a situation in which it is positioned in a grammatically correct context. This
difference should be apparent early, shortly after the information about the
new word has reached the brain.
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Neurophysiological studies using electroencephalography (EEG) show
that certain syntactically deviant word strings elicit an early negative event-
related potential (Neville, Nicol, Barss, Forster, & Garrett, 1991). This brain
response has frequently been found to be maximal over the left hemisphere
dominant for language. It can be elicited by the incorrectly placed word of
in sentence (1), but other syntactically incorrect strings may also produce it.

(1) The scientist criticized Max’s of proof the theorem.

The brain response is sometimes called the early left-anterior negativity. In
this framework, it would be interpreted as a physiological indicator of the full
ignition of the word web of a word placed incorrectly. The early negativity is
less pronounced or absent if words are presented in a grammatical sentence.
The effect could be reproduced repeatedly for different types of syntactic
violations, and with some variation of the cortical topography and latency of
the brain response ( Friederici, 1997; Friederici & Mecklinger, 1996; Gunter,
Friederici, & Schriefers, 2000; Hahne & Friederici, 1999). An early left-
anterior negativity was also reported with incorrectly placed inflectional
morphemes as well (Weyerts et al., 1997).

The second postulate differential brain responses elicited by grammatical
and ungrammatical strings is as follows: The threshold control mechanism
becomes active only after full ignition. Thus, activity decrease would be pre-
dicted after a strong initial activation processwhen a syntactically incorrectly
placed word or morpheme occurs. Such pronounced activity decrease should
be absent when a grammatical word string is being processed.

There is a second neurophysiological brain response that distinguishes
syntactically well-formed strings from deviant strings. It is a positive compo-
nent of the event-related potential and is maximal over the back of the head.
Its latency is in the range of 600 ms after onset of the critical word, and is
therefore called the P600 component or the syntactic positive shift (Hagoort,
Brown, & Groothusen, 1993; Osterhout & Holcomb, 1992). When an incor-
rectly placed word is being processed, the late positive shift can appear after
an earlier negative shift (Friederici & Mecklinger, 1996; Hahne & Friederici,
1999; Osterhout, 1997).

The suggestion derived from the neuronal grammar model is that the
more positive electrical brain response to syntactic anomalies reflects the
action of the mechanism that reduces the level of cortical activity after a
strong activation process (full ignition of a word) has taken place.

The third postulate neuronal grammar allows for concerns the activa-
tion of sequence detectors and the spreading wave of activity following a
word that matches its syntactic context. This should again lead to stronger
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Figure 13.1. Gender violations elicited both an early left-anterior negativity and a late posi-
tive shift of the brain potential compared to sentences inwhich no such violationwas present.
Example stimuli are the German sentences “Sie bereiste das Land” and “Sie bereiste den
Land,” in which the determiner in italics is syntactically anomalous. (Example in English: “She
travels the land,” in which the article is either in the correct neuter case or in an incorrect
case, masculine.) The dotted lines show responses to violations, the bold lines responses
to the grammatical sentences. Reprinted with permission from Gunter, T. C., Friederici,
A. D., & Schriefers, H. (2000). Syntactic gender and semantic expectancy: ERPs reveal early
autonomy and late interaction. Journal of Cognitive Neuroscience, 12(4), 556–68.

activation processes when a grammatical string is being processed in com-
parison to the processing of a string including a syntactic violation. At this
point, there does not appear to be evidence for this claim. It should, in princ-
iple, be possible to find evidence for this, because if the model is correct, the
backward spreading of activity would be a longer lasting process – in partic-
ular, if the words are placed in the context of an elaborate sentence.

Concern may arise regarding the latencies at which these syntactically
related brain responses have been found. Responses that occur more than
one-half second after the information about a word is present in the input
may appear unlikely to reflect the earliest aspects of language processes.
After 500 ms, it is, in many cases, already possible to respond to a stimulus
word, and a brain response occurring at such long latencies is not likely to
reflect the processes at the heart of the language machinery (cf. Lehmann
& Skrandies, 1984; Pulvermüller, 1999b; Skrandies, 1998).

There are, however, at least two responses to this concern. First, the max-
imal response can sometimes be seen late, but this does not exclude the
possibility that earlier differences are also present. This becomes apparent
from Figure 13.1, in which the late positivity may appear to onset substan-
tially before its peak. Second, it is possible that the use of new recording
techniques makes it possible to record much earlier onsets of the relevant
differences. Many early brain responses are smaller than the late responses
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appearing approximately one-half second after the stimulus. Because many
early responses are small, they are more likely to be masked by noise. For
recording earlier dynamics related to the processing of words and serial-
order information, it may be crucial to introduce techniques that allow for
improving the signal-to-noise ratio. This may make earlier brain dynamics
of syntactic processing more visible.

This brief chapter is intended to show that what could appear as a purely
theoretical proposal of a neuronal grammar can actually be connected to
neurophysiological data. The early syntactic negativity may reflect the un-
primed full ignition of the neuronal set of a word placed in a syntactically
deviant environment. The late positive shift may reflect activation of the
threshold regulation device caused by the substantial activity increase pro-
duced by the unprimed ignition. Further important neurophysiological phe-
nomena realted to grammatical processing (e.g., Kluender & Kutas, 1993;
Müller, King, & Kutas, 1997) are still awaiting models at the neuronal level
that may provide tentative neuroscientific explanations for them. Clearly,
future research and physiological research must show which aspects of the
model presented in Chapters 10–12 can be maintained and which must be
replaced. Predictions appear obvious, and tests are available.



CHAPTER FOURTEEN

Linguistics and the Brain

Linguistics is the study of language. Language is a system of brain circuits.
To qualify the latter statement, one may cite the father of modern linguistics,
Ferdinand de Saussure, who claimed that language (i.e., the language system,
or langue) is a “concrete natural object seated in the brain” (de Saussure,
1916). If linguistics is the study of language and language is in one sense a
system of brain circuits, one would expect linguists to be open to the study of
brain circuits. However, the dominating view in linguistics appears to be that
language theories must be formulated in an abstract manner, not in terms
of neuron circuits. Section 14.1 asks why linguists favor abstract rather than
neuron-based formulations of language mechanisms. Section 14.2 discusses
a few thoughts about how an abstract theory of language may profit from a
brain basis.

14.1 Why Are Linguistic Theories Abstract?

As mentioned, the dominating view in linguistics is that language theories
must be formulated in an abstract way. This could be a trivial claim because
it is clear that every scientific theory must include abstract concepts. How-
ever, this is not the point. The point is that abstract in this context excludes
explicit reference to the organic basis of the processes described in an ab-
stract fashion. Linguistic theory is abstract in the sense that it does not refer
to neurons. Why is this so?

For a scientist, this may be difficult to understand. An astronomer work-
ing on star formation would probably be open to discussing molecule clouds
that can be inferred from the recordings performed (e.g., with a radio tele-
scope). The “linguistic mentality,” so to speak, transformed to astronomy
would result in a scholar who studies stars but refuses to speak about their
component substances and driving forces. The scholar may claim that stars
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should be discussed only in terms of abstract concepts, not in terms of gases
and their temperature.

The position that linguistic theories must be abstract appears to be in need
of justification, which could be either a principled statement or an excuse.

One may argue that it is unreasonable to specify neuron circuits of lan-
guage – as there was no hope for a nineteenth-century astronomer to find out
about the physical processes occurring in the center of the sun that cause
emission of light. One may posit that there is simply not enough knowl-
edge about brain processes – or, 100 years ago, about the interior of the
sun. However, given the immense knowledge about how the brain processes
language accumulated in the last 20 years or so, it appears more likely that
relevant knowledge is already available for clarifying mechanisms of lan-
guage in brain terms. At least, the tools appear to be available for obtaining
the crucial knowledge about the underlying physiological processes, given
there are theoretically crucial predictions.

What is necessary, then, are ideas about how to connect the level of lan-
guage description to that of the description of neurons. Piling upmore neuro-
physiological and imaging data may not help much in this enterprise. Empir-
ical facts do not by themselves form a theory about the generation of sunlight
or language. Theoretical work is required in the first place. The theoretical
efforts can lead to the generation of predictions that can be addressed in
crucial experiments. Lack of empirical data is never a very good excuse for
postponing the necessary theoretical labor.

A reasonable excuse for not addressing language in brain terms may take
the following possibilities into consideration. Linguists may have difficulty
understanding the language of neuroscientists, and, conversely, neurosci-
entists may have difficulty understanding linguistic terminology. After all,
the distance between linguistics and neuroscience is not smaller than that
between physics and chemistry. Given that such mutual comprehension dif-
ficulty is relevant, the important problem may be a problem of translation
(Schnelle, 1996a, 1996c). Therefore, it may appear relevant to provide trans-
lations between the language of linguistic algorithms and that of nerve cells,
their connections, and their activity states. Again, a good deal of theoretical
work is required.

In one publication, Chomsky (2000) offers another reason for not talking
about neuronal mechanisms of language. “It may well be that the relevant
elements and principles of brain structure have yet to be discovered” (p. 25).
However, brain-theoretical concepts referred to by expressions such as cell
assembly, synfire chain, and memory cell are available, and some of the po-
tentially relevant principles of brain structure and function are well under-
stood and have been available for theorizing about language for some time,
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although language researchers have only very recently been taking advan-
tage of them. However, Chomsky is partly correct. Developing new concepts
may be necessary when theorizing about brain mechanisms of language. The
main effort undertaken in this book is to propose and sharpen concepts –
for example, those labeled neuronal set and multiple reverberation.

In summary, it seems there is nogood reasonwhy linguistic theories should
necessarily be abstract, and why they should not be formulated in concrete
terms – for example, in terms of neurons. Rather, this appears to be a crucial
linguistic task of the future.

14.2 How May Linguistic Theory Profit from a Brain Basis?

A question frequently asked by linguists is what the study of the brain could
buy them. Clearly, if one is interested in language, one need not be interested
in the brain as well. There is absolutely no problem with this position. A
problem may arise, however, if one wishes to understand language as a
biological system, or as a “brain organ,” and still refuses to become concrete
about brain processes and representations (see Chomsky, 1980). In this case,
it might be advantageous to attempt to connect one’s terminology to the
putative mechanisms.

It is possible that translation issues can be solved and a language can be
developed that refers to linguistic structures and brain structures, linguistic
processes and brain processes, and to underlying linguistic principles, as well
as to neuroscientific principles of brain structure and function. Given such
a language is available, it would be possible to explore the space of possi-
bilities that is restricted on the one side by current neuroscientific knowl-
edge and on the other side by linguistic phenomena. Using neuroscientific
knowledge and data for guiding linguistic theorizing appears to be fruitful.
Testing syntax theory in neurophysiological experiments may be fruitful as
well. Thus, neuroscientific data could then constrain linguistic theory. The
reverse may also be true. The study of language may, given such a language
connecting noun phrases to neurons (Marshall, 1980) is available, allow for
making predictions on brain circuits that have not been detected by other
means. Availability of a brain–language interface of this type, a neuronal
language theory, may be a necessary condition for deciding between alter-
native approaches to grammar as it could be a tool for exploring neuron
circuits specific to the human brain. A language theory at the neuronal level
is required in cognitive neuroscience.

How would the situation, when performing brain imaging studies of lan-
guage, improve if a brain–language interface were available? It may appear
that abstract linguistic theories have some implications for neuroscientific
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structures and processes. One may therefore claim that interesting questions
about brain–language relationships can already be investigated in neurosci-
entific experiments without additional theoretical work in the first place. The
argument here is that this is not true. Linguistic theories do not in fact have
strong implications regarding neuroscientific facts, and the experimenter
necessarily ends up in difficulties if he or she wishes to entertain them as
research guidelines.

A rather fresh view on the relation of neuroscience and linguistics has
been put forward by Chomsky (1980) in his book, Rules and Representa-
tions. Chomsky considered how the presence of an invisible representation
of a certain kind during the processing of a sentence could be tested in an
electrophysiological experiment, taking as an example the “wh- sentence
structure.” Linguists assign such structures to one type of sentence, type A.
Now there is a second category of sentences, type B, for which such assign-
ment is implied by one of Chomsky’s theories, but not by more traditional
approaches to syntax. His proposal about the role of a neurophysiological
experiment in this theoretical issue is as follows: If “a certain pattern of
electrical activity” is highly correlated with the clear cases in which a wh-
sentence is processed (type A sentences), and if this same neuronal pattern
also occurs during processing of a sentence for which such a representation
has been postulated based on theoretical considerations (type B sentence),
then one would have evidence that this latter representation of the sentence
in question is psychologically and biologically real.

Therefore, in principle, there appears to be no problem with the neurosci-
entific test of linguistic theories. However, Chomsky’s view is not realistic.
A closer look at the actual empirical data obtained so far, indicates that
clear correlation between language phenomena and patterns of electrical
activity are not easy to find. Recent studies of syntactic phenomena have
great difficulty in proving that the physiological phenomena that are re-
ported to co-occur with linguistic properties of sentences are strictly related
to these linguistic properties per se. As an alternative, they may be related
to psychological phenomena in which a linguist is probably less interested,
such as working memory load and retrieval (see Kluender & Kutas, 1993).
Thus, there would not be a high correlation between a bold brain response
and a well-defined linguistic process, but there would be a brain response
cooccurring with a variety of linguistic and psychological phenomena.

But this is only the first reason why Chomsky’s view is not appropriate.
A further important theoretical problem that a physiological test of lin-
guistic ideas must face – ignored by Chomsky – is as follows: The instru-
ments for monitoring brain activity do not by themselves tell the researcher
what to look for when investigating linguistic representations and processes.
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There are infinite possibilities for describing and analyzing a short time series
obtained, for instance, using a multichannel electro- or magnetoencephalo-
graph. What should the language and brain scientist begin with when search-
ing for the pattern that, in the clear case, correlates with the occurrence of
a wh- sentence? Answers to this question can be provided only by a theory
about the brain mechanisms of language.

A good deal of progress being made in the language and brain sciences is
exactly of this nature: finding out what the relevant patterns of brain activity
might be. Once again, it must be stressed that brain theory reflections were
the seed of such progress.

To mention but one example, it has been speculated by a scholar who
further developed the Hebbian brain theory (Milner, 1974) that fast oscil-
lations in the brain may be related to the activity of neuronal ensembles
(see also Freeman, 1975; von der Malsburg, 1985). Fast rhythmic brain ac-
tivity may result from reverberation of neuronal activity in loops of cortical
connections that conduct activity in the millisecond range (Chapter 8), or
they may emerge from interaction between cell assembly neurons and their
inhibitory neighbors (cf. Chapter 2). The idea that high-frequency brain ac-
tivity is related to the activation of neuronal ensembles and that it may even
be a correlate of perceptual and higher cognitive processes inspired nu-
merous experimental investigations in the neurosciences. The results were
largely supportive (Bressler & Freeman, 1980; Singer & Gray, 1995). It was
therefore proposed that the cell assemblies, or functional webs, representing
words produce high-frequency responseswhen activated.On the basis of this
theoretically motivated speculation, several experiments have been con-
ducted, all of which converge on the conclusion that dynamics in high-
frequency cortical responses distinguish word forms from meaningless pseu-
dowords (see Chapter 4 for details). More important, the high-frequency
responses related to word processes frequently exhibited a specific topo-
graphynot revealed in other studies of high-frequency responses of cognitive
processes (Pulvermüller et al., 1997; Tallon-Baudry & Bertrand, 1999). Fur-
thermore, high-frequency brain responses recorded from motor and
visual areas distinguished between words from different categories, and may
thus reveal elementary information about more specific properties of word
processing in the brain (Pulvermüller, Keil, & Elbert, 1999; Pulvermüller,
Lutzenberger et al., 1999).

In the present context, the important conclusion may be that patterns
of brain activity possibly indicating aspects of linguistic processing were
discovered only because educated guesses about the brain basis of word
processing were possible. Without the theorizing these guesses are built on,
the probability of finding the patterns would have approximated zero. This
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is the second reason why Chomsky’s idea about a neurobiological test of
linguistic constructs is unrealistic:He ignores thebiotheoretical prerequisites
for such testing.

It can be concluded that although leading linguists may see the possible
fruitfulness of neuroscientific research into language, the nature of the major
tasks to be addressed in the theoretical neuroscience of language is largely
neglected. For serious empirical investigation of the brain mechanisms of
language, it is not enough to provide abstract descriptions of language phe-
nomena; it is also necessary to spell out possible language mechanisms in
terms of neuronal circuitry.

Building a theory of brain mechanism of language is certainly not an easy
task. It is clear that such theorizing will not immediately result in the ulti-
mate answer to the relevant language-related questions. Most likely, early
proposals will be falsified by experimental brain research – as, for example,
Helmholtz’s idea that “Gravitationsenergie” causes the sun to shine had to
be replaced. However, the important point at this stage may be to make
theoretically relevant brain research on language possible. Scientific inves-
tigation of the interesting questions in linguistics requires a brain model of
the relevant linguistic processes. The purpose of this book is to give it a try.
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Näätänen, R. (2001). The perception of speech sounds by the human brain as re-
flected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm).
Psychophysiology, 38, 1–21.
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Abbreviations

General

� “is rewritten as”; symbol for formulating rules of phrase
structure grammars

→→ “activates”; symbol for asymmetric reciprocal connection,
the basic element for establishing serial order in syntactic
circuits

↔ “activates”; symbol for symmetric reciprocal connection

⇒ “is followed by,” “causes”

A, B, . . . words or morphemes

a, b, . . . lexical categories

α, β . . . neuronal elements – neurons, cell assemblies, neuronal sets,
or sequence sets

AB sequence of symbols A and B

ab sequence of symbols belonging to categories a and b

αpi i th sequence set sensitive to information in the past (“past
set”) representing sequences of symbols that end with a
symbol from category a

α f j j th sequence set sensitive to information in the future
(“future set”) representing sequences of symbols that begin
with a symbol from category a

Sp, Sq, . . . Neuronal sets (input or sequencing units)
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Fragments of Neuronal Grammar

α ↔ λ assignment formula: the word/morpheme representation α

is assigned to the lexical category representation λ

α(p1, . . . , pm/*/
f1, . . . , fn)

valence formula: lexical category representation α includes
m backward-looking past sets p1, . . . , pm and n forward-
looking future sets f1, . . . , fn.

α( fi )→→β(pj) there is a directed connection from the forward-looking
sequence set fi belonging to category representation α

to the backward-looking sequence set pj of category
representation β.

Syntactic and Lexical Categories

Note: Abbreviations of lexical categories are used to refer to sets of lexical
items and for labeling their neuronal representations.

S sentence

NP noun phrase or nominal phrase

VP verb phrase or verbal phrase

Det determiner or article

N noun

Prop proper name

N1, Nnom nominative noun

N3, Ndat dative noun

N4, Nakk accusative noun

V verb

Vi intransitive verb

Vt transitive verb

V(t)sub transitive verb in subordinate sentence

Vip intransitive particle verb
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Vtp transitive particle verb (tp is sometimes omitted)

V1, V14, V134,
etc.

verb subcategories specified in terms of the noun comple-
ments required (V14 = verb requiring N1 and N4)

Vp verb particle

Vs verb suffix

Tr translative
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