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Introduction: DNA
microarrays – ten years
old, but no old hat
Falk Hertwig and Ulrike A Nuber

In October this year, we celebrate the 10th anniversary of DNA micro-
arrays, as this technology was first mentioned in an article by Schena, M.,
Shalon, D., Davis, R.W., and Brown P.O. published in the ‘Genome Issue’
of Science in 1995 (1). Predecessors of this technology were dot blots, slot
blots, and macroarrays with membranes used as platform. Microarrays have
been fascinating the scientific community for the last decade, but still have
not reached the limits of their potential and are continuing to invade new
fields of biology and medicine.

In the course of deciphering the genomes of many organisms, the need
for functional studies of thousands of genes arose, and one step towards
this goal has been the identification of expression patterns of genes under
normal and pathological conditions. Coincidentally, the ‘Genome Issue’ of
Science in 1995 contained two articles that describe mRNA profiling at a
large scale: the DNA microarray paper by Schena et al. (1), and the paper
by Velculescu et al. (2) on SAGE (serial analysis of gene expression).
However, it seems that microarrays ‘won the race’ in the field of gene
expression profiling – which is mainly due to the high throughput (number
of investigated samples per time), and rapid readout of the results.

Schena et al. (1) used their first microarray to monitor gene expression –
which is undeniably still the most prominent application – but the possi-
bility to use this technique for other purposes is only limited by the
scientist’s creativity and budget.

This book focuses on microarrays that consist of immobilized DNA mole-
cules, but similar miniaturized hybridization formats have been developed,
such as lipid microarrays (3) and protein microarrays (for review see 4). The
latter can, for example, be used to monitor the interactions of immobilized
proteins with proteins, nucleic acids and small molecules, and offers appli-
cations in medical diagnostics (e.g. the screening of patients’ sera for
specific antigenic properties) (5), and in basic research (e.g. the identifica-
tion of ligands using protein receptor arrays) (6).

There is probably no field in life sciences (basic or applied) which has
not been impinged upon by DNA microarrays. Some examples are their
application in cancer research (Chapter 4), pharmacogenomics (Chapter 2),
and stem cell research (Chapter 5). In theory, DNA microarrays of every
organism can be generated and used, dependent soley on the availability
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of DNA sequence information. In this book, the use of yeast, plant, mouse,
rat and human arrays is described (see Figure 1.1 ).

Apart from monitoring gene expression, DNA microarrays are used to
detect single nucleotide changes (Chapters 6, 7, and 8), unbalanced chro-
mosome aberrations by array CGH (Chapters 11 and 12), or balanced
chromosome aberrations by array painting (Chapter 12). The ChIP-on-chip
technology was established only a few years ago as a new microarray tool
enabling the search for transcription factor binding sites at a large scale
(Chapters 13 and 14).

Strangely enough, there are still some scientists who are reluctant to
use DNA microarrays. ‘With microarrays, you see too much!’ ‘But there are so
many differentially expressed genes…’ – If this sounds like you, don’t be
shy, read on. Chapters in this book will guide you through the process-
ing of complex data and introduce you to different approaches for
handling your results.
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Figure 1.1. 

Chapter overview showing different microarray platforms and applications
described in this book. Numbers indicate book chapters.



In contrast, other scientists, seduced by the temptation to produce vast
amounts of data, may face some of the pitfalls associated with DNA micro-
array experiments. If you belong to this category, chapters in this book will
show you some strategies on how to set up a good microarray experiment,
resulting in relevant data, and how to avoid producing data which cannot
be processed by the best bioinformatician…

Finally, to the rest of the interested readers, who may have already
gained some experience with DNA microarrays, this book should provide
new aspects (for example the impact of RNA quality on Affymetrix
GeneChip analyses, Chapter 10) and detailed protocols covering all steps
of a microarray experiment from the production of the array to data
analysis and storage.

1.1 How to perform a microarray experiment

While musing at the thought of using microarrays, many questions pop up
in one’s mind: What type of arrays do I want to use? How do I design my
experiments? Which labeling method do I want to use? How do I analyze
my microarray data?

To obtain relevant results and perform a microarray experiment that best
suits your needs, you should carefully set up a plan before starting at the
bench. You will find help and inspiration in the various chapters. Regarding
the design of DNA microarray experiments, we would like to refer to a
review by Yang and Speed (7).

DNA microarrays can be classified according to the type of probes on
the array (cDNA, oligonucleotides, genomic fragments), their generation
and immobilization. In many cases presynthesized molecules (PCR prod-
ucts, oligonucleotides, isolated DNA) are deposited on the array either by
contact printing (using metal pins that carry small volumes of probe
solution due to capillary action) or by non-contact printing, when probe
solution is dispensed by ink-jet printing. In addition, several companies
generate high-density microarrays by synthesizing oligonucleotides in situ
(for review see 8). The synthesis is either based on specific base deprotec-
tion by light (coordinated by photomasks or digital micromirror devices)
or on chemical deprotection and the use of ink-jet technology. An alter-
native to these commercial systems is the open-source platform POSaM
(piezoelectric oligonucleotide synthesizer and microarrayer), described by
Lausted et al. (9). These authors present the low-cost production of in situ
synthesized oligonucleotide arrays (containing 9800 features) in their lab.
An overview of commercially available oligonucleotide arrays is given in
Table 1.1.

cDNA arrays can also be purchased (see Table 1.2), or produced as
described in various chapters of this book (Chapters 2, 3, 4, and 5). In addi-
tion to protocols for the generation of genomic DNA arrays (see Chapters
11 and 12), you can find commercial suppliers in Table 1.2.

After the hybridization of labeled target molecules to DNA arrays, fluo-
rescent signals are detected by laser scanners or CCD cameras. Chapters 15
and 16 describe image acquisition and image data conversion.

Finally, microarray data produced in large scale need to be stored and
processed to obtain relevant and meaningful results. At this point the field

Introduction: DNA microarrays – ten years old, but no old hat 3



4 DNA Microarrays

Table 1.1. Commercially available oligonucleotide microarrays

Principle of DNA microarray generation Company

In situ synthesis 
Photodeprotection using photomasks (~25mers) Affymetrix

(http://www.affymetrix.com/) 

Photodeprotection using digital mirrors (DMD) NimbleGen#*
(24mers-70mers) (http://www.nimblegen.com/)

Chemical deprotection using ink-jet technology Agilent Technologies*
(60mers) (http://www.home.agilent.com)

Presynthesized oligonucleotides spotted 
onto arrays
50mers on expoxy surface glass slides MWG

(http://www.mwg-biotech.com/)

80mers on coated glass slides BD Biosciences (Clontech)
(http://www.clontech.com/) 

Long oligomers TeleChem International, Inc.
(http://www.arrayit.com/) 

30mers on 3D-matrix-coated slides Mergen Ltd.
(www.mergen-ltd.com) 

30mers on 3D-matrix-coated slides GE Healthcare (Amersham Biosciences)
(http://www5.amershambiosciences.com) 

50mers on 3-micron beads Illumina, Inc.
(http://www.illumina.com)

70mers on proprietary slide substrate Microarrays Inc*
(http://www.microarrays.com)

Arrays for ChIP-on-chip assays (#) or array CGH (*) are also provided.

Table 1.2. Companies producing cDNA and genomic microarrays

cDNA arrays Genomic arrays

Miltenyi Biotec GmbH Aviva Systems Biology
(http://www.miltenyibiotec.com) (http://www.avivasysbio.com) 

Scienion AG Panomics
(www.scienion.com) (http://www.panomics.com) 

Takara Bio, Inc. Spectral Genomics, Inc
(http://bio.takara.co.jp) (http://www.spectralgenomics.com) 

Cambrex Bio Science Vysis (Abbott Laboratories)
(http://www.cambrex.com) (http://www.vysis.com)



of bioinformatics found a vast playground and the increased use of 
microarrays triggered the co-evolution of various bioinformatics methods
(Figure 1.2). In general, all data need to be normalized. Not to get you lost at
this early step, several normalization methods are presented in Chapter 17.
The special case of normalizing array CGH data is described in Chapter 21.

After normalization, further data processing depends on the questions
you intend to address. If you want to compare gene expression under
different biological conditions (e.g. normal vs. tumor tissue, wild type vs.
knockout/transgene cells, control vs. drug-treated cells etc.) the first and
foremost question concerns differential gene expression. Chapter 18 takes
you on a safe trip to a list of differentially expressed genes.

DNA microarray time course experiments are highly suitable to monitor
the expression of a very large number of genes during a biological process
over a defined period of time (one example is given in Chapter 5). Chapter
20 describes the statistical analysis of time-course data.

Chapter 19 deals with clustering and classification. Clustering is, for
example, used to find a group of genes, which have similar expression
patterns or a group of samples (e.g. tissue samples from patients), which
show likewise expression of a set of genes. Classification methods can
determine whether a gene expression profile of a tissue sample belongs to
a certain class, and are applied to predict disease courses.

Finally, special applications require special bioinformatic analyses.
Therefore, the processing of data generated by single nucleotide polymor-
phisms (SNP) detection and ChIP-on-chip experiments is addressed
separately in Chapters 8 and 13, respectively.

Introduction: DNA microarrays – ten years old, but no old hat 5
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Ten years ago, DNA microarrays became fashionable because they enable
high-throughput gene expression analyses. Over the years, they gained
importance with their expanding use in medical diagnostics and research
and even now scientists are continuing to advance this technology and its
applications. The examples of ChIP-on-chip and array painting show that
the combination of two techniques can lead to a new technology – so it
will be exciting to see what’s yet to come….
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cDNA microarray analysis
and its role in toxicology
– a case study
Alexandra N Heinloth, Gary A Boorman and 
Richard S Paules

2.1 Introduction

Toxicogenomics

Nuwasyir and colleagues (1) in 1999 defined ‘toxicogenomics’ as the inter-
section of toxicology and genomics. They proposed that the goal of this
new discipline is to identify potential toxicants and to clarify their mech-
anism of action with the help of genomics resources. Since then, major
efforts have been undertaken to establish data sets that include a diversity
of compounds and environmental stressors. This will eventually allow clas-
sification of unknown or novel compounds into mechanistic groups. By
doing so, researchers hope to achieve toxicant or toxicant-group-specific
genomic signatures which indicate exposure and initiation of toxic events.
This might not only be valid for known and already well-defined toxicants,
but perhaps more importantly, for unknown toxicants or compounds under
development. Achieving this goal would allow identification of potential
toxicity prior to indications of overt toxicity for novel compounds and
could allow for very sensitive exposure monitoring. Several groups have
undertaken efforts to classify compounds based on gene expression data.
One of the first classification studies in toxicogenomics was published by
Waring et al. in 2001 (2). Here the authors retrieved gene expression data
from livers of rats exposed to 15 different hepatotoxicants and showed
correlations between differentially expressed genes, histopathological and
clinical chemistry changes. They also demonstrated that gene expression
analysis allows for the identification of mechanistically related compounds
and reveals a higher degree of similarity between RNA derived from animals
treated with the same compound than to those exposed to other hepato-
toxicants. Hamadeh and colleagues in 2002 performed the first
toxicological classification study that included blinded samples. In this
study, the authors first determined gene expression patterns for three differ-
ent peroxisome proliferators and one barbiturate (3). This data was utilized
as a training set and identified discriminating signatures between
compounds. Coded RNA samples from animals exposed to either a barbi-
turate or peroxisome proliferators were subjected to gene expression
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analysis. This study demonstrated that it was possible to predict the class
of compound to which the rats were exposed based on gene expression
profiles for those blinded liver RNA samples (4).

Mechanisms of toxicity

Comparison of gene expression profiles of novel or poorly defined
compounds with those from well-defined drugs or toxicants can not only
assign those compounds to a known class, but also elucidate potential
mechanisms of action. This is based on the assumption that monitoring
global gene expression changes as a result of exposure gives indications
about which physiological or pathological processes within the organ are
activated or repressed. Waring and colleagues (5) demonstrated this analy-
sis in a study in which rats were exposed to a thienopyridine inhibitor
(A-277249) and liver tissue was examined for gene expression changes.
Comparison of those changes with a database of profiles from 15 known
hepatotoxicants elucidated greatest similarity of the test compound with
two known activators of the aryl hydrocarbon nuclear receptor (AhR). They
concluded that the activation of AhR mediated the hepatic toxicity
observed after exposure to A-277249 (5).

Acetaminophen as a model compound

We chose acetaminophen (APAP), one of the most popular analgesics
worldwide, as a model compound to study genomic responses in liver
tissue. This choice was driven by several criteria we believe to be of crucial
importance for compound selection. First, APAP is the focus of major health
concerns in the US and Europe. Accidental overdoses and ingestions with
suicidal intent make APAP the leading cause of drug-induced acute liver
failure in the United States (6). Secondly, rodents metabolize APAP similar
to humans and are therefore an appropriate model system. APAP is metab-
olized by several isoforms of cytochrome p450 to the highly reactive
metabolite N-acetyl-p-benzoquinone imine (NAPQI). At low, therapeutic
concentrations, this metabolite is detoxified by conjugation with
glutathione (GSH). At high, toxic concentrations, the liver is depleted of
GSH and NAPQI is covalently bound to proteins (7). Thirdly, significant
information already exists about APAP metabolism and toxicity in the liver.
Toxicogenomics as an emerging field can benefit from placing the results
in context with a wealth of previously well-documented published findings
– with the goal to recapitulate and expand existing knowledge.

Experimental design

In this study, we treated rats with a single dose of 0, 50, 150 or 1500 mg kg–1

body weight (BW) APAP and sacrificed them 6, 24 or 48 h after treatment.
Livers were harvested for gene expression and histopathological analysis,
and blood was collected for serum chemistry. While the two lower doses
showed neither histopathological nor serum enzyme alterations, 1500
mg kg–1 APAP induced signs of centrilobular necrosis and significant serum
enzyme elevations 24 and 48 h after treatment (8).

8 DNA Microarrays



In order to perform gene expression analysis, total RNA was isolated from
liver tissue and microarray analysis was performed as described in the
Protocols. The complete data set is available at: http://dir.niehs.nih.gov/
microarray/datasets/home-pub.htm. After performing cluster analysis (9)
with all differentially expressed genes across all doses and time points, it
became obvious that a distinct subset of genes was regulated similarly after
low and high dose exposure to APAP (8). Further analysis of these gene
expression responses revealed that those genes regulated in common after
high- and low-dose exposure belonged to distinct metabolic pathways.
Many of the genes down-regulated after treatment with 50 or 150 mg kg–1

APAP were involved in energy consuming biochemical pathways like gluco-
neogenesis, fatty acid synthesis, cholesterol synthesis, porphyrin synthesis,
sterol synthesis and the urea cycle (8). Analysis of differentially expressed
genes after 1500 mg kg–1 APAP showed, besides other changes, a strong
down regulation of genes in those same energy demanding processes. Not
only were similar gene changes observed after this higher dose, but more
members of the same biological pathway were changed.

The converse was true with up-regulated genes involving energy produc-
tion. After treatment with 150 mg kg–1 APAP, genes involved in energy
producing biochemical pathways like glycolysis and mitochondrial 
ω-hydroxylation were up regulated. Exposure to 1500 mg kg–1 APAP resulted
in a more pronounced effect on the same processes, as well as additional
genes in those processes that were over-expressed in comparison to control
livers. Also, genes in other energy producing pathways like the tricarboxylic
acid cycle, pentose phosphate pathway, and mitochondrial β-oxidation
were up-regulated after exposure to 1500 mg kg–1 APAP.

We concluded from these results that the liver appeared to be compen-
sating for energy depletion after exposure to an overtly toxic dose of APAP
(1500 mg kg–1). Strikingly, similar responses were seen in livers following
exposure to sub-toxic doses of APAP (50 and 150 mg kg–1), even though
there was no histopathological evidence of toxicity after those low doses.
As might be predicted, these attempts of the liver to compensate for energy
depletion were more pronounced after exposure to the clearly toxic dose
of 1500 mg kg–1 APAP.

To test the hypothesis that the liver suffered from energy depletion
after exposure to APAP, we performed measurements of ATP levels in
liver tissue after exposure to high and low doses of APAP. As shown in
Figure 2.1, statistically significant decreases in ATP levels were found only
at 3 and 48 h after exposure to 1500 mg kg–1 APAP. Doses of 50 and 
150 mg kg–1 APAP did not produce any significant decreases of ATP levels
as measured in this assay.

The gene expression profile suggested energy depletion after all doses.
We suspected that the ATP assay lacked the necessary sensitivity to show
slight decreases, since energy depletion may have occurred only in a small
subpopulation of hepatocytes immediately adjacent to the central vein
where toxicity is first seen. As the production of ATP in the cell is prima-
rily a function of mitochondria, we hypothesized that the energy depletion
after APAP exposure was caused by mitochondrial damage. Therefore we
performed ultrastructural analysis on liver tissue after treatment with 0, 50,
150 or 1500 mg kg–1 APAP. Six hours after treatment with 150 and 
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1500 mg kg–1 APAP we found mitochondria that had lost electron density,
indicative of mitochondrial damage after those doses (Figure 2.2). At 150
mg kg–1 only a few hepatocytes immediately adjacent to the central vein
had evidence of mitochondrial toxicity. This suggests that, at least for acet-
aminophen, gene expression changes may be a more sensitive indicator of
potential toxicity than traditional toxicology endpoints such as
histopathology and clinical chemistry.

We concluded from our study that liver gene expression profiles in
response to exposure to sub-toxic doses of APAP have the ability to indi-
cate potential toxicity of higher doses of this hepatotoxicant. We identified
gene expression changes indicative of cellular ATP depletion after sub-toxic
doses (50 and 150 mg kg–1 APAP), and found that those changes became
more pronounced after exposure to a toxic dose (1500 mg kg–1 APAP).
Therefore, microarray analysis appears to be an extremely useful and sensi-
tive tool to predict potential adverse effects of exposures.

2.2 Gene expression profiling reveals indicators of
potential adverse effects

The study presented here tested the hypothesis that gene expression analy-
sis after exposure to sub-toxic doses would allow prediction of adverse
effects that only become manifest after exposure to toxic doses. Therefore
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Figure 2.1. 

Hepatic ATP levels after exposure to APAP: (A) 3 h, (B) 6 h, (C) 24 h and (D) 48 h after exposure to
acetaminophen. Bar graphs represent pmol ATP per μg protein (mean ± S.E.). Asterisks indicates 
p <0.02 for statistical differences between animals treated with APAP and sham-treated control
animals (n =3).



we treated rats with sub-toxic (50 and 150 mg kg–1) and toxic (1500 mg kg–1)
doses of APAP and performed microarray analysis on total RNA isolated
from livers of those animals. As demonstrated, the observed gene expres-
sion changes indicated cellular energy depletion at doses of APAP that did
not cause any traditional manifestations of toxicity. Ultrastructural studies
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Figure 2.2. 

Electron micrographs of centrilobular hepatocytes. (A) Hepatocyte from control
animal. (B) Hepatocyte from animal after treatment with 150 mg kg–1 APAP. Arrows
point to mitochondria.
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revealed mitochondrial damage after exposure to 150 mg kg–1, but not to
50 mg kg–1 APAP, although gene expression analysis suggested some modest
cellular energy loss even after exposure to 50 mg kg–1 APAP. This indicates
that gene expression changes are very sensitive markers of cellular stress,
even in the absence of any apparent phenotypic changes (8).

Our results have great implications for future toxicological research. On
the one hand, the prediction of toxicity based on, in the traditional
sense, sub-toxic exposure levels has great potential for identification of
compounds that have toxicological potential. Comparison of gene
expression profiles retrieved from unknown toxicants against extensive
toxicogenomics databases might reveal toxic potential of those com-
pounds – and save the effort of doing prolonged dose-finding studies to
establish phenotypic anchors. This is even more important in the case of
novel and genetically engineered compounds for which limited amounts
may be available.

On the other hand, with the advent of toxicogenomics, it is becoming
apparent that slight alterations in the environment will manifest them-
selves in gene expression changes compared with sham-treated controls.
The challenge is to determine which of those changes are truly meaning-
ful and indicative of potential harm and which are pharmacological,
adaptive, or confounding events – related to animal housing, animal
handling, feeding and the circadian cycle.

2.3 cDNA microarrays – curse or blessing?

The biggest challenge for scientists confronted with gene expression data
is the biological interpretation of large datasets. With the development of
microarray technologies, biological sciences experienced an exponential
leap from a paradigm where one experiment involves one or two meas-
urements in a known area to a new paradigm where one experiment
provides data on thousands of measurements often involving genes for
which the scientist may have very little familiarity. This demands a new
form of abstract thinking from the scientists involved – new principles are
developing as to how to approach these data sets most efficiently. Scientists
need to achieve both the ability for grasping the big picture provided by
the gene expression changes and to focus on the truly novel insights in the
data sets. At this point, traditional biological follow-up studies are neces-
sary to test the biological hypotheses developed from the gene expression
analysis. This is both a challenge and an opportunity: while it was never
before possible to learn so much from a single experiment, it was also never
before so difficult to extract meaningful information from the results of a
single experiment.

2.4 The future of toxicogenomics – prediction of toxicity

One of the major goals of toxicogenomics is the prediction of toxicity of
unknown compounds. To facilitate achieving this goal, several institutes
have started efforts to establish databases that would allow the collection
of gene expression data, to analyze this data and compare and contrast gene
expression results. The overall goal is to learn more about known toxicants
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by examining them in a full, systems biology context and to discover simi-
larities between novel compounds and known toxicants. One of these
databases is the Chemical Effects in Biological Systems (CEBS) (10), being
developed by the National Center for Toxicogenomics at the National
Institute of Environmental Health Sciences. The mission of CEBS is to
provide a repository of data retrieved from toxicogenomic studies and to
enable scientists to more easily perform cross-compound and cross-experi-
ment analysis to gain further insight into toxicological processes.

Another challenge the field faces are the difficulties in comparing data
sets created by different investigators on different platforms. Often several
additional factors, like animal strains, doses, time points and normalization
procedures used, are different. In the past, those differences were often not
or at best only partially reported and attached to public data sets. To
improve this situation, the Microarray Gene Expression Data society
(http://www.mged.org) was formed and has developed standards for publi-
cation of microarray data, published as ‘Minimal Information About a
Microarray Experiment’ (MIAME, see also Chapter 22) (11). The informa-
tion collected according to these guidelines enables researchers to replicate
analysis published in reports following those guidelines. As an extension
of this effort, MIAME-Tox was developed (http://www.mged.org/
Workgroups/tox/tox.html) which collects additional information consid-
ered necessary to interpret and replicate toxicology studies.

As described above, the future of toxicogenomics lies in moving away
from the analysis of one compound at a time to being able to utilize exten-
sive databases and performing cross-compound analysis. This promises to
facilitate the discovery of novel general concepts about the pathophysiol-
ogy of certain adverse phenotypes – and the discovery of potential
therapeutic interventions at the inception of an adverse response to an
environmental stressor.

References
1. Nuwaysir EF, Bittner M, Trent J, Barrett JC and Afshari CA (1999) Microarrays

and toxicology: the advent of toxicogenomics. Mol Carcinogen 24: 153–159.
2. Waring JF, Jolly RA, Ciurlionis R, Lum PY, Praestgaard JT, Morfitt DC, Buratto

B, Roberts C, Schadt E and Ulrich RG (2001) Clustering of hepatotoxins based
on mechanism of toxicity using gene expression profiles. Toxicol Appl Pharmacol
175: 28–42.

3. Hamadeh HK, Bushel PR, Jayadev S, et al. (2002) Gene expression analysis
reveals chemical-specific profiles. Toxicol Sci 67: 219–231.

4. Hamadeh HK, Bushel PR, Jayadev S, et al. (2002) Prediction of compound signa-
ture using high density gene expression profiling. Toxicol Sci 67: 232–240.

5. Waring JF, Gum R, Morfitt D, Jolly RA, Ciurlionis R, Heindel M, Gallenberg L,
Buratto B and Ulrich RG (2002) Identifying toxic mechanisms using DNA micro-
arrays: evidence that an experimental inhibitor of cell adhesion molecule
expression signals through the aryl hydrocarbon nuclear receptor. Toxicology
181–182: 537–550.

6. Lee WM (2003) Acute liver failure in the United States. Semin Liver Dis 23:
217–226.

7. Mitchell JR, Jollow DJ, Potter WZ, Gillette JR and Brodie BB (1973)
Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione.
J Pharmacol Exp Ther 187: 211–217.

14 DNA Microarrays



8. Heinloth AN, Irwin RD, Boorman GA, et al. (2004) Gene expression profiling of
rat livers reveals indicators of potential adverse effects. Toxicol Sci 80: 193–202.

9. Eisen MB, Spellman PT, Brown PO and Botstein D (1998) Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci USA 95:
14863–14868.

10. Waters M, Boorman G, Bushel P, et al. (2003) Systems toxicology and the
Chemical Effects in Biological Systems (CEBS) knowledge base. EHP Toxicogenom
111: 15–28.

11. Brazma A, Hingamp P, Quackenbush J, et al. (2001) Minimum information
about a microarray experiment (MIAME)-toward standards for microarray data.
Nat Genet 29: 365–371.

12. Council NR (1996) Guide for the Care and Use of Laboratory Animals. National
Academy Press, Washington, DC

13. Easom RA and Zammit VA (1984) A cold-clamping technique for the rapid
sampling of rat liver for studies on enzymes in separate cell fractions. Suitability
for the study of enzymes regulated by reversible phosphorylation-dephospho-
rylation. Biochem J 220: 733–738.

14. Hamadeh HK, Knight BL, Haugen AC, et al. (2002) Methapyrilene toxicity:
anchorage of pathologic observations to gene expression alterations. Toxicol
Pathol 30: 470–482.

15. Lennon G, Auffray C, Polymeropoulos M and Soares MB (1996) The I.M.A.G.E.
Consortium: an integrated molecular analysis of genomes and their expression.
Genomics 33: 151–152.

16. Chen Y, Kamat V, Dougherty ER, Bittner ML, Meltzer PS and Trent JM (2002)
Ratio statistics of gene expression levels and applications to microarray data
analysis. Bioinformatics 18: 1207–1215.

17. Bushel PR, Hamadeh H, Bennett L, Sieber S, Martin K, Nuwaysir EF, Johnson K,
Reynolds K, Paules RS and Afshari CA (2001) MAPS: a microarray project system
for gene expression experiment information and data validation. Bioinformatics
17: 564–565.

18. Wolfinger, RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P,
Afshari C and Paules RS (2001) Assessing gene significance from cDNA micro-
array expression data via mixed models. J Comput Biol 8: 625–637

19. Martin FL and McLean AE (1998) Comparison of paracetamol-induced hepato-
toxicity in the rat in vivo with progression of cell injury in vitro in rat liver
slices. Drug Chem Toxicol 21: 477–494.

cDNA microarray analysis and its role in toxicology – a case study 15



Protocols

CONTENTS
Protocol 2.1: In-life study

Protocol 2.2: Gene expression analysis

Protocol 2.3: Clinical pathology

Protocol 2.4: Histopathology

Protocol 2.5: Electron microscopy

Protocol 2.6: ATP measurements

16 DNA Microarrays

Microarray
hybridization
scheme

Measurement
of ATP levels

Individual RNA samples

Pooled control RNA sample

Low
50 mg/kg/day

PreToxic
150 mg/kg/day

Toxic, Recoverable
1500 mg/kg/day

Time-matched vehicle
treated control animals

6 24

Time (Hrs)

48

Electron
microscopy

control 50 mg/kg 150 mg/kg 1500 mg/kg

50
45
40
35
30
25
20
15
10
5
0

pM
ol

 A
T

P
 / 

ug
 p

ro
te

in

control 50 mg/kg 150 mg/kg 1500 mg/kg

50
45
40
35
30
25
20
15
10
5
0

pM
ol

 A
T

P
 / 

ug
 p

ro
te

in

control 50 mg/kg 150 mg/kg 1500 mg/kg

50
45
40
35
30
25
20
15
10
5
0

pM
ol

 A
T

P
 / 

ug
 p

ro
te

in

control 50 mg/kg 150 mg/kg 1500 mg/kg

*

*

50
45
40
35
30
25
20
15
10
5
0

pM
ol

 A
T

P
 / 

ug
 p

ro
te

in

(A)

(C)

(B)

(D)

Differentially
regulated

genes

Hypothesis:
Gene expression analysis

indicates mitochondrial damage with
subsequent ATP depletion of liver tissue



Protocol 2.1: In-life study

ANIMAL MODEL
Male F344/N rats from Taconic Laboratories, Inc., Germantown, NY
were used in these studies. The animals were obtained 36 ± 3 days
old, and were about 89 ± 3 days old at the start of the study. Rats
were housed three per cage in 22 × 12.5 × 8 inch (l × w × h)
polycarbonate cages (Lab Products, Inc., Seaford, DE) with polyester
cage filters (Snow Filtration Co., Cincinnati, OH). In studies dealing
with fed animals, it is especially important to keep track of the cage
assignment of the single animals. We decided to perform this study
with fed animals in order to be closer to a human physiologically
relevant situation. One potential disadvantage of this study design is
that variability is introduced due to differences in feeding between
animals in the same cage, based on their social hierarchy.

The room temperature was between 71 and 75°F, with the
humidity between 36% and 48%. The animals were fed ad libitum
with irradiated NTP-2000 wafer feed (Ziegler Brothers, Gardners,
PA) and had ad libitum access to city water (Durham, NC). The rats
had a 12-h light period from 6 a.m. to 6 p.m. and a 12-h dark
period from 6 p.m. to 6 a.m. The animals were dosed between 9
and 11 a.m.

STUDY DESIGN
For gene expression analysis, groups of three male rats received
acetaminophen (APAP, 99% pure, Sigma, St. Louis, MO) as a
suspension in 0.5% aqueous ethyl cellulose (USP/FCC grade; Fisher
Scientific Company, St. Louis, MO) by gavage. Doses utilized in this
study were 0 (vehicle only), 50, 150 and 1500 mg kg–1 BW–1. The
animals were sacrificed (see below) at 6, 24 or 48 h after dosing.

For ATP measurements, groups of two male rats were dosed with 0
(vehicle only), 50, 150 or 1500 mg kg–1 BW–1 APAP and sacrificed
after 3, 6, 24 or 48 h.

The entire study was replicated for a biological confirmation of the
results. In the case of the gene expression analysis, the data
presented are primarily derived from one of the two replicates, for
ATP measurements the data is presented as average of both
replicates.

We performed the studies according to the guidelines in the NIH
Guide for the Care and Use of Laboratory Animals (12). An
approved Animal Study Protocol was on file prior to initiation of
the study.
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NECROPSY
For gene expression analysis, animals were euthanized with carbon
dioxide from a regulated source. Blood was drawn from the
posterior vena cava for clinical chemistry. The liver was weighed and
a mid-sagittal section from the left lateral lobe was taken for
histology, the remainder of the liver was cubed and frozen in liquid
nitrogen. The time from drawing the blood to freezing the liver was
less than 90 s. Tissues were stored at −80°C until processing for RNA
extraction.

For ATP measurements the animals were anesthetized with
pentobarbital (pentobarbital sodium injection, Abbott Laboratories,
North Chicago, Il) 50 mg per animal i.p.. In pilot studies we had
observed ATP loss in liver samples from animals that were
euthanized with carbon dioxide. We used the cold clamp method as
described by Easom and Zammit (13).
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Protocol 2.2: Gene expression
analysis

RNA ISOLATION
QIAGEN RNeasy Maxi Kits® (QIAGEN, Valencia, CA) were used to
isolate total hepatic RNA as previously described (14). Gene
expression of individual treated animals was compared against
control pools. Those pools were made up from equal amounts of
RNA from each of the three control animals per dose and time
point.

RNA LABELING AND HYBRIDIZATION
cDNA was generated by in vitro transcription from 35 μg total RNA.
RNA was combined with 1 μg oligo dT12–18 primer (Amersham
Pharmacis Biotech, Piscataway, NJ) and 10 U RNase-inhibitor
(Invitrogen, Carlsbad, CA) and heated to 70°C for 10 min. Samples
were chilled to 4°C for 2 min, then first strand buffer (50 mM Tris-
HCl, pH 8.3, 75 mM KCl, 3 mM MgCl2; Invitrogen), 11 mM
dithiothreitol (Invitrogen), 2.2 nM FluoroLink Cy3-deoxy (d) UTP or
Cy5-dUTP (Amersham Pharmacia Biotech), dNTP mix (0.7 mM
dATP, 0.7 mM dGTP, 0.7 mM dCTP, 0.4 mM dTTP; Amersham
Pharmacia Biotech), and 2 μl SUPERSCRIPT™ II Reverse
Transcriptase (Invitrogen) were added. After incubation at 42°C for
1.5 h, another 2-μl aliquot of SUPERSCRIPT™ II Reverse
Transcriptase was added, and samples were incubated for an
additional 1.5 h at 42°C. After cDNA synthesis, RNA was degraded
by addition of 30 μl of 0.1 M NaOH and incubation for 30 min at
70°C. The pH was neutralized by addition of 30 μl of 0.1 M HCl,
and Cy3- and Cy5-labeled samples were pooled. Microcon-30 filters
(Millipore Corp., Bedford, MA) were used to remove unincorporated
label. Ten μg human COT1 DNA (Invitrogen) per 10 μg RNA and 20
μg yeast tRNA (Invitrogen) were added to the probe to limit
nonspecific binding. Hybridization solution (3 × SSC, 2 ×
Denhardt’s, and 0.8% SDS) was added to the samples and they
were boiled for 2 min, and then purified with a 0.45-μm filter
(Millipore Corp., Bedford, MA).

Roughly 7000 rat clone cDNAs (Research Genetics, Huntsville, AL)
(http://dir.niehs.nih.gov/microarray/chips.htm) were printed on
glass slides as described in Hamadeh et al. (14). The methods used
to produce the chips are available at
http://dir.niehs.nih.gov/microarray/methods.htm. The cDNA clones
were sequence verified and annotated according to UniGene (15).
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The labeled cDNA, representative of cellular mRNA, was applied to
cDNA microarray chips, covered by a cover-slide, and incubated for
24 h in a humidified chamber at 65°C. At the end of the incubation
period, slides were inverted in 0.5 × SSC, 0.01% SDS for 5 min to
remove cover-slides. After that, slides were washed in 0.5 × SSC,
0.01% SDS for 5 min, and in 0.06 × SSC for 5 min. After washing,
slides were dried by spinning for 3 min at 1000 g.

Each individual treated RNA sample was hybridized against its time-
and dose-matched control pool in duplicate with reversal of the
fluorescent Cy3 or Cy5 dyes. This resulted in a total of 6 microarray
chips per dose and time period.

SCANNING
Fluorescent intensities were measured with an Agilent DNA
microarray scanner (Palo Alto, CA). This scanner has a pixel
resolution of 10 micron per pixel and we used a PMT gain of 100%.

BIOINFORMATICS
The signal intensities were quantified and normalized with IPLabs
image-processing software (Scanalytics, Inc., Fairfax, VA) with the
Array Suite 2.0 extension (National Human Genome Research
Institute, NHGRI, Bethesda, MD) (16). Differentially expressed genes
were defined in MAPS (17) at the 95% confidence level in both
hybridizations per RNA pair. We also used a mixed linear model (18)
to identify statistically significant differentially expressed genes.
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Protocol 2.3: Clinical pathology

We performed clinical chemistry analysis on all animals in the study. This analysis included urea
nitrogen, creatinine, total protein, albumin, total bile acid concentrations, and activities of
alanine aminotransferase, alkaline phosphatase, creatine kinase, and sorbitol dehydrogenase. The
analyses were performed with a Roche Cobas Mira chemistry analyzer (Roche Diagnostics
Systems, Inc., Montclair, NJ).
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Protocol 2.4: Histopathology

Tissues collected at necropsy were embedded in 10% neutral buffered formalin for 24 to 48 h.
After dehydration in 70% alcohol, tissues were embedded in paraffin and H&E slides were made.
Two independent pathologists evaluated the liver sections.
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Protocol 2.5: Electron microscopy

Two additional rats were exposed to 0, 50, 150 or 1500 mg kg–1 BW–1 APAP and deeply
anesthetized with Pentobarbital at 6 h after dosing. The vessels superior and inferior of the liver
were clamped. The posterior vena cava was canulated and the portal vessels severed. The
retrograde perfusion was via the posterior vena cave first with RPMI media at 37°C to clean the
liver followed by cold 3% glutaraldehyde (in 0.1 M sodium cacodylate buffer pH 7.2) for 30 min.
The left lateral lobe was minced into 1-mm cubes and incubated overnight in 3% glutaraldehyde
solution, and post fixed in OsO4. Centrilobular areas were identified on 0.5-μm-thick sections
stained with toluidine blue. Thin sections, approximately 80 nm, were examined on a Philips EM
400 electron microscope after staining with uranyl acetate and lead citrate.
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Protocol 2.6: ATP measurements

As described by Martin and McLean (19) samples were prepared. Their ATP content was
measured in the supernatant with an ATP assay kit (Calbiochem, San Diego, CA) according to
the instructions of the manufacturer.
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Gene expression profiling
in plants using cDNA
microarrays
Motoaki Seki, Junko Ishida, Maiko Nakajima, Akiko Enju,
Ayako Kamei, Youko Oono, Mari Narusaka, Masakazu Satou,
Tetsuya Sakurai and Kazuo Shinozaki

3.1 Introduction

DNA microarray technology has become a powerful tool for systematic
analysis of expression profiles of large numbers of genes in several plant
species (3–8). It is currently being used to investigate a variety of physio-
logical and developmental processes in plants. Expression profiles have
been studied for responses to various stresses (9–11), environmental condi-
tions, such as light (12), and day/night cycling (13), symbionts (14),
pathogens (15–17), rehydration after dehydration (18), and various devel-
opmental processes (19).

Two types of microarrays are currently in use: cDNA microarrays (20) and
oligonucleotide microarrays (21). The basic microarray analysis performed
with both types of arrays is similar and based on the specific hybridization
of a labeled target to the immobilized nucleic acids (probe) on the array.
These two systems differ primarily in the nature of the DNA fixed to the
solid support. A number of reviews are available on their uses and advan-
tages (1, 2, 3, 7, 22, 23).

In this chapter, we summarize the methodology on gene expression
profiling in plants using cDNA microarrays.

3.2 Gene expression profiling methods

Methods for quantifying mRNA abundance in various plant tissues and
experimental conditions are: (i) RNA gel-blot (northern) analysis, (ii) differ-
ential display (24), (iii) quantitative real-time PCR, (iv) cDNA-amplified
fragment length polymorphism (AFLP) analysis (25), (v) serial analysis of
gene expression (SAGE) (26), (vi) massive parallel signature sequencing
(MPSS) (27), (vii) cDNA macroarray analysis (28), (viii) cDNA microarray
analysis, and (ix) oligonucleotide microarray analysis. These methods have
several advantages and disadvantages (7, 8, 29).

RNA gel-blot (northern) analysis is an established and reliable method,
which allows accurate quantification of specific transcripts, but it cannot
be applied for genome-scale expression analysis.
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Differential display uses low stringency PCR, a combinatorial primer set,
and gel electrophoresis to amplify and visualize larger populations of
cDNAs representing mRNA populations of interest. Differential display is a
relatively cheap and simple means of screening for differentially expressed
genes, and is particularly useful when the availability of RNA is limited.
However, this technique requires a large number of reactions to achieve
maximal coverage of all active transcripts and suffers from an output that
is not quantitative and identified sequences are often difficult to clone and
confirm (8).

Quantitative real-time PCR (QRT-PCR) has been demonstrated to gen-
erate robust, quantitative expression data for single genes and this
method offers rapid and reproducible results (30). One of the major
advantages of real-time PCR is its broad dynamic range with which one
can precisely quantify transcript concentrations over more than at least
five orders of magnitude (31). RNA gel-blot analysis and real-time PCR
are often used to confirm differential expression of genes detected by
DNA microarray analysis.

The principles of AFLP are applied to cDNA templates in cDNA-AFLP
analysis, which has been used to identify differentially expressed genes
involved in a variety of plant processes. This technique offers several advan-
tages over traditional approaches. Of particular importance is the fact that
poorly characterized genomes can be investigated in a high-throughput
manner. Because the stringency of cDNA-AFLP PCR reactions is quite high
(which is not the case with differential display) the fidelity of the cDNA-
AFLP system allows much greater confidence in acquired data and
differences in the intensities of amplified products can be informative (25).
As with the other profiling methods described here, the sensitivity of cDNA-
AFLP is only limited by the ability of cDNA libraries to capture
low-abundance transcripts (7).

SAGE is based on the capture and sequence analysis of a short region
close to the 3′ end of each cDNA in the sample (26), and it is a quantita-
tive or digital method of gene expression analysis like EST sequencing.
SAGE is time-consuming and requires an extensive foundation of sequence
information. Variations in amplification efficiency between ditags may lead
to distorted results (29).

MPSS, developed and commercialized by Lynx Therapeutics (Hayward,
CA), is based on methods to clone individual cDNA molecules on
microbeads and sequence, in parallel, short tags or signatures from these
cDNAs (27). The final output of MPSS is a set of abundances for thou-
sands of distinct 17- or 20-base signatures, most of which uniquely
identify a particular transcript. The parallel sequencing method produces
millions of MPSS signatures in only a few weeks, but the technology is
sufficiently complex, and unlike SAGE, it cannot be performed in indi-
vidual laboratories (8).

cDNA macroarray technology allows parallel and comparative analysis of
the expression of thousands of genes (28) as well as DNA microarray tech-
nology. The cDNA macroarrays and the cDNA microarrays differ primarily
in the type of solid support immobilized: that is, the macroarrays use a
membrane-based matrix while the microarrays use a glass or plastic slide.
In most cases, macroarray targets are radioactively labeled. The cDNA
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macroarray analysis is also less expensive than the oligonucleotide array
analysis. However, it takes a lot of work, such as printing on many
membranes, to prepare a whole genome macroarray. A number of reviews
have described how cDNA macroarrays are used and the advantages and
disadvantages of cDNA macroarray analysis (32, 33).

3.3 DNA microarrays: cDNA and oligonucleotide
microarrays

Compared with other methods, the DNA microarray technology has the
following important advantages: (i) it can measure thousands of different
mRNA transcripts in parallel, (ii) it provides semi-quantitative data, and (iii)
it is sensitive enough to detect low-abundance transcripts that are repre-
sented on a given array. In several organisms whose complete genome
sequence is available, DNA microarrays enable the monitoring of whole-
genome gene expression in a single experiment.

cDNA microarrays and oligonucleotide microarrays each have several
advantages and disadvantages. One advantage of cDNA microarrays is that
they can be prepared directly from the isolated cDNA clones. Once a set of
corresponding PCR products has been generated, microarrays can be
created in multiple versions containing the entire set of cDNA sequences,
resulting in large-scale arrays for identification of differentially expressed
genes of interest or small-scale arrays suitable for specific research appli-
cations. The most important advantage is that the cDNA microarray is
less expensive to make than a single oligonucleotide array. However,
cross-hybridization between homologous sequences is problematic for
cDNA microarrays.

One advantage of oligonucleotide arrays is that oligonucleotides can be
synthesized either in plates or directly on solid surfaces (in situ synthesis),
making it easier to prepare the DNA probes than for cDNA microarrays.
Also, the probes in an oligonucleotide array can be designed to represent
unique gene sequences such that cross-hybridization between related gene
sequences is minimized to a degree dependent upon the completeness of
available sequence information. One primary disadvantage of oligo-based
analysis is that oligonucleotide microarrays are expensive.

There are two types of oligonucleotide microarrays: one is the direct
synthesis of oligonucleotides on a solid (34). Microarrays of this sort are
produced by Affymetrix and Nimble Gen. The other is the immobilization
of pre-synthesized oligonucleotides, for example produced by Agilent
Technologies (Palo Alto, CA) and other companies. The spotted oligo micro-
arrays are typically comprised of a single 50- to 70-mer oligonucleotide for
each gene.

3.4 cDNA clones and their application for cDNA microarray
analysis

Currently there are nearly 23 million expressed sequence tags (ESTs) in
the NCBI public collection as of August 2004, about 4 million of which
derive from plants (http://www.ncbi.nlm.nih.gov/dbEST/). With many
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large-scale EST sequencing projects in progress and new projects being
initiated, the number of ESTs in the public domain will continue to
increase in the coming years. cDNA clones are a useful tool for expres-
sion profiling studies, because cDNA microarrays can be prepared
directly from the isolated clones.

Altogether, 19 RIKEN Arabidopsis full-length (RAFL) cDNA libraries from
plants grown under different conditions were constructed as reported
previously (4, 35, 36). We have isolated 245 946 RAFL cDNA clones and
they are clustered into about 18 000 non-redundant cDNA groups, cover-
ing about 70% of predicted genes (36; Seki et al., unpublished results).

The RAFL cDNAs were used for microarray analysis of expression profiles
of Arabidopsis genes (5, 6) under various stress conditions, such as drought,
cold and high salinity (9, 10), various treatment conditions, such as abscisic
acid (ABA) (37), rehydration treatment after dehydration (18), ethylene
(16), jasmonic acid (JA) (16), salicylic acid (SA) (16), reactive oxygen species-
(ROS-) inducing compounds such as paraquat and rose bengal (16), UV-C
(16), and inoculation with a pathogen (16, 17). We have also studied the
expression profiles in various mutants and transgenic plants (9, 16, 38, 39).
These studies have shown that cDNA microarray analysis is useful for
analyzing the expression pattern of plant genes under various stress and
hormone treatments, to identify target genes of transcription factors
involved in stress or hormone signal transduction pathways, and to iden-
tify potential cis-acting DNA elements by combining the expression data
with genomic sequence data. cDNA microarrays can be used in closely
related species with about 90% sequence homologies of coding regions,
such as rice and barley (40), and Arabidopsis and Thellungiella halophila (41).

In this chapter, we describe the protocol of our RAFL cDNA microarray
analysis.
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Protocols

CONTENTS
Protocol 3.1: Preparation of cDNA microarrays

Protocol 3.2: Preparation of cDNA targets

Protocol 3.3: Microarray hybridization and scanning

Protocol 3.4: Data analysis

The flowchart of the RAFL cDNA microarray analysis is shown in Figure 3.1.
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Protocol 3.1: Preparation of
cDNA microarrays

CDNA CLONES
We prepared a 7K RAFL cDNA microarray (10) to study the
expression profiles of Arabidopsis genes under various conditions.
The 7K RAFL cDNA microarray consists of about 7000 RAFL cDNA
clones isolated from full-length cDNA libraries. It includes drought-
and cold-inducible genes, responsive to dehydration (rd) and early
responsive to dehydration (erd). A PCR-amplified fragment from a λ
control template (TX803; Takara, Kyoto, Japan) is used as an
external control, and two cDNAs derived from the mouse nicotinic
acetylcholine receptor epsilon-subunit (nAChRE) gene and the mouse
glucocorticoid receptor homolog gene are included as negative
controls.

SEQUENCE ANALYSIS OF CDNA CLONE INSERTS
1. Extract the plasmid DNA with DNA extraction instruments of

Kurabo (PI–100; KURABO, Tokyo, Japan) or Beckman
(Biomek2000; Beckman Coulter, Tokyo, Japan).

2. Determine the DNA sequences using the dye terminator cycle
sequencing method with a DNA sequencer (ABI PRISM 3700;
Perkin-Elmer Applied Biosystems, Foster City, CA). Examine
sequence homologies with the GenBank/EMBL database using
the BLAST program.

AMPLIFICATION OF CDNA INSERTS
1. Amplify the inserts of cDNA clones by PCR using primers

complementary to vector sequences flanking both sides of the
cDNA insert, as described previously (9). Add plasmid
templates (1 to 10 ng) to 50 μl of a PCR mixture containing
0.25 mM of each nucleotide, 0.2 μM of each primer, 
1 × Ex Taq buffer (Takara, Kyoto, Japan), and 1.25 units of Ex
Taq polymerase (Takara, Kyoto, Japan). Perform the PCR as
follows: at 95°C for 3 min; 35 cycles at 95°C for 30 s, 60°C for
1 min, and 72°C for 3 min; and at 72°C for 3 min.

2. Precipitate the PCR products in isopropanol and resuspend the
DNA in 5 μl of TE to a final concentration of about 2 μgμl–1.
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3. Check one aliquot of each reaction product on a 0.7% agarose
gel to confirm amplification quality and quantity.

4. Add 2 μl of 2 × polymer (Fuji Photo Film Co., Kanagawa,
Japan) and 4 μl of dimethyl sulfoxide (DMSO) (Kishida
Chemical Co., Osaka, Japan) into 2 μl of DNA solution in 
96-well plates. Transfer the mixture into 384-well plates and
mix at least 10 times using an automatic dispenser (model
EDS-384S; Biotech Co., Ltd., Tokyo, Japan).

PRINTING ON GLASS SLIDES
1. Array the PCR products from 384-well microtiter plates onto

micro-slides (model Super Aldehyde substrates; Telechem
International Inc., Sunnyvale, CA) using a microarray stamping
machine (model SPBIO2000; Hitachi Software Engineering
Co., Ltd., Tokyo, Japan). The tip loads 2 μl of PCR products
(500 to 1000 ng μl–1) from 384-well microtiter plates and
deposits 0.5 nl per slide on 48 slides with spacing of 300 μm
in our system (10).

2. Postprocess the slides according to the manufacturer’s
protocol (Telechem International Inc., Sunnyvale, CA). Dry the
slides for more than 12 h in a desiccator (relative humidity
<30%). This period may facilitate binding of the printed DNA
and slide coating. Irradiate the slides with 65 mJ UV to obtain
cross-linked DNA.

3. Rock them in 0.2% SDS for 2 min twice and then rock in
distilled water for 2 min twice vigorously.

4. Transfer the slide racks into a chamber containing boiling
water and leave for 2 min. Remove the slide racks to a clean
glass container and leave them at room temperature for 5 min
to cool. Pour the blocking solution, containing 1 g of sodium
borohydride, 300 ml of phosphate-buffered saline (PBS;
Invitrogen, Carlsbad, CA), and 90 ml of 100% ethanol, into
the glass chamber.

5. Shake the slide racks gently for 5 min, transfer three times into
a new chamber containing 0.2% SDS and shake gently for
1 min.

6. Transfer them into a chamber containing distilled water, shake
gently for 1 min, and dry by centrifugation for 20 min to
remove any residual solution from the slides. Store the slides in
a desiccator.
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Protocol 3.2: Preparation of
cDNA targets

ISOLATION OF TOTAL RNA
Total RNA was prepared using TRIZOL Reagent (Invitrogen, Carlsbad, CA) in the following way.

1. Add 20–30 ml of Trizol reagent to a 50-ml Falcon tube and
incubate the tube at 50°C.

2. Homogenize 3–4 g plant tissues in liquid nitrogen.

3. Transfer the plant tissues using pre-cooled spoons.

4. Vortex for 30 s.

5. Incubate at 50°C for 2 min, then at RT for 5 min and keep it
on ice for 1 h.

6. Add 4–6 ml of chloroform and shake for 1min vigorously.

7. Leave for 2 min at room temperature.

8. Centrifuge at 10 000 g at 4°C for 20 min.

9. Transfer the supernatant to new tube, add 1/3 volume of 8 M
LiCl, mix and leave at 
−80°C for 1 h. Thaw at 50°C for a while and then thaw
completely (note: do not leave at 50°C longer than needed).

10. Centrifuge at 10 000 g at 4°C for 30 min.

11. Decant the supernatant, wash the pellet with 2 ml of 75%
ethanol and dry.

12. Dissolve the pellet in 1.3 ml of DEPC-treated distilled water.

13. Thaw at 50°C for a while and then thaw completely (note: do
not leave at 50°C longer than needed).

14. Centrifuge at 10 000 g at 4°C for 3 min. Divide it into two
tubes (each 650 μl).

15. Add 65 μl of 3 M sodium acetate and 650 μl isopropanol. Mix
and leave for 5 min.

16. Centrifuge at 15 000 g at 4°C for 10 min.

17. Decant the supernatant, wash the pellet with 75% ethanol
and dry.

18. Dissolve in 400 μl of DEPC-treated distilled water and store at
−80°C.
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ISOLATION OF mRNA
mRNA was prepared using the protocol according to the mRNA isolation kit (MACS, Miltenyi
Biotec, Bergisch Gladbach, Germany) as follows.

1. Incubate the elution buffer at 65°C, leave the lysis/binding
buffer and wash buffer at room temperature.

2. Add ca. 1 mg total RNA sample to the Eppendorf tube,
incubate the tubes at 65°C for 3 min and keep on ice.

3. Dilute up to 1 mg total RNA with at least 1 volume of
lysis/binding buffer. The final volume should be 0.5–5 ml.

4. Add 25 μl of oligo (dT) microbeads per 100 μg of the total
RNA sample, and mix by pipetting. (Note: do not allow to
bubble during the mixing).

5. Place a MACS Column Type M in the magnetic field of an
appropriate MACS separator.

6. Prepare column by rinsing with 250 μl of lysis/binding buffer
and let buffer run through.

7. Apply total RNA sample on top of the column matrix. Let the
solution pass through. Magnetically labeled mRNA is retained
in the column. 

8. Rinse the column with 1 × 250 μl of lysis/binding buffer.

9. Rinse the column with 4 × 250 μl of wash buffer.

10. Apply 200 μl of pre-heated elution buffer on top of the
column. mRNA is eluted by gravity. Typically, the third to sixth
drop will contain around 90% of the isolated mRNA.

11. Add 1/10 volume of 3 M sodium acetate and 3 volume of
ethanol to the eluted mRNA sample, and leave at −80°C for
1 h.

12. Centrifuge at 15 000 g at 4°C for 10 min.

13. Decant the supernatant, wash the pellet with 75% ethanol
and dry.

14. Dissolve in DEPC-treated distilled water and store at −80°C.
The final mRNA concentration should be over 200 ng μl–1. 

PREPARATION OF CY-DYE-LABELED CDNA TARGETS
1. Prepare 7-μl solution containing 1 μg of denatured poly(A)+

RNA with 1 ng of λ poly(A)+ RNA-A (TX802; Takara, Kyoto,
Japan) for external control, 50 ng μl–1 oligo-(dT) 12–18 mer
(Invitrogen, Carlsbad, CA). Incubate the annealing reaction
solution for 5 min at 70°C, and then at 42°C for 1–2 min.
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2. Add 8 μl of the buffer mixture containing 4 μl of
5 × Superscript first-strand buffer (250 mM Tris-HCl, pH 8.3,
375 mM KCl, and 15 mM MgCl2; Invitrogen, Carlsbad, CA), 2
μl of 0.1 M DTT and 2 μl of dNTP mixture (dATP, dCTP, dGTP,
each at 5 mM, and dTTP at 2 mM), 2 μl of 1 mM Cy3-dUTP or
Cy5-dUTP(Amersham Pharmacia, Piscataway, NJ), 2.5 μl of 40
units μl–1 RNase inhibitor (SIN–101; Toyobo, Osaka, Japan)
and 1 μl of 200 units μl–1 Superscript II reverse transcriptase
(Invitrogen, Carlsbad, CA) to the annealing mixture.

3. Following incubation at 42°C for 35 min, add 100 units of
Superscript II reverse transcriptase.

4. Incubate the reaction sample for an additional 35 min.

5. Following addition of 5 μl of 0.5 M EDTA, 10 μl of 1 N sodium
hydroxide, and 20 μl of distilled water to stop the reaction and
to degrade the template, incubate them for 1 h at 65°C.

6. Neutralize the solution with 25 μl of 1 M Tris-HCl (pH 7.5).

7. Combine the reaction products of two samples (one with Cy3
labeling and the other with Cy5 labeling).

8. Place the samples in a Microcon YM-30 microconcentrator
(Millipore, Bedford, MA).

9. Add 250 μl of TE buffer, spin for 17 min in a benchtop
microcentrifuge at a high speed to a volume of 10 μl, and
discard the flow-through product. Repeat this step four times.

10. Collect the targets by inverting the filter and spinning for 5
min.

11. Add several microliters of distilled water to the Microcon.

12. Invert the filter, spin, and add distilled water so that the final
volume of the collected targets is 18 μl.

13. Add 5.1 μl of 20 × SSC, 2.5 μl of 2 μg μl–1 yeast tRNA and 4.8
μl of 2% SDS to the probes.

14. Denature the target samples by placing them in a 100°C heat
block for 2 min, leave at room temperature for 5 min, and
then use for hybridization.
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Protocol 3.3: Microarray
hybridization and scanning

1. Spin the target sample for 1 min at 15 000 g to pellet any
particulate matter. Pipette the target solution close to the end
of the microarray slide.

2. Place a cover slip over the probe in such a way as to avoid the
formation of bubbles.

3. Place the slides in a sealed hybridization cassette (Telechem
International Inc., Sunnyvale, CA) and submerge in a 65°C
water bath for 16–20 h.

4. After hybridization, wash the slides in 2 × SSC, 0.03% SDS for
2 min, then in 1 × SSC for 2 min, and finally in 0.05 × SSC for
2 min.

5. Centrifuge (1 min at 2500 g) the slides immediately to dry.

6. Scan the slides with a ScanArray 4000 (GSI Lumonics, Oxnard,
CA) as described previously (9).
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Protocol 3.4: Data analysis

Image analysis and signal quantification were performed with QuantArray version 2.0 (GSI
Lumonics, Oxnard, CA). Background fluorescence was calculated from the fluorescence signal of
the negative control genes (the mouse nicotinic acetylcholine receptor epsilon-subunit gene and
the mouse glucocorticoid receptor homolog gene) in our RAFL cDNA microarray analysis. To
remove the systematic variation, it is necessary to normalize the microarray data (see Chapter
17). Gene-clustering analysis (see also Chapter 19) was performed with Genespring (Silicon
Genetics, San Carlos, CA).
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Identification of gene
expression patterns for a
molecular diagnosis of
kidney tumors
Holger Sültmann, Andreas Buneß, Markus Ruschhaupt,
Wolfgang Huber, Ruprecht Kuner, Bastian Gunawan, 
Laszlo Füzesí and Annemarie Poustka

4.1 Introduction

Over the past 20 years, significant success in the therapy of certain cancer
types has given rise to the hope that cancer will soon be curable. However,
it is becoming evident that many tumor types, which were previously
regarded as homogeneous disease entities, are composed of different
subtypes with varying patient prognosis and survival rates. These findings
may explain the varying degrees of success in cancer treatment. Since clas-
sical pathological parameters are often not sufficient to identify tumor
subtypes, novel markers for tumor diagnosis and new targets for differen-
tial tumor therapies are required.

Adult renal cell carcinoma (RCC) is one of the 10 most common human
malignancies in developed countries. Its global incidence has been increas-
ing continuously over the past 30 years (1). Males are afflicted twice as often
compared to females, and several genetic factors, such as the von Hippel
Lindau (VHL) gene are known to play a role in a subset of RCC. Apart from
these typical markers, other genes known to be involved in RCC include
VEGF (2, 3), EGFR (4, 5), TGFA (6), c-myc proto-oncogene (7, 8) and VIM
(9). RCC is divided into clear cell (ccRCC; 80% of all cases), papillary (pRCC,
10%), chromophobe (chRCC, 5%), and several other rare types. Although
the histopathological diagnosis of kidney cancer is well established in the
clinical routine, the molecular basis for the distinction of RCC types is
poorly understood.

New technologies to examine tissue samples taken from cancer patients
on a large scale have been developed in the genome projects. In particular,
DNA microarrays have been applied to various kinds of human tumors
(10–18) in order to find new cancer subclasses and to decipher their molec-
ular basis. However, there is an important issue associated with the
discovery of gene expression patterns to be used for diagnostic purposes.
The number of available tumor samples usually is much smaller (10–300)
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than the number of available probes (10 000–50 000). Therefore, special
attention should be devoted to avoiding over-interpretation of microarray
data. Analysis of differential gene expression has to account for multiple
testing, and classification methods must address the problem of overfitting
(see also Chapter 19). We propose the usage of various classification
methods for microarray data analysis in order to reduce the risk of over-
interpretation. We constructed RCC-specific cDNA microarrays
encompassing 4207 cDNA clones and hybridized these with labeled cDNA
derived from tumor samples of the three major RCC types. By using the
microarray data of 35 RCC samples, we identified a set of 18 genes that are
potentially useful for diagnosis and therapy of kidney tumors.

4.2 Experimental design

Thirty-five RCC samples (13 ccRCC, 13 pRCC, and 9 chRCC) were labeled
individually with Cy3. A Cy5-labeled sample pool of 28 tumor RNA samples
(15 ccRCC, 8 pRCC, and 5 chRCC) was used as a common reference for all
hybridizations. Both Cy3- and Cy5-labeled samples were hybridized
competitively against the cDNA probes on the microarrays. The pixel inten-
sities for each spot were quantified, and data were normalized as described
(19). The generalized log ratios were used for tumor classification.

4.3 Molecular classification of kidney tumors

For analysis, we chose a broad range of classification approaches to iden-
tify and address the potential dependencies between classification
approaches and their prediction abilities (see also Chapter 19). To this end,
we selected the frequently used prediction analysis for microarrays (PAM)
(21), support vector machines (22) and random forest (23) algorithms. The
rationale of a classification is as follows: A set of microarray data (the train-
ing set) is divided into two or more classes (here, the three RCC types). The
goal is to build a classifier (a method that is able to predict the classes in
an independent data set). Ideally, the performance of the classifier is eval-
uated by testing its prediction ability on an independent test set for which
the classes are also known. In practice however, due to the small number
of available samples, cross-validation is performed, where the samples are
randomly divided into equally sized subsets. In each step, one subset is left
aside, the classifier is built on the remaining samples, and the classes of the
left-out samples are predicted and compared with the actual classes. In our
data set, the prediction ability was assessed by 10-fold cross-validation, that
is in each step 90% of the samples are used as a training set and 10% as a
test set. The whole procedure was repeated 20 times.

Microarrays can detect small fold changes in pairwise comparisons.
However, small fold changes are often not useful for diagnostic routines.
Hence, we applied a filter in order to select for genes whose expression levels
changed considerably between two tumor types. To avoid overfitting, our
gene filtering was applied in each cross-validation step on the training set.
Therefore, we calculated the mean expression value of every gene/EST and
every tumor type and selected all genes whose group means’ fold change
was >2 in any pairwise group comparison. Depending on the samples in

40 DNA Microarrays



the training set, approximately 440 of the 4207 genes on the microarrays
fulfilled this criterion.

The microarray data of 35 kidney tumor samples were used for the molec-
ular classification of the tumor subgroups. All classification methods
(21–23) showed a high prediction ability and gave similar results: Each
method correctly classified at least 32 out of 35 samples, 31 in at least 95%
and one in at least 80% of the repetitions (not shown). One ccRCC sample
(no. 14) was consistently misclassified by all methods, two others were
misclassified by random forest and SVM in at least 60% of the repetitions
(not shown). In PAM (Plate 1), only sample 14 was “incorrectly” classified
while all other samples corresponded to the histopathological diagnosis.
Thus, the misclassification rate was less than 3%. The tumor samples that
did not match the histopathological classification were reanalyzed by
pathology. The initial diagnosis was confirmed, suggesting that there was
no error in the clinical diagnosis of these tumors.

4.4 Building a classifier for kidney tumor diagnosis

Knowing that the prediction ability of the various classifiers was high, we
applied the same methods to all samples in order to build a final classifier
that could be used for diagnostic purposes. In the following, we will concen-
trate on the classifier of the PAM method.

The classifier of the PAM method was based on 18 genes. We visualized
the generalized log ratios of these genes by different colors (Plate 2). Among
the 18 genes were GAPD, CXCL14, ADFP, SPP1, and CD9. Several of these
are known key players in cancer and differentiation: CXCL14 is a cytokine
that is frequently down-regulated in tumors (24) but up-regulated in inflam-
matory cells of the tumor microenvironment (25), ADFP is a protein
involved in cell differentiation and has been found to be highly over-
expressed in ccRCC (26). The osteopontin gene (SPP1) is a target for TP53
(27) and a lead marker for colon cancer progression (28). Two members of
the galactose-binding lectin family (LGALS3 and LGALS9) are known to be
involved in tumorigenic processes. Two genes (CD9 and TSPAN1) coded for
cell surface proteins of the tetraspanin family, which mediate signal trans-
duction events in cell development, activation, growth and motility. This
indicates that the three kidney tumor types can be distinguished by the
activation status of specific biological processes. Two of the classifier genes
(GAPD and LGALS3) were represented by independent clones. The gene
expression patterns of these clones were very similar, suggesting that differ-
ent spots on the microarrays give highly reproducible results.

The relative gene expression pattern suggested that the chRCC tumors
can be clearly distinguished from the ccRCC and pRCC. With the excep-
tion of GAPD, there is an almost inverse relationship of expression patterns
of all 18 genes between these two groups. In contrast, the distinction
between ccRCC and pRCC tumors is not obvious and appears to rely prima-
rily on the expression of the GAPD gene, which is up-regulated in ccRCC
but down-regulated in pRCC. This may reflect different metabolic activities
between these two tumor types. This finding is consistent with a previous
report about high levels of glycolytic enzymes in ccRCC samples (29). The
importance of GAPD as a part of the classifier was supported by its low
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expression in tumor 14, which was consistently misclassified in all algo-
rithms. Apart from GADP, ccRCC and pRCC tumor types differ mainly by
the expression of crystallin alpha B (CRYAB), osteopontin (SPP1) and
tetraspanin 1 (TSPAN1).

4.5 Summary

Gene expression profiling provides a potent universal tool for improved
molecular diagnosis and prognostic evaluation. This tool should be care-
fully handled in order to avoid data misinterpretation, wrong conclusions
and generalizations. Here, we have demonstrated a way to identify a set of
18 genes that discriminate between the three major types of RCC, provid-
ing candidates for a molecular differential diagnosis.

The establishment of a diagnostic tool requires a robust platform, which
is easy to handle, highly sensitive and specific. Whether or not microarrays
will eventually enter the field of diagnostic applications remains open.
However, microarrays are perfectly able to detect gene expression patterns
that can subsequently be exploited for diagnosis using different platform
technologies. For example, it is conceivable that array-based analyses lead
to the identification of a set of highly diagnostic genes that are then used
in diagnostic routines using other (e.g. RT-PCR-based) methods. To achieve
this the number of target genes needs to be reduced, and highly specific
gene expression patterns between the tissue types need to be identified.

We are aware of the fact that the current histopathology-based kidney
tumor diagnosis is robust, and molecular methods are not likely to replace
the clinical routine diagnosis of kidney cancer in the near future. However,
in contrast to routine histopathology, microarray data yield important
insights into the molecular differences between kidney tumors: Gene
expression patterns can not only confirm current diagnostic procedures,
but at the same time reveal further highly promising target genes for a more
specific therapy directed against the different kidney tumor types. The
prerequisites to achieve this aim are the “druggability” of the targets and
the availability of highly specific compounds with low degrees of side
effects. To this end, more effort is urgently needed to systematically exploit
the huge amount of gene expression data for the therapy of cancer patients.
The application of genome-wide microarrays for RCC studies may yield
additional genes and ESTs that could be used for the identification of previ-
ously unrecognized kidney tumor subgroups and novel therapeutic targets.
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Protocol 4.1: Tissue samples and
RNA isolation

Thirty-five kidney tumors (13 ccRCC, 13 pRCC, 9 chRCC), which belonged to a larger study (19)
were processed by standard pathology. Immediately after surgery, tumor pieces were subjected
to routine histopathological examination as described previously (19). Other tumor pieces were
snap-frozen in liquid nitrogen and stored at −80°C. Following homogenization with a Micro-
Dismembrator S (Braun Biotech, Melsungen, Germany), total cellular RNA was isolated by the
Trizol method (TriFast, peqlab, Erlangen, Germany). RNA quality was checked with the Agilent
2100 bioanalyzer (Agilent Technologies GmbH, Waldbronn, Germany). Only high-quality RNA
(28S/18S rRNA and E260/E280 ratios close to 2) was used for the experiments.
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Protocol 4.2: Microarray
experiments

The cDNA microarrays encompassed 1794 clones for oncologically relevant genes and 2314
genes and expressed sequence tags (ESTs) found to be differentially expressed in previous work
(19). With further control genes, altogether the microarrays contained 4207 genes and ESTs.
Insert DNA was amplified from bacterial clones by PCR using vector-specific primers. The PCR
products were precipitated by isopropanol, washed in 70% ethanol, dried and dissolved in
spotting buffer consisting of 3 × SSC/1.5 M betaine. Presence of product bands was confirmed
by agarose gel electrophoresis (Ready-to-Run, Amersham Pharmacia Biotech, Freiburg,
Germany). The DNA was spotted in duplicate onto epoxysilane-coated glass slides (Quantifoil,
Jena, Germany) using the Omnigrid (Genemachines, San Carlos, CA) arrayer and SMP3 split pins
(Telechem, Sunnyvale, CA). After spotting, microarrays were rehydrated, and DNA was
denatured with boiling water prior to washing with 0.2% SDS, water, ethanol, and isopropanol.
The arrays were dried with pressurized air.
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Protocol 4.3: RNA labeling and
hybridization

Ten μg total RNA were mixed with 1 μg (dT)17 primer, incubated at 70°C for 10 min and cooled
on ice. The labeling reaction was performed in 12.5 μl containing 2.5 μl 5 × RT buffer
(Invitrogen, Karlsruhe, Germany), 1.25 μl 0.1 M DTT, 1 μl dNTP mix (5 mM each dATP, dGTP,
dTTP), 0.5 μl 3 mM dCTP, 0.5 μl (20 U) RNasin, 0.5 μl 1 mM Cy3- or Cy5-labeled dCTP
(Amersham) and 1 μl (100 U) Superscript II reverse transcriptase (Invitrogen). The mixture was
incubated for 1 h at 42°C, and the reaction was stopped by addition of 1.25 μl 50 mM EDTA
(pH 8). The RNA was removed by hydrolysis with 5 μl 1 M NaOH at 65°C for 10 min, followed
by neutralization with 1 μl 5 M acetic acid. Cy3- and Cy5-labeled samples were combined,
precipitated with 100 μl isopropanol at −20°C for 30 min and centrifuged at 13,000 g for 15
min. The pellets were washed with 70% ethanol, air dried, and dissolved in 30 μl 1 × DIG-Easy
hybridization buffer (Roche Diagnostics, Mannheim, Germany), containing 5 × Denhardt’s
solution and 10 ng μl–1 Cot1-DNA (Invitrogen). The sample was heat denatured (65°C, 2 min)
and hybridized to the DNA on microarrays in a hybridization chamber (Corning, Acton, MA)
overnight at 37°C. Unspecific probe binding was removed by washing with 1 × SSC/0.1% SDS
(15 min) and 0.1 × SSC/0.1% SDS (10 min) followed by cleaning with 70% ethanol, 95%
ethanol, and isopropanol before drying with pressurized air.
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Protocol 4.4: Signal
quantification and data analysis

Arrays were scanned with the GenePix 4000B microarray scanner (Axon Instruments Inc., Union
City, CA), and spots were quantified using Arrayvision 6.0 software (Imaging Research Inc., St.
Catharines, Ontario, Canada). Intensity values for duplicate spots of each cDNA clone were
averaged. Background-corrected intensity values were normalized and transformed to
generalized log-ratios through the VSN method (20) (see also Chapter 17). All analyses were
performed using R (www.r-project.org), and Bioconductor packages (www. bioconductor.org).
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Gene expression analysis
of differentiating neural
progenitor cells – a time
course study
Ulf Gurok and Ulrike A Nuber

5.1 Introduction

Cellular states are determined by the expression of thousands of genes.
Thus, the transition between cell types, for example from a progenitor cell
to a differentiated cell, involves changes in the activity of many genes. This
transition is not a sudden event, but takes place over a certain time range.
The microarray technology allows us to simultaneously measure expression
patterns of thousands of genes. To identify gene expression changes under-
lying the differentiation of neural progenitor cells (NPCs), we performed a
time course study using cDNA microarrays. This chapter also addresses
certain technical aspects, such as the fast and automated amplification of
cDNA probes for the generation of DNA microarrays and the problem of
limited biological material.

5.2 The experiment

We prepared cultures of NPCs from mice and differentiated these in vitro
into more mature cells of the central nervous system: astrocytes, neurons,
and oligodendrocytes (Figure 5.1) (1). Gene expression changes take place
during the differentiation of NPCs and were analyzed with our cDNA
microarray platform. We were mainly interested in early changes that take
place during the transition from an undifferentiated cell type to a differ-
entiated one. The hybridization scheme (Figure 5.1) depicts the
cohybridization of cDNA derived from RNA of undifferentiated NPCs as a
reference with targets from NPCs that were allowed to differentiate for 1,
2, or 4 days. Bioinformatics tools were used to normalize the obtained
microarray data and to identify differentially expressed genes. This data was
further subjected to a cluster analysis to deduce onset and dynamics of rele-
vant gene expression changes (see also Chapters 19 and 20).

It is well known that cells change during cultivation. Therefore, we mini-
mized the propagation time in vitro. However, this limits the amount of
RNA available for analysis. To perform experiments with small amounts of
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RNA, one can either amplify the starting material or the signal on the array.
RNA can be amplified using a number of different protocols. They usually
rely on the activity of reverse-transcriptase to generate cDNA, which serves
as template for an RNA polymerase. The resulting RNA (aRNA) is then
hybridized onto a microarray. A disadvantage is, however, that the ampli-
fication procedure potentially introduces a bias and therefore might change
the original proportions of different transcripts that one actually wants to
measure with a microarray. We decided to abstain from RNA amplification
and instead applied a signal amplification method based on the 3DNA
dendrimer technology (Genisphere, Hatfield, PA). This method relies on the
specific hybridization of highly branched molecules called dendrimers to
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Figure 5.1. 

Neural progenitor cell differentiation in vitro. The photographs depict morphological changes
associated with adhesion, migration, and differentiation of neural progenitor cells within the first 4
days after induction of differentiation. Either neurotrophic growth factor BDNF or NT4 was added.
Arrows indicate the microarray hybridization scheme, where RNA from differentiated cells was co-
hybridized with RNA from undifferentiated cells as a reference. Scale bar equals 50 μm.



the array-bound samples. These structures carry multiple fluorescent labels
like Cy3 or Cy5. Therefore, each probe on the array is visualized by many
fluorescent molecules thereby increasing the signal intensity and facilitat-
ing the detection with the array scanner.

Our protocol describes the preparation of cDNA microarrays, the
hybridization of cDNA samples derived from RNA of undifferentiated and
differentiated NPCs to the arrays, signal amplification with 3DNA
dendrimers, scanning of the arrays, processing of raw data, identification
of differentially expressed genes, and a cluster analysis of relevant gene
expression changes.

5.3 Summary

We have applied cDNA microarrays containing 13 627 clones to analyze
gene expression changes that take place during the in vitro differentiation
of neural progenitor cells. The rapid production of arrays was facilitated by
applying a robotic platform combined with a cooled microtiter plate storage
system. To deal with the limited amount of RNA available, we applied a
signal amplification method (Genisphere Inc. (see Protocol 5.3)). This
allowed us to minimize cultivation time of primary cells, hybridize each
sample twice with dyes swapped, and exclude potential biases in relative
transcript abundance that might be introduced by an RNA amplification
procedure.

Using a variance estimation we determined that a cut off in expression
change for each individual clone set at twofold resulted in 2–5% false posi-
tives (see Protocol 5.4). This rate of false positives was further reduced by
considering only such clones as relevant, whose expression changed more
than twofold in two experimental series and represents another data filter-
ing step.

To gain a more sophisticated insight into the molecular processes under-
lying the differentiation of neural progenitor cells we collected samples at
different time points during the experiment. We followed the changes in
gene expression in the cells over a 4-day period. This approach gives a more
detailed insight into the molecular mechanisms involved in cellular devel-
opment in our model system. For an individual gene or a group of genes a
time course illustrates the onset and dynamics of expression changes that
take place after induction of differentiation. A cluster analysis helps to iden-
tify such groups of coregulated genes which might also be involved in
shared biological processes (see Protocol 5.5).

The goal of microarray experiments like this one is to learn more about
gene expression changes that occur during the switch of cell states. Genes
that are down-regulated during differentiation are preferentially expressed
in the progenitor cells. They might be relevant for maintaining their self-
renewing and differentiation capacity. For example, cluster 9 contains
genes with the strongest and the earliest expression changes, and most of
them encode cell-cycle proteins, indicating that one of the first events in
this in vitro differentiation is cell cycle exit. In contrast, up-regulated genes
are likely relevant for the process of differentiation or necessary for a
specific function of the differentiated cell. Also, the timing of gene expres-
sion changes is definitely important for proper differentiation. Genes that
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change early, especially those related to transcriptional regulation or signal
transduction, are likely to have regulatory functions in the differentiation
process. Many genes whose expression changes later encode for products
that are important in the differentiated cell.

The heterogeneity of the neurosphere culture complicates the evaluation
of the microarray results. Changes in expression of individual genes are
unlikely to take place in all cells equally. Instead, the fold changes meas-
ured can be due to much stronger changes in gene expression in
subpopulations of cells. Therefore, it is desirable to attribute individual gene
expression changes to certain cell types, which can be done by immuno-
fluorescence using antibodies against corresponding gene products. The
purpose of this analysis was to discover genes that are relevant for the main-
tenance of neural progenitor cells, as well as for the migration and
differentiation of their progeny. Having identified candidate genes relevant
for these processes and knowing the dynamics of their expression is crucial
for further functional analyses that will enhance our understanding of adult
neural progenitor cells.
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Protocol 5.1: Microarray
production

The array used in this study contains 13 627 clones. Of these 10 080 are from the arrayTAG clone
set (LION Bioscience, Heidelberg, Germany) and are short, sequence-verified murine cDNA
clones, which are usually located close to the 3′ end of the respective transcript, but do not
contain poly-A sequences. From the resource centre of the German Human Genome Project
(RZPD, Berlin, Germany) 3 510 murine cDNA clones representing brain-expressed transcripts were
obtained. In addition, 34 plant cDNA sequences were included. LION clones were amplified with
LION 3′ and LION 5′ primers, RZPD and plant clones with M13 forward and M13 reverse primers.
Clones were kept as inserts in plasmid vectors in Escherichia coli glycerol stocks in 96-well plates.

Since cDNA microarrays in general consist of thousands of clones, manual PCR is not applicable.
We have used an automated PCR setup consisting of a robotic system from Tecan (Genesis
Workstation 200, Tecan, Crailsheim, Germany) combined with a temperature-controlled hotel
(automatic incubator cytomat 6002, Heraeus, Hanau, Germany). Template microtiter plates
containing bacterial clones as well as empty PCR microtiter plates were stored in the hotel at 4°C
(Figure 5.2B, C).The process was set up as follows: microtiter plates from the hotel were placed
onto the robotic platform (Figure 5.2A) by means of an elevator within the hotel and a plate
gripper of the robot. Next, PCR master mix (50 μl/well) was distributed and bacterial template
from glycerol stocks (2 μl/well) was added by a liquid handling system (Figure 5.2A). The finished
plates were transported back into the hotel (Figure 5.2B, C). They could be stored there or taken
out while the process continued. Ready-to-cycle PCR plates were either immediately processed
using external PrimusHT multiblock thermal cyclers (MWG Biotech, Munich, Germany; Figure
5.2D) or stored at −20°C until PCR amplification.

In addition, this system prepared the PCR products for evaluation with agarose gel
electrophoresis and for DNA precipitation. In detail, PCR microtiter plates after PCR amplification
as well as empty microtiter plates were placed in the hotel (Figure 5.2B, C). Then, each PCR plate
along with an empty microtiter plate was transported out of the hotel onto the robotic platform
(Figure 5.2A). 5 μl of gel-loading buffer was distributed into empty microtiter plates by a liquid
handling system and 5 μl of 50 μl PCR product was added. All PCR products in these gel-loading
plates were evaluated by agarose gel electrophoresis using the RoboSeq 4204S (MWG Biotech).
To the remaining 45 μl of PCR product precipitation mix was added by the liquid handling
system (see below). The combination of the Heraeus hotel with the liquid- and plate-handling
robotic system from Tecan and the external PCR cyclers from MWG Biotech facilitated high-
throughput PCR amplifications of cDNA clones to be used as probes for DNA microarrays.

After addition of precipitation mix (2.5 volumes ethanol, 0.1 volume sodium acetate) by the
liquid-handling system, plates were transported back into the hotel. After further steps were
performed manually, plates were incubated at −80°C for 30 min, and centrifuged (20 000 g, 
30 min, 4°C). The pellets were washed with 70% ethanol, centrifuged again (20 000 g, 15 min,
4°C), and resuspended in 18 μl 3 × SSC. Eight microliters were transferred into 384-well plates
by a Multimek 96/384 (Beckman Coulter, Krefeld, Germany) and stored at −20°C. These PCR
products were printed on Corning GAPS II slides by using a robotic spotting device (SDDC-2
MicroArrayer, ESI, Toronto, Canada; ChipWriter Pro, BIORAD) with SMP3 pins from TeleChem
International (Sunnyvale, CA). The average spot center-to-center distance was 204 μm.
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Figure 5.2. 

Images of the Genesis Workstation 200 from Tecan (A), the automatic incubator cytomat 6002 from
Heraeus (B, C), and the PrimusHT multiblock thermal cyclers from MWG Biotech (D), which were
used to handle and amplify the cDNA microarray clones.

(A) (B)

(D)(C)

Table 5.1

PCR reaction for amplification of clones

Reaction mix Primers

10 × PerkinElmer PCR buffer 5 μl LION 5′ AGCGTGGTCGCGGCCGAGGT 
dNTPs (1 mM each) 10 μl LION 3′ TCGAGCGGCCGCCCGGGCAGGT
MPI taq (made inhouse) (10 U/μl) 2 Units M13 forward GTAAAACGACGGCCAG 
Forward primer (10 μM) 2 μl M13 reverse CAGGAAACAGCTATGAC
Reverse primer (10 μM) 2 μl
Nuclease-free water ad 50 μl 

Thermal profile LION primers M13 primers

Temperature Time Cycle Temperature Time Cycle 
number number

Initial denaturation 94°C 3 min 1 × 94°C 5 min 1 ×
Denaturation 94°C 30 s 94°C 45 s 
Annealing 68°C 30 s 35 × 54°C 90 s 35 ×
Elongation 72°C 50 s 72°C 2 min
Final elongation 72°C 10 min 1 × 72°C 10 min 1 ×



Protocol 5.2: Cell culture and
RNA preparation

Cells were prepared and cultivated according to standard protocols from the literature. A
detailed description is given in Gurok et al. (1). Briefly, the progenitor cells grew in suspension
and formed spherical aggregates called neurospheres. Differentiation of neurosphere cells was
induced by removing a mitogen epidermal growth factor (EGF), allowing the cells to attach to
the dish which was coated with the adhesive substrate poly-L-lysine, and by addition of either
brain-derived growth factor (BDNF) or neurotrophin 4 (NT4) to the differentiation medium. Both
are neurotrophic factors and support neuronal differentiation. This treatment led to breaking up
of the neurosphere aggregates. The cells migrated away from the sphere and changed their
morphology (Figure 5.1). They also sythesized marker proteins for distinct neural lineages such as
βIII-Tubulin or GFAP (not shown).

We took samples of the cells before induction of differentiation and after 24, 48, and 96 h of
differentiation. Total RNA was isolated with Trizol reagent (Invitrogen), precipitated with ethanol
and resuspended in nuclease-free water. The concentration was determined
spectrophotometrically and the quality was checked by agarose gel electrophoresis.
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Protocol 5.3: Hybridization,
washing and scanning

For every co-hybridization two RNAs were labeled in a reverse transcriptase (RT) reaction, RNA
from undifferentiated and from differentiated cells, resulting in three hybridizations each for the
BDNF series and the NT4 series (Figure 5.1). To account for dye-specific effects every
hybridization was done twice, with the dyes exchanged by flipping the RT primers so that every
RNA/cDNA was labeled once with the Cy3-specific capture sequence and once with the Cy5-
specific sequence. Thus, six arrays were used for each series (NT4 and BDNF), adding up to 
12 hybridizations in total.

Before hybridization, the spotted material was rehydrated by holding the slides over hot water
until a vapor coating appeared, and quickly dried by placing them on a hot plate (98°C) for 
3–5 s. Then the spotted material was crosslinked with the slide’s surface by two successive UV
crosslinking steps (120 mJ) in a UV Stratalinker 1800 (Stratagene, Amsterdam, The Netherlands).
Remaining chemically active sites on the surface were blocked by 15 min incubation in succinic
anhydride/sodium borate solution. Afterwards, the slides were briefly washed in ultrapure water
and dried by centrifugation (125 g, 3 min, room temperature) and 3–5 s incubation on the hot
plate (98°C). They were now ready for hybridization.

Labeling and hybridization reactions were performed using the 3DNA Array 50 Expression Array
Detection Kit (Genisphere, Hatfield, PA; Figure 5.3). The labeling kit was used according to
manufacturer’s instructions. For each labeling reaction, 20 μg of total RNA was deployed. In
brief, RNA and RT primers were mixed, heat denatured, and RNase inhibitor was added. Then a
reaction mix consisting of the Superscript II RT (Invitrogen), Superscript II reaction buffer, dNTPs,
and DTT was pooled with the RNA/RT primer mix. The RT was allowed to react for 2 h at 42°C
before the reaction was stopped and the DNA/RNA hybrids were heat denatured.

The primers for the reverse-transcription contained a poly-T sequence which bound to the poly-
A tail of the mRNA. In addition they included a capture sequence which allowed for
discrimination of the two cDNA pools after hybridization of synthesized cDNA to the array.

After cDNA synthesis and incorporation of the capture sequences, the cDNA was concentrated
according to the manufacturer’s instructions. Briefly, linear acrylamide, NaCl, and ethanol were
added to the reactions. The mix was incubated at −20°C for 30 min and then centrifuged at
12,200 g at room temperature for 15 min. After aspiration of the supernatant the pellets were
washed with 70% ethanol, recentrifuged for 5 min, and dried in a heat block at 65°C for 20 min.

For cDNA hybridization to the array the pellets were carefully resuspended in 10 μl of nuclease-
free water and heated to 65°C for 10 min. Then the final hybridization mix was prepared and
incubated at 75°C for 10 min and 45°C for 20 min. Meanwhile the array was prewarmed to
45°C for 15 min. The final hybridization mix (cDNA) was mixed, centrifuged briefly, applied to
the prewarmed array and covered with a coverslip. The slide was put into a sealed humidified
chamber and was incubated in a water bath at 42°C overnight.

The next day the 3DNA capture reagents, that is the dendrimers, were hybridized to the array.
First, the array was washed by sequential incubation in 2 × SSC/0.2% SDS for 10 min, in 2 × SSC
for 10 min, and in 0.2 × SSC for 10 min at room temperature. To remove remaining liquid from
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Figure 5.3. 

Labeling and detection of mRNA with Genisphere dendrimer technology. (A) Messenger RNA is
reverse transcribed into cDNA using unlabeled nucleotides and a poly-T oligo, that carries a capture
sequence. Two such cDNA populations are co-hybridized to the microarray. These are specifically
detected by the 3DNA capture reagent. (B) The capture reagent contains dendrimers, large molecules
composed of DNA strands coupled to fluorescent labels (Cy3 and Cy5, depicted as circles). The
dendrimers present sequences complementary to the capture sequences on the cDNA, thereby
allowing the detection of cDNAs derived from one RNA pool only. In consequence, a single cDNA
molecule attracts approximately 45 fluorescent labels (Cy3 or Cy5) to the microarray, leading to a
higher sensitivity of this method compared to the hybridization of cDNA directly labeled during
reverse transcription with Cy3- or Cy5-coupled nucleotides.

the slide surface, it was transferred into a slide holder and centrifuged (125 g, 3 min). Meanwhile
the 3DNA capture reagents were thawed in the dark for 20 min. 3DNA capture reagents and the
hybridization buffer were then heated to 55°C for 10 min, and an anti-fade reagent was added
to the hybridization buffer. The final hybridization mix (3DNA) was prepared, mixed very
carefully, and incubated at 75°C for 10 min followed by an incubation at 45°C for 20 min. The
array was again prewarmed as before. The mix was applied to the array and the slides were kept
in a dark humidified chamber at 42°C for 3 h. Subsequently, the array was washed as before in
2 × SSC/0.2% SDS for 10 min, 2 × SSC for 10 min, 0.2 × SSC for 10 min, and finally briefly in
deionized water. The slide was dried by centrifugation (125 g, 3 min) followed by an incubation
at 42°C for 5 min. It was stored in a dry and dark box until scanning.

The arrays were scanned with the Affymetrix 428 Array Scanner (Affymetrix, Santa Clara, USA).
Fluorescence intensities of Cy3 and Cy5 were measured separately at 532 nm and 635 nm. The
photomultiplier tube gain was typically between 40–55 dB for Cy3 and 35–45 dB for Cy5. This
ensured that the signal intensity reached saturation in less than 1% of the spots. The resulting
images were saved as 16-bit data files in tag image file format (TIFF).

Table 5.2

Final hybridization mix (cDNA) Final hybridization mix (3DNA) 

Concentrated cDNA 10 μl Hybridization buffer + Anti-Fade 25.0 μl 
Hybridization buffer 22 μl 3DNA capture reagent 1 (Cy3) 2.5 μl 
Array 50 dT Blocker 2 μl 3DNA capture reagent 2 (Cy5) 2.5 μl 
Cot–1 DNA 2 μl Nuclease-free water 5.0 μl 

Cot–1 DNA 2.0 μl 



Protocol 5.4: Data processing

The image files were imported into the Microarray Suite image analysis software (Version 2.0),
which runs as an extension of IPLab Spectrum Software (Scanalytics, Fairfax, VA). The software
determined the raw spot intensities of Cy3 and Cy5 and performed a local background
subtraction. Empty spots and spots carrying plant sequences were excluded from further
analysis. Each dye swap experiment was normalized by applying variance stabilization (see also
Chapter 17) (2) using the vsn package of bioconductor (http://www.bioconductor.org). Means
of normalized log-products and log-ratios of each dye swap experiment pair were used for
further analysis. Normalization procedures were performed using R (http://cran.R-project.org).

To determine a meaningful cut-off value that designates differentially expressed genes we
applied a statistical analysis which considers the small number of biological replicates and aims at
minimizing the percentage of false positives. To do so, a variance estimation using a pooled
estimate of the variance over all genes of three self-to-self comparisons with RNA from
undifferentiated cells was performed. A similar approach has been described by Sabatti et al. (3).
In order to use a robust variance measurement we determined the median of absolute deviation
(MAD) as variance estimator. The MAD in all three independent experiments of self-to-self
comparison was very similar: 0.297 ± 0.021. Based on this analysis, we can assume a rate of 2%
false positives when applying a universal threshold of 2.17-fold change. A rate of 5% false
positives can be assumed when applying a threshold of 1.8-fold. We therefore considered all
clones above a 2.0-fold change as relevant. Thus, we can assume a false positive rate of 2–5% at
this point of analysis.

To extract clones that are of interest for further analysis we concentrated on all clones, whose
expression changed more than twofold in at least one of the three time points of differentiation
in both experimental series. These were 722 clones in the BDNF series and 624 in the NT4 series.
Since both neurotrophic growth factors target the TrkB receptor, they cause very similar
molecular effects in the cells. Their functions in vivo, however, do not perfectly overlap (4). To
find common biological effects related to neural differentiation we then took the intersection of
both lists, amounting to 454 clones. In addition this step further reduced the number of false
positives.
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Protocol 5.5: Cluster analysis

Of the 454 clones, 441 clones showed a consistent up- or down-regulation at the three
differentiation time points were included in a cluster analysis. We clustered the 441 datasets,
each representing a single time course, by applying the k-means algorithm and using a refined
Euclidean distance measure (Figure 5.4). This specifically takes into account the time dependence
of gene expression changes. We performed k means clustering with k values ranging from 3 to
15 and found that for our dataset, k =10 is optimal to separate many clearly different dynamics
without separating genes with too similar dynamics. The distance was defined as the weighted
sum of k-means assignment and a similarity of shapes between cluster centers (gradient). The
distance measure (D) was defined as follows: D(x,y) = a d1(x,y)+(1-a) d2(x,y) where a is 0.5, x,y
are the two gene profiles to be compared, d1 the Euclidean distance between x and y, and d2
the gradient of x and y. These calculations and the respective visualization were carried out using
MATLAB (Version 6.0.0.88, Release12, MathWorks, MA).
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Figure 5.4. 

(A) Clusters of clones with similar expression changes over time. The dynamic behavior of the 441
clones that are consistently up- or down-regulated in both the BDNF and NT4 series is shown
separately. For each series, 10 clusters were found. Clusters 1–5 contain up-regulated, and clusters
6–10 down-regulated clones. The x-axis depicts the three time points of differentiation. The y-axis
shows relative fold changes, that is expression changes referred to the undifferentiated state (0 h).
These relative numbers are estimated logarithmic fold changes. Note that y-axis values at 24 h which
are different from the value 0 indicate that the expression of a clone had already changed between 
0 h and 24 h. (B) Numbers of clones contained in each cluster of the NT4 and BDNF series. Copyright 
© 2004 by the Society for Neuroscience.
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A microarray-based
screening method for
known and novel SNPs
Ena Wang and Francesco M Marincola

6.1 Introduction

Genetic polymorphism is a hallmark of human biology and the basis for
individuality. Although the completion of the human genome project
provides the first reference sequence of all human chromosomes the chal-
lenge remains to identify and characterize the frequency of deviations from
this reference among populations with different ethnic background as well
as individuals carrying distinct traits within a population (1).
Approximately, 1.8 million polymorphic sites mostly consisting of single
nucleotide polymorphisms (SNPs) have been so far discovered throughout
the human genome (http://snp.cshl.org;http://www.ncbi.nlm.nih.gov/
SNP/). The approximate frequency of SNP occurrence is one per kilobase
(2, 3). Detection of SNPs due to genetic variation in a given population
(polymorphisms) or subsequent genetic adaptations occurring throughout
life (mutations) has gained increasing attention due to the functional impli-
cations that SNPs in coding and non-coding regions bear on biological and
pathological events. In fact, 25% of the known non-synonymous SNPs
could affect the function of the correspondent gene product (4–7).
Therefore, detection of SNPs due to genetic variation in a given population
may have important implications in the natural history of disease and its
response to therapy (8). Yet, for several reasons it is still unclear whether
the prevalence of common diseases can be truly attributed, at least in part,
to SNPs. The main reason is that the prevalence of SNPs throughout the
genome in a given population is known only for few genes as exemplified
by the human leukocyte antigen (HLA) complex which has been exten-
sively studied due to the significance that polymorphic sites bear on
allo-immunization. A lesson learned from the study of the HLA region is
that the number of polymorphisms recognized in a given population is
highly correlated with the accuracy and resolution of the method used.
Therefore, as an example, with the ever-growing interest in the study of
polymorphic sites of genes associated with immune function (9–12), it is
likely that the number of recognized variations will continue to grow in
the coming years. This rate of discovery will be enhanced by the high-
throughput technologies that are continuously developed for SNPs to cover
the complexity and heterogeneity of human biology and pathology. While,
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experimentally, tools are available for limited population studies, in clini-
cal research a large number of individuals may need to be screened when
investigating associations between genetic variation and disease suscepti-
bility or responsiveness to therapy. In such an endeavor, a tool capable of
efficiently and economically identifying known and flagging unknown
SNPs could dramatically increase the understanding of human pathology
making feasible the direct application of genome-wide investigation during
the conduct of clinical trials (13).

6.2 High resolution SNP detection methods

High resolution SNP identification relies on sequence-based typing (SBT),
which can recognize known SNPs in homo- or heterozygous conditions and
spot unknowns. Capillary sequencing makes this method semi-high
throughput. However, the majority of SNPs are dispersed across the whole
genome, with few exceptions such as the HLA region, at an average 1-kb
distance from each other. Since accurate sequencing is limited to about
800–1000 bp per sequencing reaction, SBT is not an efficient method for
high throughput sequencing of most genomic regions. Furthermore, the
cost of SBT is not affordable for most research facilities. Finally, even
sequencing has its own limitations since it does not allow segregating cis-
to trans- ambiguities in heterozygous conditions when more than one SNP
is detected in the region being sequenced (14). Pyrosequencing is a newly
developed real time quantitative sequencing method that may complement
high-throughput SBT since it can resolve cis/trans ambiguities. Using a
programmed nucleotide dispensation order (NDO), pyrosequencing is espe-
cially suitable for the detection of SNPs when their frequency is low and
for studies using pooled samples (15, 16). The drawback of this method is
its cost, the complexity of designing NDOs and the special equipment and
reagents necessary.

In recent years, matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) has emerged as a powerful tool for
genotyping SNPs (17–19). The comprehensive utilization of this approach
is, however, hampered by the complexity of the technology, the cost and
the limited throughput.

6.3 High throughput methods for SNP detection

The ideal SNP detection method should be simple, accurate, inexpensive,
and suitable for potential automation to allow genome-wide screening for
known and unknown SNPs. Array-based technology is the only approach
that, at least in theory, could fulfill most of these requirements. Array tech-
nology applied to the detection of SNPs has confirmed most of the common
polymorphisms previously identified by conventional techniques and has
identified a large number of new SNPs (20).

Array-based allelic discrimination methods can be categorized according
to four principles: allele-specific hybridization, allele-specific primer exten-
sion, allele-specific oligonucleotide ligation and allele-specific invasive
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cleavage (21). These methods utilize known SNP position and their flank-
ing sequence information for the design of allele-specific probes.

6.4 Screening methods for known and unknown SNPs

Most array-based approaches are aimed at the detection of known SNPs
(22, 23). To broaden the power of SNP detection to the identification of
unknown variants, high-density oligonucleotide arrays have been
designed that cover all possible sequence permutations of the genomic
region of interest and function as an array sequencing method (24–27).
These arrays are composed of oligomer probes overlapping at one
nucleotide interval (one nucleotide tiling principle) covering the
genomic segment investigated. Each position includes four alternative
nucleotides to cover all possible genomic permutations. Thus for a given
genomic fragment, the number of oligos needed to identify any possible
SNP is equal to the number of base pairs of the fragment times four.
Although powerful, this approach is limited by the complexity of its
design and the cost of the production and utilization of the chips. In
particular, the cost of array preparation is disproportionate for genomic
areas with low density of SNPs.

Single base chain extension (SBCE) utilizes the dideoxynucleotide
sequence termination reaction principle to interrogate probes downstream
of differentially labeled single nucleotide incorporation templates. Using a
one nucleotide tailing design, it is possible to achieve results similar to those
obtainable with array sequencing using four times less probe for a given
genomic region.

A simplified screening tool that could discriminate conserved from poly-
morphic genomic regions or could identify rare individuals carrying
unusual SNPs could dramatically increase the efficacy of allele-specific
sequencing or targeted SNP identification.

Designing a simplified SNP screening array

The strategy described here utilizes the well-established allele-specific
hybridization method in combination with a chromosome walking
approach for the genome-wide screening of known and unknown SNPs.
This approach requires four times less oligos than the SBCE method and
eight times less oligos than the array sequencing method to investigate a
given fragment of genomic DNA. Thus, this strategy should be considered
a screening tool applicable to the investigation of unexplored areas of the
human genome prior to extensive sequencing expeditions or the construc-
tion of high-density oligo arrays. Known SNPs can be identified while
genomic regions containing unknown SNPs can be flagged and subse-
quently annotated by SBT. In this way, large chromosomal segments are
screened and few regions where SNPs are present are identified. Therefore,
the amount of sequencing required for their definitive characterization is
drastically reduced. In addition, as new alleles are identified new allele-
specific oligonucleotides can be incrementally added to the array for
definitive typing purposes.
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The SNP screening array includes two types of oligos: consensus oligos
(covering the full length of the genomic fragment investigated) and allele-
specific oligos (representing known variants from the empirically selected
consensus sequence of the genomic area to be investigated). Both types of
oligos are 18-nucleotides long. Consensuses oligos are defined and designed
according to the sequence of an arbitrarily selected reference DNA and
cover, at a four-nucleotide tiling interval, the full sequence of the genomic
area investigated. The SNP position in a 20 nucleotide oligo (approximately
the same length of the oligos used in this array) bears minor effects on the
hybridization efficiency as compared to the kind of nucleotide change as
long as the three outermost positions at either end of the oligo are avoided
(28). Therefore, the four-nucleotide tiling design assures that any SNP
within the interested region should be identifiable by at least one consen-
sus oligo (Plate 3). Furthermore, the overlapping consensus oligonucleotide
system provides references consisting of four or five consecutive consensus
oligonucleotides with interrogating SNP dynamically positioned with
which information derived from the allele-specific oligonucleotides can be
compared, facilitating the interpretation and discrimination of allele-
specific hybridization in hetero- or homozygous conditions. The fluctuating
hybridization pattern of the consensus oligonucleotides surrounding an
unknown SNP indicates its existence that could be subsequently confirmed
by sequencing limited to the individual carrying the variant and the region
of interest (29).

Allele-specific oligonucleotides of the same length as consensus oligo-
nucleotides are selected based on available databases and the SNP
interrogation site in the oligo is positioned at the centermost position. With
this strategy, the SNP screening array can be used to spot novel while iden-
tifying known SNPs.

Detection system

The screening array employs two differentially labeled fluorochromes for
proportional hybridization testing. The reference sample is arbitrarily
selected and consistently used for all arrays. For instance, a cell line (possi-
bly homozygous for the genomic site of interest) that can be continuously
expanded represents a good reference sample. Complete sequence informa-
tion about the region investigated could be obtained by sequencing the
reference cell line and using the sequence to design the consensus oligo-
nucleotides. For larger genomic segments or for arrays covering different
chromosomal regions it is most likely that any selected reference would
include heterozygous sites. This is acceptable as long as the information is
documented and the reference kept constant. This will allow interpretation
of the experimentally obtained data. The reference sample exemplified
here consists of a cell line with homozygous SNP loci identical to the con-
sensus sequence (a,a). Test and reference samples are amplified by PCR
followed by in vitro transcription to generate single-stranded RNA. Array
data are generated from cohybridization of fluorescence-labeled reference
(i.e. Cy3, green) and test (i.e. Cy5, red) cDNA samples to consensus and
allele-specific oligos, the latter representing known SNPs (variant oligos).
Results are represented as log base 2 of the fluorescence intensity ratio
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(Log2Ratio). In diploid organisms, four combinations can occur: 
(i) homozygosity at a certain locus of the test sample identical to the con-
sensus (a,a) (consensus oligos Log2Ratio =0); (ii) homozygous SNP alleles
that differ from the homozygous consensus (b,b) (allele-specific and the
corresponding consensus oligo Log2Ratio >1); (iii) heterozygosity with one
allele being identical and one allele being different from the consensus
(a,b) (allele-specific oligo Log2Ratio >1 while the corresponding consensus
oligo Log2Ratio <1); (iv) heterozygosity with both alleles different from the
consensus (b,c) (consensus oligo Log2Ratio >1 and no hybridization to the
allele-specific oligo). In regions containing unknown SNPs and, therefore,
when no allele-specific oligos were designed to represent the unknown
SNP, competitive hybridization occurs only in the consensus oligo between
reference and test sample. Because of the perfect complementation of the
reference sample to the consensus oligo, exclusive reference sample
hybridization indicates the presence of a new SNP at that specific position
(Plate 4).

Although this conceptually applies to the whole genome, in loci con-
taining more than one polymorphic site, various combinations can
simultaneously occur. This approach has been validated using the poly-
morphic HLA gene complex to exemplify the various combinations (29).
Various permutations of homozygosity and heterozygosity have been illus-
trated and correspondent consensus hybridization that produces complex
hybridization patterns highly specific for a particular phenotype could be
observed. In these highly polymorphic conditions, each haplotype combi-
nation maintains a highly reproducible profile characterized by minimal
variance. This allows the creation of “genotypic masks” within narrow
ranges of variation to “fingerprint” known haplotype permutations for
high-throughput typing of highly polymorphic genes. The power of this
strategy in identifying unknown SNPs was analyzed using Relative
Operating Characteristics (ROC) analysis which characterizes the perform-
ance of a binary classification model across all possible trade-offs between
the false negative and false positive classification rates and allows the per-
formance of multiple classification functions to be visualized and
compared simultaneously (30). For each 18-mer probe, starting from third
base and ending at 16th base, if the test target contained at least one sin-
gle nucleotide different for the consensus sequence, it was defined as
specific region SNP(+); otherwise it was SNP(−). When the test sample is
most different from the consensus reference, as for b,b and b,c, higher
accuracy with a sensitivity of 82% and a specificity of 96% was observed.
The worst accuracy was noted when test and reference samples were clos-
est as in the case of a,b heterozygosity (sensitivity 82% and specificity of
82%). The most informative analysis was, however, provided using data
from all the possible combinations since in most common experimental
conditions the relationship between test and consensus sample is not
known and, therefore, all possible allelic combinations should be
expected. In that case an optimal threshold of Log2Ratio < or equal to −
0.62 yielded a sensitivity of 82% and a specificity of 89%. Thus, this
strategy may identify four out of five unknown SNPs with 90% accuracy
and the highest chance of discriminating false positive results when an a,b
heterozygous sample is tested.
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Genomic DNA amplification for array analysis

High quality and a sufficient quantity of genomic DNA are critical for high
throughput approaches. In the case of clinical samples or biopsies where
limited material is available, the amount of isolated DNA is in most cases
far below the requirement for multiple genomic analyses. Therefore, high
fidelity genomic DNA amplification becomes the first challenge for accu-
rate genotyping. Depending on the genotyping method employed, DNA
amplification can be allele-specific, gene-specific or whole genome-wide.
Table 6.1 summarizes amplification methods according to their underlying
principle and their advantages and disadvantages.

Here, only the T7-based gene-specific amplification method suitable for
the SNP screening array analysis is presented. This strategy can be applied
to the study of any locus using PCR in combination with in vitro tran-
scription. Gene-specific primers flanking the gene of interest within a 1- to
10-kb range can be designed. Multiple primer pairs are needed when the
targeted gene is larger than 10 kb or multiple genes are scanned simulta-
neously. To generate single strand targets, a T7 promoter sequence (5′aaa
cga cgg cca gtg aat tgt aat acg act cac tat agg cgc 3′) is attached to the 5′
end of the forward primer for PCR amplification. In vitro transcription
generates large quantities of linear single strand RNA for fluorescence label-
ing and hybridization (See Protocl 6.1).

6.5 Summary

The current SNP scanning array represents a potentially powerful and
efficient strategy for high-throughput screening of genes for which little
is known about their polymorphism. This strategy could also be used to
identify mutations in disease genes or for typing known allelic variants
of well-characterized genes such as HLA. This, however, would require
specialized design of numerous oligos encompassing known variants and
supportive software for efficient data interpretation. Various scenarios
have been best exemplified by using exon 2 of the HLA-A locus as a
model to identify an unknown allele as well as a known allele in a,a,
b,b, a,b and b,c homo and heterozygous conditions (29). However, SNPs
occur in the human genome on average every 600–2000 bases (1, 31).
Therefore, most genes are characterized by a relatively narrow range of
polymorphisms that would allow a relatively simple design of oligo-array
chips and interpretation of results. Independently of the genomic region
investigated, this strategy can identify unknown variants through obser-
vation of disproportionably depressed Log2Ratios of signals obtained at
the position of consensus oligonucleotides. Thus, it may provide a great
improvement in the ability to screen different genes for the frequency
and location of polymorphic sites, which can be confirmed by site-
directed sequencing limited to the region of interest. Thus, the best
application of this strategy stems from the clinical need to rapidly segre-
gate genes characterized by the presence or lack of polymorphisms in
their coding or regulatory regions that may affect clinical phenotypes. A
good example of such application is the screening of cytokines,
chemokines and their receptors whose polymorphism(s) have been asso-
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ciated with individual predisposition to immune pathology, survival of
transplanted organs and predisposition to cancer (22, 32–34).
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Protocol 6.1: Target preparation

MATERIALS

Reagents for genomic DNA isolation.

Depending on the sample source, type and quantity, the genomic DNA
isolation method can vary. Select the one optimal for each sample.

PCR reagents:

Hotstar Taq master mix (Qiagen. Cat. no. 203445)

Primers: 15 mM forward and reverse primers in DEPC-treated water

Genomic DNA samples

PCR product quantification and visualization:

Agilent DNA12000 labchip kit (Agilent. Cat. no. 5064-8231)

PCR product precipitation:

7.5 M ammonium acetate

100% ethanol

In vitro transcription reagents:

T7 Megascript kit (Ambion, Inc. Austin, TX. Cat. no. 1334)

Target labeling reagents and material:

Low T dNTP (5 mM dA, dG and dCTP, 2mM dTTP)

1mM Fluorolink Cy3-dUTP and Fluorolink Cy5-dUTP (Amersham
Biosciences Corp. Piscataway, NJ. Cat. no. PA53022 and PA55022)

Superscript II RNaseH- (with 5 × first strand buffer and 50 mM DTT)
(Invitrogen Corp. Carlsbad, CA. Cat. no. 18064-07)

RNasin (20 units/μl) (Promega. Cat. no. N2111)

50 mM EDTA

1 M NaOH

Microbiospin 6 columns (Bio-Rad. Cat. no. 732-6222)

pd(N)6 (Boerhinger Mannheim. Cat. no. 1034731)

1 × TE

1 M Tris pH 7.5

Microcon YM-30 column (Millipore. Cat. no. 42410).
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Hybridization reagents:

50 × Denhardt’s blocking solution (Sigma. Cat. no. 2532)

Poly dA 40-60 (8 mg ml–1) ( Pharmacia. Cat. no. 27-7988-01)

Human Cot I DNA (1 mg ml–1) (Invitrogen. Cat. no. 15279-011)

20 × SSC

10% SDS

Hybridization chambers (Corning. Cat. no. 2551)

Array scanner:

GenePix 4000B scanner (Axon Instrument)

METHODS

PCR reaction

PCR setting for generation of SNP-typing target.

PCR reaction mixture: 1 μl of 5′ T7-primer (15 μM)

1 μl of 3′ primer (15 μM)

10.5 μl of genomic DNA (containing approximately 50–100 ng of
genomic DNA)

12.5 μl of hot start mixture

Total volume 25 μl

PCR profile: 95°C for 10min

96°C for 20 s

65°C for 45 s

72°C for 3 min

5 cycles

96°C for 20 s

60°C for 50 s

72°C for 3min

20 cycles

96°C for 20 s

55°C for 1 min

72°C for 3min

9 cycles

Run Agilent DNA chip (Figure 6.1).
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PCR product precipitation

Add 12.5 μl of 7.5 M ammonium acetate to the PCR product (25μl
volume).

Add 100 μl of 100% EtOH.

Centrifuge at 13 000 g for 20 min at room temperature to avoid co-
precipitation of primers.

Wash with 500 μl of 100% EtOH twice.

Dry pellet completely and then re-suspend in 10 μl of DEPC-treated
water.

Check DNA amount by either Agilent Bioanalyzer or
spectrophotometer.

In vitro transcription using T7 Megascript Kit 

2 μl each of 75mM NTP (A, G, C and UTP)
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Figure 6.1. 

Agilent Bioanalyzer DNA7500 chip analysis. A 2000-bp genomic DNA fragment of HLA A locus
spanning exon 1 to exon 6 was PCR amplified using a T7-gene-specific primer pair. Lane 1, molecular
weight marker; lane 2–5, genomic DNA fragments amplified from CL013, CL033, CL018 and CL096
cell line genomic DNA.



2 μl reaction buffer

2 μl enzyme mix (RNase inhibitor and T7 phage RNA polymerase)

1 μg of PCR amplified DNA in 8 μl volume

Incubation at 37°C for 6 h.

Purification of amplified RNA

Any manufactured RNA isolation kit can be applied. A monophasic reagent such as TRIzol
reagent from Invitrogen (cat. no. 15596026) is exemplified here based on the efficient recovery
of aRNA. Other methods for RNA isolation can also be employed.

1. Add 1 ml of TRIzol solution to the transcription reaction. Mix
the reagents well by pipetting or gentle vortexing.

2. Add 200 μl chloroform per ml of TRIzol solution. Mix the
reagents by inverting the tube for 15 s. Allow the tube to
stand at room temperature for 1–2 min.

3. Centrifuge the tube at 10 000 g for 15 min at 4°C.

4. Transfer the aqueous phase to a fresh tube and add 500 μl of
isopropanol per ml TRIzol reagent.

5. Store the sample at room temperature for 5 min and then
centrifuge at 13 000 g for 20 min.

6. Wash the pellet twice with 1 ml 70% EtOH.

7. Allow the pellet to dry in air and then dissolve it in 30 μl of
DEPC H2O.

8. Measure the quantity of RNA using the Agilent Bioanalyzer
RNA 6000 chip (Figure 6.2).

Target labeling by reverse transcription

4 μl First strand buffer

1 μl dN6 primer (8 μg μl–1)

2 μl 10 × lowT-dNTP (5 mM A, C and GTP, 2 mM dTTP)

2 μl Cy-dUTP (1 mM Cy3 or Cy5)

2 μl 0.1 M DTT

1 μl RNasin

3 μg amplified RNA in 8 μl DEPC H2O

Mix well and heat to 70°C for 3 min then cool down to 42°C.

Add 1 μl SSII. Incubate for 30 min at 42°C and add another 1 μl SSII for 40 min at 42°C. Add 
2.5 μl 500 mM EDTA and heat to 65°C for 1min. Add 5 μl 1 M NaOH and incubate at 65°C for
15 min to hydrolyze the RNA. Add 12.5 μl 1 M Tris immediately to neutralize the pH. Bring the
volume to 70 μl by adding 35 μl of 1 × TE.

Note: The amounts of aRNA used for labeling depend on the size of the array. If the array
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contains 2000–8000 oligo probes, 3 μg aRNA will be sufficient while a larger chip such as one
containing 16–20 k oligo probes will need 6 μg of aRNA. The labeling reaction components do
not need to be changed.

Target clean up: Prepare a Bio-6 column and apply the target solution through it
according to the manufacturer’s instructions. Collect flow through
and add 250 μl 1 × TE to it. Concentrate target to around 20 μl
using a Microcon YM-30 column.

Hybridization: Combine Cy3-labeled reference sample and Cy5-labeled test target
(adjust the color to purple in order to balance the amount of test
and reference samples) and then completely dry the sample using a
Speedvac. Re-suspend the pellet in 25 μl volume by adding 1 μl 50
× Denhardt’s blocking solution, 1 μl poly dA (8 μg/μl), 1 μl yeast
tRNA (4 mg/ml), 10 μl Human Cot I DNA (1 mg/ml), 3 μl 20 × SSC,
0.6 μl of 10% SDS and 8.4 μl of DEPC-treated water. Heat the
solution for 2 min at 99°C and apply this target mixture to the slide,
add a coverslip, place the slide into a humidified hybridization
chamber (Corning. Cat. no. 2551), and hybridize at 45°C overnight.
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Figure 6.2. 

Agilent Bioanalyzer RNA 6000 chip analysis. A 2000-nt RNA fragment corresponding to the HLA A
locus from exon 1 to exon 6 was amplified using the T7 Megascript kit. Lane 1, RNA ladder; lane 2–4,
amplified RNA using CL013, CL033, CL018 and CL096 cell line genomic DNA fragment as templates.



Slide washing: 1. Wash with 2 × SSC + 0.1% SDS to get rid of
the cover slip.

2. Wash with 1 × SSC for 1 min.

3. Wash with 0.2 × SSC for 1 min.

4. Wash with 0.05 × SSC for 10 s.

5. Centrifuge slide at 80–100 g for 3 min (the
slide can be put in a slide rack on a
microplate carrier or in a 50-ml conical tube
and centrifuged in a swinging-bucket rotor).

Scan slide.
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From gene chips to
disease chips – new
approach in molecular
diagnosis of eye diseases
Rando Allikmets and Jana Zernant

7.1 Introduction

Inherited retinal degenerations account for a substantial fraction of blind-
ness in children and young adults and represent clinically and genetically
heterogeneous disorders. On one end of the genetic spectrum are retinal
disease phenotypes associated with one gene. For example, ABCA4 (ABCR)
is the causal gene for autosomal recessive (ar) Stargardt macular dystrophy
(arSTGD). In addition to arSTGD, at least three more different retinal disease
phenotypes; cone-rod dystrophy (arCRD), retinitis pigmentosa (arRP), and
age-related macular degeneration (AMD) are caused by mutations in this
gene. Due to the size (ABCA4 contains 50 exons) and a substantial genetic
heterogeneity (>450 known mutations), this gene presents an extremely
difficult target for genetic analysis and diagnostic applications.

On the other end are ‘multigenic’ diseases such as RP, where mutations
in more than 30 genes can cause the same RP phenotype (estimated preva-
lence 1:3500), making it impossible to predict the specific gene underlying
the disease in a patient based on a clinical examination. For example, the
early-onset form of RP, Leber congenital amaurosis (LCA), can be caused by
more than 300 mutations in at least six genes, which together account for
less than 50% of the disease load. Therefore, it is not surprising that the
current management of patients with retinal degenerations relies on clini-
cal examination, electrophysiology and other ancillary tests, since available
methodology does not allow for an efficient, comprehensive, and cost-effec-
tive genetic screening of patients, who are often left with no specific
information on their genotype.

To overcome these limitations, we developed genotyping microarrays for
ABCA4 (‘gene array’) and for LCA (‘disease array’), representing compre-
hensive and cost-effective screening tools. Arrays were designed utilizing a
method called solid-phase minisequencing or arrayed primer extension
(APEX), which has been developed for high-throughput detection of
nucleotide variations (1, 2). The APEX approach can be successfully applied
for the detection of single nucleotide polymorphisms (SNPs), as well as any
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deletions and insertions in heterozygous and homozygous patient samples.
The designed arrays contain all currently known disease-associated genetic
variants (mutations) in ABCA4 and in all known LCA genes for one-step
screening of patients with STGD, CRD, RP and LCA. Both arrays are more
than 99% effective in screening for known mutations, can be easily updated
with new variants, and are used for highly efficient, accurate, and afford-
able screening of patients.

In the following chapter, we will summarize the application of APEX
technology for genotyping large cohorts of patients with various eye
diseases. We will also show how it allows a systematic detection and analy-
sis of genetic variation, which facilitates proper diagnosis, results in more
precise prognosis of the disease progression, helps in genetic counseling for
family members and, eventually, allows the suggestion of emerging thera-
peutic options.

7.2 APEX – arrayed primer extension

APEX is a rapid solid-phase genotyping method that combines the effi-
ciency of a microarray-based assay with Sanger sequencing. In APEX, a DNA
microarray (a ‘chip’) of sequence- (mutation-) specific detection oligo-
nucleotides is used to determine the genotypes in a sample DNA. For each
position of interest (e.g. a variable site/SNP) in the sample DNA, two 25-
mer oligonucleotides (primers) are synthesized according to the wildtype
sequence in both sense and antisense directions. The primers are usually
designed with their 3′ ends immediately adjacent to the site of interest. The
oligonucleotides are arrayed and attached to an amino-activated glass
surface via an amino linker at their 5′ end with an automated arrayer.

The sample DNA is PCR-amplified in a single or multiplex reaction. All
PCR products to be applied to one chip are pooled and purified together.
The size of PCR products is not important, because all PCR products will
be fragmented before APEX reaction to an optimal size of around 100–200
bp (for subsequent hybridization reaction) by replacing a fraction of dTTP
by dUTP in the amplification mix, followed by treatment with thermolabile
uracil-N-glycosylase (UNG; Epicentre Technologies, Madison, WI). UNG is
highly specific to uracil bases in the DNA; the extent of fragmentation can
be, therefore, controlled by the fraction of dUTP incorporation during PCR.
The APEX reaction is reliable only if no dNTPs are carried over from the
amplification mix, so the dNTP leftover is removed enzymatically by
shrimp alkaline phosphatase, in a one-step reaction together with the UNG
treatment (3).

Fragmented and heat-denatured PCR product-mix is applied to the chip
together with fluorescently labeled ddNTPs (each of the four ddNTPs has a
different label) and Thermo Sequenase™ DNA Polymerase (Amersham
Biosciences, Piscataway, NJ). During a 15-min hybridization at 58°C, the
target sample DNA fragments anneal to the detection primers on the chip
immediately adjacent to the queried nucleotide. DNA polymerase extends
the 3′ end of the primer with a labeled nucleotide analog complementary
to the nucleotide of interest resulting in identification of one specific base
in the target sequence (Figure 7.1). Covalent bonds between the oligo-
nucleotides on the chip and the labeled terminator nucleotides allow a
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stringent washing of the arrays after hybridization, to minimize the back-
ground (4). The signals are acquired by Genorama™ QuattroImager (Asper
Biotech, Ltd.) and Image Pro Plus™ software (Media Cybernetics, Silver
Spring, MD) and the genotypes are identified by Genorama™ Basecaller
genotyping software (Asper Biotech, Ltd.; Figure 7.2).

An advantage of APEX, compared to purely hybridization-based tech-
nologies, is that all nucleotides of interest are identified with optimal
discrimination at the same reaction conditions. APEX approach can be
successfully applied to the detection of SNPs as well as deletions and inser-
tions in hetero- and homozygous patient samples (Figure 7.2). APEX,
performed in a single array format allows for at least one order of magni-
tude higher discrimination power between genotypes as compared to
techniques that are purely hybridization-based (5). APEX technology, as
described in this chapter, was developed and is currently provided by Asper
Biotech, Ltd, Tartu, Estonia.

7.3 Application A – the gene array for ABCA4-associated
retinal dystrophies

Several laboratories independently described ABCA4 (ABCR) in 1997 as the
causal gene for Stargardt disease (STGD1, MIM 248200) (6–8). STGD1 is
usually a juvenile-onset macular dystrophy associated with rapid central
visual impairment, progressive bilateral atrophy of the foveal retinal
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Figure 7.1. 

Principle of APEX. (A) Oligonucleotides are arrayed on a glass slide via their 5′ end; 
(B) complementary fragment of PCR-amplified sample DNA is annealed to oligos;
(C) sequence-specific single nucleotide extension of the 3′ ends of primers with
dye-labeled nucleotide analogs (ddNTPs) by DNA polymerase; (D) sample DNA
fragments and not incorporated ddNTPs are washed off followed by signal
detection. The dye-labeled nucleotide, T (shown in bold), bound to the
oligonucleotide on the slide is the nucleotide being typed.



pigment epithelium, and the frequent appearance of yellowish flecks
around the macula and/or in the central and near-peripheral areas of the
retina. Subsequently, ABCA4 mutations were identified and co-segregated
with retinal dystrophies of substantially different phenotypes, such as auto-
somal recessive cone-rod dystrophy (arCRD) (9, 10) and atypical autosomal
recessive retinitis pigmentosa (arRP, RP19) (9, 11, 12).

Disease-associated ABCA4 alleles have shown an extraordinary hetero-
geneity (6, 13–17). Currently over 450 disease-associated ABCA4 variants
have been identified (R. Allikmets and J. Zernant, unpublished data), allow-
ing comparison of this gene to one of the best-known members of the ABC
superfamily, CFTR, encoding the cystic fibrosis transmembrane conductance
regulator (18). What makes ABCA4 a more difficult diagnostic target than
CFTR is that the most frequent disease-associated ABCA4 alleles, for exam-
ple G1961E, G863A/delG863, and A1038V, have each been described in only
around 10% of STGD patients in a distinct population, whereas the delF508
allele of CFTR accounts for close to 70% of all cystic fibrosis alleles (19).

Allelic heterogeneity has substantially complicated genetic analyses of
ABCA4-associated retinal disease. Even in the case of STGD1, where the role
of the ABCA4 gene is indisputable, the mutation detection rate has ranged
from around 25% (15, 20) to around 55–60% (13, 14, 17, 21). In each of
these studies, conventional mutation detection techniques such as single
strand conformational polymorphism (SSCP), heteroduplex analysis, and
denaturing gradient gel electrophoresis (DGGE) were applied. Direct
sequencing, which is still considered the ‘gold standard’ of all mutation
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Three possible different genotypes of the same ABCA4 variant on the ABCR400 chip detected by
Genorama™ Basecaller genotyping software. The software compares fluorescence intensities (shown
as bars in the second cell from left) of four different labels in each spot pair and translates them into
the presence or absence of nucleotide(s) in the given position on the array. Every position is queried
from both strands, the nucleotide(s) in sense and antisense strand appear as duplicate spots in the
upper and lower row of the software window, respectively.



detection techniques, enabled a somewhat higher percentage of disease-
associated alleles to be identified, from 66% to 80% (22, 23).

To overcome these challenges and to generate a high-throughput, cost-
effective screening tool, we developed the ABCA4 genotyping microarray
(24). By systematic analysis of all published, reported, and communicated
data, we compiled the most comprehensive database of ABCA4 variants,
where only those sequence changes currently considered disease-associated
exceed 400. By design, we included on this chip all variants from the coding
region of ABCA4 and adjacent intronic sequences. The overall efficiency of
the array was enhanced by designing primers with mismatched or modi-
fied bases for several variants where ABCA4 sequence presented additional
challenges, that is hairpin loops, repeats, etc. Currently, from more than
400 variants only three (<1%) remain undetected by the last version of the
chip; 93% of all variants are detected from both strands, whereas around
7% are detected reliably from one strand.

The array was validated on an extensive cohort of 136 confirmed STGD
samples, which we had previously screened by SSCP and/or heteroduplex
analyses (13). The initial SSCP screening had detected 55% of all disease-
associated alleles. The microarray screening detected numerous additional
alleles, bringing the total to more than 70% of all disease-associated alleles
(24). Further evaluation of the ABCR400 array by screening several previ-
ously not analyzed STGD patient cohorts of diverse ethnicity (European
American, Italian, Dutch, Hungarian and Slovenian) is summarized as Table
7.1. The screening efficiency of the ABCR400 microarray was remarkably
similar in all six cohorts, yielding from around 53% to 60% of all possible
disease-associated ABCA4 alleles (Table 7.1).
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Table 7.1. Screening efficiency of the ABCR400 array on several cohorts

STGD patient Chromosomes Disease-associated Allele
cohort analyzed alleles (%) distributiona

North America 1 300 158 (52.7%) 2–34%
1–39%
0–27% 

Italy 62 34 (54.8%) 2–33%
1–45%
0–22% 

Hungary 72 40 (55.6%) 2–47%
1–18%
0–35% 

North America 2 40 24 (60%) 2–45%
1–30%
0–25% 

The Netherlands 36 20 (55.6%) 2–39%
1–33%
0–28% 

Slovenia 28 15 (53.6%) 2–29%
1–50%
0–21% 

a Shows the percentage of the screened patients with both disease-alleles found (2), with
one allele found (1) or no alleles found (0).



The allele distribution was also similar across all cohorts (Table 7.1, last
column). We detected both disease-associated alleles in between 29% and
45% patients (average 36.6%). The fraction of patients with no apparent
STGD alleles detected ranged from 21% to 35% (average 26.4%), most likely
indicating inclusion of phenocopies, which cannot be avoided completely
due to the selection methods. More robust results were obtained on smaller,
carefully characterized, cohorts derived from a single clinical source (i.e.,
Italian), or cohorts with less allelic heterogeneity (Hungarian).

In summary, the ABCR400 array alone determined 55–65% of all possi-
ble disease-associated ABCA4 alleles and, in combination with SSCP
analysis, 70–78% of disease-associated alleleles in random cohorts of
Stargardt disease patients. These results suggest that: (i) the ABCAY400 array
is an efficient screening tool for known variants; and (ii) its efficiency for
screening patient populations with STGD is comparable to direct sequenc-
ing. The ABCA4 array supplies two major applications: (i) (pre-)screening
of all patients with suspected ABCA4-associated retinal pathology; includ-
ing diagnostic screening of patients with Stargardt disease and cone-rod
dystrophy; and (ii) high throughput, cost-efficient, and single-standard
screening of large cohorts in case-control association studies, for example,
for the AMD complex trait.

7.4 Application B – the ‘disease array’ for a genetically
heterogeneous disorder (LCA)

Leber congenital amaurosis was named after the German ophthalmologist
Theodor von Leber who in 1869 first described severe visual loss present at
birth accompanied by nystagmus, sluggish pupillary reaction and pigmen-
tary retinopathy. A detailed description of LCA-defining clinical signs has
been extensively presented in many reviews; albeit a severe and early-onset
disease, LCA nevertheless presents with variable expression, which can be
sometimes explained by molecular genetic findings (see below). Difficulties
with the clinical classification of LCA cases were most prominently demon-
strated in a study where 30 out of 75 patients had been initially
misdiagnosed (25). All the above further emphasizes the importance of a
comprehensive molecular genetic analysis in addition to a thorough clini-
cal evaluation.

The six known LCA genes and their protein products reveal extensive
heterogeneity. Together, variants in aryl hydrocarbon receptor-interacting
protein-like 1 (AIPL1) (26), Crumbs homolog 1 (CRB1) (27), cone-rod home-
obox (CRX) (28), guanylate cyclase 2D (GUCY2D or retGC) (29), retinal
pigment epithelium-specific 65-kDa protein (RPE65) (30, 31) and retinitis
pigmentosa GTPase regulator-interacting protein 1 (RPGRIP1) (32) account
for less than 50% of all LCA cases.The other loci implicated in LCA include
LCA3 on 14q24 (33), LCA5 on 6q11-q16 (34, 35) and LCA9 on 1p36 (36).

Reports from various laboratories vary widely in the percentage of the
disease load assigned to each gene (Table 7.2), which may be due to differ-
ent ascertainment criteria, differences in screening methods and their
sensitivity, differences in the ethnic composition of screened cohorts or,
most likely, a combination of all the above. One way to alleviate this
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problem is by comprehensive screening of the same, large patient cohort
for allelic variation with an efficient methodology. In order to completely
screen the six genes, one would need to analyze close to 80 amplicons
(Table 7.2), which is a labor-intensive and expensive task, especially if
applied simultaneously to hundreds of patients. To overcome these limita-
tions, we designed a genotyping microarray (disease chip) for LCA, which
includes all of the more than 300 variants currently described in the six
genes, allowing for the detection of all known LCA-associated variants
(mutations) in any DNA sample in one simple reaction (37). Every known
disease-associated sequence change described in all LCA genes, and a small
selection of common polymorphisms (for haplotype analysis), was included
on the chip via sequence-specific oligonucleotides. The array was validated
by screening around 100 confirmed LCA patients with known mutations
and the efficiency of the chip was determined by screening more than 200
LCA cases from three independently ascertained cohorts, followed by segre-
gation analyses in families, if applicable. The microarray is more than 99%
effective in determining the existing genetic variation and yielded at least
one disease-associated allele in about one-third of LCA patients (Table 7.2).
This fraction will grow as new genes and mutations will be added to
the chip.

Screening with the LCA array resulted in an additional intriguing finding:
more than two (expected) variants were detected in a substantial fraction
of patients, suggesting a multi-allelic inheritance or a modifier effect from
more than one gene. In support of this hypothesis, the third allele segre-
gated with a more severe disease phenotype in several families (Allikmets
et al., unpublished observation). In summary, the LCA genotyping micro-
array is a robust, comprehensive, and cost-effective screening tool,
representing the first ‘disease chip’. Simultaneous screening for all known
LCA-associated variants in large LCA cohorts allows a systematic detection
and analysis of genetic variation leading to an exact molecular diagnosis,
which is often helpful in predicting the disease progression and facilitates
selecting patients for clinical trials.
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Table 7.2. Composition and screening efficiency of the LCA ‘disease array’

LCA gene Exons Ampliconsa Known Mutation frequency LCA array 
mutations in LCA (%)b (%) 

AIPL1 6 6 25 5.8 (38) 7.8 
CRB1 12 13 68 9.0–13.5 (27, 39) 5.4 
CRX 3 3 29 2.0 (28), 2.8 (40) 1.5 
GUCY2D 20 14 67 6.0 (41, 42), 20.3 (43) 11.7 
RPE65 14 10 81 6.8 (41), 8.2 (44), 11.4 (45), 2.4

15.6 (46)  
RPGRIP1 24 18 32 5.3 (32), 5.6 (47) 4.9 
Total 79 64 302 33.7 
a ‘Amplicons’ shows the number of PCR products needed to amplify for each gene in order to screen for all
known mutations.
b The percentage of each gene in the total disease load. Numbers in parentheses refer to the References.



7.5 Summary

We have demonstrated on specific examples, that the APEX method is
applicable for designing reliable, high-throughput and affordable genotyp-
ing tools for medical genetics. These arrays allow efficient detection of all
known genetic variation underlying pathology in a gene or a group of
genes. APEX arrays are especially useful in the following applications:

(i) They can be efficiently applied in an average academic laboratory with
a limited budget, since they require only a relatively moderate invest-
ment.

(ii) They are cost-effective in situations where a few hundred SNPs have
to be screened in several hundreds to several thousands of patients.

(iii) They are irreplaceable in precise diagnostic applications, where every
known mutation, including deletions, insertions, and so on, has to be
detected by an assay.

Diagnostic tools, similar to the ABCR400 and LCA arrays, should be
made available for all genes involved in the entire range of eye diseases.
For example, an array for retinitis pigmentosa, including the entire genetic
variation in more than 30 known RP loci, would substantially enhance our
diagnostic capabilities. More importantly, it would allow a precise deter-
mination of the causal genetic defect(s) hopefully followed by the
suggestion of a therapeutic option in the very near future.
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Protocol 7.1: Template
preparation

POLYMERASE CHAIN REACTION (PCR)
1. Prepare a PCR premix by combining the following reagents in

15 μl (final concentrations are given):

MilliQ water

1 × PCR buffer (Solis BioDyne, Estonia)

2.5 mM magnesium chloride

0.2 mM dNTP (20% of the dTTP fraction substituted by dUTP)

15 pmol of forward and reverse primer

20 ng of genomic DNA

1 U Taq DNA polymerase (Solis BioDyne, Estonia).

2. Cycling conditions in the thermal cycler: denaturing at 95°C
for 12 minutes, followed by 26 cycles of denaturation at 95°C
for 15 s, stepdown annealing at 68°C/−0.5°C per cycle for 20
s, and extension at 72°C for 45 s, with final extension at 72°C
for 7 min.

3. Check the result by running 1/10 of each PCR reaction on a
horizontal 1% agarose gel.

PCR PRODUCT PURIFICATION AND TREATMENT WITH URACIL N-
GLYCOSYLATE (UNG) AND SHRIMP ALKALINE PHOSPHATASE (SAP)

1. Pool tested PCR products for one chip and purify 5–10 μg of
the PCR product mix using a PCR product purification column
(General Biosystem, South Korea). Elute the products from the
column in 24 μl of MilliQ water.

2. Prepare the UNG-SAP reaction in 30 μl:

1 × UNG buffer

2 U thermolabile UNG

1 U SAP

24 μl of purified PCR products

Incubate at 37°C for 1 h.
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3. Check the efficiency of fragmentation by running 1/10 of
UNG-SAP reaction on a horizontal 1% agarose gel after
heating at 95°C for 10 min.

ARRAYED PRIMER EXTENSION (APEX)
1. Place the DNA microarray slide in a slide holder and rinse as

follows:

95°C distilled water for 30 s

100 mM sodium hydroxide for 10 min

95°C distilled water for 30 s, twice.

2. Denature and fragment the purified and UNG-SAP-treated
PCR product mix at 95°C for 10 min after adding
ThermoSequenase DNA Polymerase reaction buffer (1× final
concentration).

3. Prepare the APEX reaction in 35 μl:

Denatured and fragmented PCR products with 1× reaction
buffer

1.4 μM of each fluorescently labeled ddNTP: Texas Red-
ddATP, fluoresein-ddGTP (Amersham Biosciences), Cy3-
ddCTP, Cy5-ddUTP (NEN)

4 U ThermoSequenase DNA Polymerase.

4. Apply the reaction mixture to a microarray slide, cover with a
coverslip and incubate in a hybidization chamber at 58°C for
15 min.

5. Stop the reaction by washing the slide three times at 95°C in
MilliQ water.

6. Read the slide with the Genorama™ QuattroImager and
analyze the sequence variants by using Genorama™ Basecaller
genotyping software (Asper, Ltd., Figure 7.2).
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Multiplexed SNP
genotyping using allele-
specific primer extension
on microarrays
Juha Saharinen, Pekka Ellonen, Janna Saarela and 
Leena Peltonen

8.1 Introduction

Systematic sequencing of the genomic DNA of multiple individuals from
different populations has produced detailed information of a high number
of single nucleotide variations across the human genome (1, 2). The single
nucleotide polymorphisms (SNPs) are excellent genetic markers; when
compared to the repeat polymorphisms, SNPs are more stable and evenly
distributed across the genome (3). Currently over 9 million SNPs in the
human genome are deposited to various databases, such as NCBI, dbSNP,
HGVBase and the SNP Consortium (4–6). However, despite the over-
whelming amount of identified SNPs in databases, only a fraction of them
have been carefully validated and their allele frequency information in
various populations determined (7, 8). Table 8.1 presents some major SNP
databases and validation efforts.

8

Table 8.1. SNP databases and large scale SNP validation effort

Database Internet URL Type SNPs Validated 
SNPs 

dbSNP http://www.ncbi.nlm.nih.gov/SNP/ Non-profit 10.1 M 5.1 M 
International http://www.hapmap.org 1.0 M 1.0 M 
HapMap Project 
Human Genome http://hgvbase.cgb.ki.se/ Non-profit 2.9 M 2.9 M 
Variation 
Database 
Celera Discovery http://www.celera.com/ Commercial 8.3 M 4.2 M 
System 
JSNP Database http://snp.ims.u-tokyo.ac.jp/ Non-profit 0.2 M 0.2 M 
Sequenom https://www.realsnp.com/ Commercial 5.4 M 0.22 M 
RealSNP 
Seattle SNPs http://pga.mbt.washington.edu Non-profit 25 676 25 676
Perlegen 
Genotype Data http://genome.perlegen.com Non-profit 1.5 M 1.5 M



SNP genotyping is most frequently used in applications involving fine
mapping of specific genomic loci, for example in disease gene mapping
projects and candidate gene association studies (reviewed in 9, 10). SNP
markers have also been used to characterize the allelic diversity of specific
genes in various pharmacogenomics projects (reviewed in 11–17) as well as
in paternity testing and forensics (18, 19). Most of the SNPs are biallelic
(two alternative nucleotides are known to exist for a given position) and
thus the information content for SNP markers is much less than for
microsatellite markers. This creates problems in the collection of meiotic
information in linkage or association studies and full genome scans with
SNPs have not been a realistic option. Even for most informative SNPs, typi-
cally three SNPs are needed to produce allelic information comparable to
multiallelic markers and thus the option of SNP-based genome scans even
in family samples has not been reasonable (20, 21). However, efficiency for
high throughput SNP genotyping and accumulating information of the
linkage disequilibrium intervals in different parts of the genome (the
HapMap project) have made the SNP-based genome-wide association
studies of human diseases an attractive option (22–24).

Suitability of microarrays as a genotyping platform

DNA microarray technology offers several advantages over classical
homogenous laboratory assays. Thousands of probes or samples can be
placed on a small microarray slide, thus facilitating multiplexed assays and
decreased reagent costs due to the small reaction volumes. In multiplexed
assays, several SNP loci are amplified simultaneously, and therefore the
consumption of the often precious samples is reduced, allowing the inves-
tigator to run multiple analyses and thus gain more data. Ideal genotyping
assays would have the throughput and suitability for efficient automation,
parallelizing of the assay, low price of produced genotypes, robust and reli-
able allele calling and a high feasibility for data storage and transfer. Many
intrinsic properties of microarrays make them suitable for massive geno-
typing projects. SNP genotyping microarrays can be manufactured
different ways, including in situ synthesis or immobilization of the locus-
/allele-specific oligonucleotides on the array and by using tag arrays,
which act as hybridization partners for the allele-/locus-specific oligo-
nucleotides, tailed with sequence complementary to the tag (28–31).
Commercial microarrays for SNP genotyping are available from different
vendors and include: Affymetrix GenFlex Tag Array and GeneChip Human
Mapping Sets (http://www.affymetrix.com), Asper Biotech APEX
(http://www.asperbio.com), Beckman Coulter SNPstream (http://www.
beckman.com) and Illumina BeadChip (http://www.illumina.com).

Allele-specific primer extension on microarrays

Allele-specific primer extension is a method for the detection of a number
of short allelic variations such as SNPs or mutations in a DNA sample and
is well suited to be used in a multiplexed fashion. Multiplexed allele-specific
primer extension on microarrays is achieved by simultaneous amplification
of numerous loci in multiplexed polymerase chain reaction followed by a
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hybridization step where the processed samples are applied on the micro-
array surface. In the hybridization reaction, the sample molecules carrying
variant alleles are captured by the allele-specific oligonucleotides on the
microarray surface. The principle of the allele-specific primer extension is
illustrated in Figure 8.1C, D, E.

In the allele-specific primer extension presented here, a reverse tran-
scriptase is used to extend the matched primer bound to the template in
the presence of fluorescent nucleotides. Only a single fluorescent dye is
used, and distinction between different alleles is produced by the comple-
mentarity of the 3′ nucleotide of the allele-specific oligonucleotide (ASO)
attached to the array.

Allele-specific primer extension is a flexible genotyping method for
medium throughput applications allowing detection of any kind of
nucleotide variation, including insertions/deletions. The only limiting
factor for allele-specific primer extension assay design is that ASOs must be
designed to be specific for the locus of interest. Allele-specific primer exten-
sion has no limitations on nucleotide variants to be detected whereas many
other methods suffer from this limitation in terms of single dye chemistries.
While the multiplexing level of the PCR is limited, it can be extended by
the pooling of several multiplexed PCR products. Since the invention of
the method by Pastinen and Syvänen (30), the use of allele-specific primer
extension on microarrays has been reported in disease gene mapping, muta-
tion carrier screening and in supplementary paternity testing. Here we
demonstrate how researchers are able to design and analyze an SNP micro-
array of choice rapidly and efficiently without spending time in extensive
optimization efforts.

8.2 Practical approach on microarray based allele-specific
primer extension

There are multiple ways to successfully accomplish the multiplexed allele-
specific primer extension assays using microarray format. In the following
section we describe the protocols used in our laboratory, which have been
proven to be robust and suitable for the multiplexed SNP genotyping assays
for medium throughput projects. The different steps and estimated time
span in the multiplexed allele-specific primer extension genotyping assays
are schematically presented in Figure 8.2.

Manufacturing microarrays for allele-specific primer extension

In genotyping microarrays, a probe is hybridized to a single sample (or to
a pooled sample mixture), unlike in gene expression two-color arrays, in
which two samples compete in the hybridization reaction. The genotyping
microarrays can be used as regular microarrays, where the whole array
surface is being used to monitor the hybridization of one sample.
Alternatively, the array surface can be divided into subarrays, where each
subarray is hybridized with a different sample (see Figure 8.1A for the array-
of-arrays layout). In the latter case the same set of allele-specific oligos are
printed on each subarray. We routinely use duplicate or even triplicate spots
on each subarray, to guarantee the reliability of genotyping. Due to the
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standardized automation, it is conventional to use the same well-to-well
spacing as in the regular 384-well plates.

The design of arrays starts with the design of oligonucleotides for each
bi-allelic SNP to be genotyped. PCR primers are designed for each ampli-
con as described in Figure 8.1B. For each SNP two ASOs are designed which
define the alleles in the SNP locus. Each ASO comprises three structural
elements (see Figure 8.1C). The first element of an ASO is an amine group
at the 5′ terminus, which covalently binds the oligonucleotide to the chem-
ically activated slide surface. The amine group is followed by a spacer
sequence (for example TTT TTT TTT), which provides physical distance
from the slide surface. The third element is a locus-specific sequence
followed by the allele-specific sequence, which detects the variant alleles in
the sample. The locus-specific sequence of an ASO is 16 to 22 nucleotides
in length resulting in a homogenous melting temperature for all ASOs
present in the hybridization assay. In the design of each ASO stringent
physical parameters are followed, such as avoiding long homonucleotide
repeats, secondary structures and self-dimerization. These parameters can
be estimated by computer software, for example Oligonucleotide properties
calculator (http://www.basic.nwu.edu/biotools/oligocalc.html). The two
ASOs required for each SNP differ only in their 3′ nucleotides, which define
the two alleles to be detected.

Microarray slides, carrying the ASOs on their surface, can be manufac-
tured in a variety of ways. Contact printing is one of the most
commonly used methods. In contact printing or ‘spotting’ a robotic
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Figure 8.1. 

Array-of-array layout, ASO oligonucleotides and PCR primers, allele-specific primer
extension reaction. (A) Array-of-array layout. Each genotyped sample is applied to
a subarray. The subarrays are spaced according to the well-to-well distances of
384-well plates. The subarrays are formed with tape-gridding or with a histological
wax pen. All the subarrays are identical, containing the ASOs, two for each SNP
locus and typically duplicated in order to increase the assay reliability. 
(B) Localization of the different oligonucleotides around the SNP locus. The PCR
primers (priF and priR) are designed to amplify a region of 100–200 bps around
the SNP to be genotyped. In the forward primer (priF), a T7 promoter sequence is
added to the 5′ end. The two ASOs, targeting the SNP (here Y, i.e. C or T alleles in
the forward strand), correspond to a sequence in the upper strand. 
(C) Composition of the ASOs. The ASO contains an amino-group at its 5′ end,
required for the covalent attachment to the array surface. A linker region, typically
T9, is required to provide a physical distance from the locus-specific sequence to
the slide surface and to enhance the flexibility of the oligonucleotide. The two
ASOs are identical in their sequence, except for their 3′ terminal nucleotide (either
G or A, complementary to the SNP alleles). (D) Hybridization of the amplicon to
the ASOs. The PCR-amplified region, containing the SNP to be genotyped, is
transcribed to RNA and hybridized with the ASOs on the array. (E) Allele-specific
primer extension. Depending on the alleles, either ASO1, ASO2 (homozygote) or
both (heterozygote) is/are extended in the reverse-transcription reaction.
Fluorescent nucleotides are incorporated to the extension product, and are
required for the subsequent detection.
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Oligonucleotide design
Computer assisted design

Manufacturing slides
Setup 1/2 hr, automated printing overnight

Multiplexed PCR amplification
Automated setup 1/2 hr,  thermocycling 2 hrs

Reduction  of sample complexity: IVT & DNAse I
Automated setup 1/2 hr,  incubate 21/2 hrs

Hybridization on microarray
Automated setup 15 min, incubate 20 min

Allele-specific primer extension reaction
Automated setup 15 min, incubate 20 min

Image collection & signal quantitation
Analyze 15–30 min / slide

Data analysis, allele calling and genotype assignment
Analyze 15 min / slide

Figure 8.2. 

Flow chart of the allele-specific primer extension genotyping and data analysis.
Most of the steps are carried out in multi-well plates using pipetting robotics. (i)
Once the SNPs to be genotyped are identified, the primers are designed for the
locus, as described in Figure 8.1B and Table 8.2. (ii) The slides are manufactured
with a robotic arrayer and the printing is done overnight, depending on the
amount of arrays to be produced. (iii) The loci containing SNPs to be genotyped
are multiplex PCR-amplified from the samples. PCR reactions are performed with
touchdown annealing in about 2 h. (iv) In order to prevent self-pairing of the PCR
products in the subsequent hybridization step, the PCR products are transcribed to
RNA by T7 polymerase, followed by DNA template degradation using DNaseI.
These reactions take about 2,5 h. (v) Hybridization of the RNAs to the ASOs is
carried out on the microarray in a humid chamber and takes around 0.5 h. (vi) The
allele-specific primer extension is carried out using reverse-transcriptase, for
example MMLV-RT. The allele-specific extension incorporates the fluorescent
nucleotides into the extension product. (vii) The fluorescent emission is detected
using a standard microarray scanning instrument, producing an image, which is
then quantitated. (viii) The quantitated image data is background-subtracted and
normalized. The allele calling is done by clustering methods, followed by genotype
assignments.



arrayer is used to transfer small volumes of ASOs from a microtiter plate
onto a microscopic slide. These slides are aminosilane-coated for cova-
lent binding with ASOs (36). The arrayer dips a quill pin into ASO
solution containing 20 μM of oligonucleotide in a 1 × Micro Spotting
Solution (ArrayIt Microarray Technology) and subsequently moves the
pin over the slide. When all spots are printed for a given ASO, the pin is
washed in an ultrasonic water bath washing station and vacuum-dried to
prevent carry-over contamination between ASO spots. By repeating the
cycle of dipping, printing and washing, the arrayer builds an array-of-
arrays layout. With contact printing hundreds of spots can be replicated
from a single dip. The produced spots are 100–500 μm in diameter
depending on the size of the pin and surface chemistry used. The tem-
perature and humidity of the printing unit also affect the printing
process and extra care should be paid to control for this.

Sample preparation: PCR of the DNA samples

Selected genomic regions containing the SNPs to be monitored are ampli-
fied by PCR to yield a sufficient amount of DNA molecules for
microarray-based detection of the SNP genotypes. PCR amplification of the
sample is performed in a multiplexed fashion, that is all primer pairs are
amplified simultaneously in a single-tube reaction, each primer pair produc-
ing a 100- to 200-nucleotide-long amplicon for the SNP locus. A feasible
level of PCR multiplexing is up to 20 SNP loci in a single reaction. This can
be extended by pooling different multiplex PCR products. The growing
complexity of the oligonucleotide mixture in the multiplex PCR reactions
typically results in around 80% of successful genotyping assays giving
distinct genotype clusters in data analysis. Success rate is expected to
decrease as the level of multiplexing increases.

Successful multiplexed PCR assay requires careful primer design, which
takes into account uniform melting temperature and amplicon length for
all primers. Parameters for oligonucleotide selection are shown in Table 8.2.
In order to prevent mishybridization of sample DNA and oligonucleotides
during the polymerase chain reaction, two different actions are taken.
Firstly, a mispriming library containing known repetitive elements of the
human genome, such as Alu repeats, is utilized, preventing the primers
from targeting any known repetitive sequences. Secondly, cross binding to
other targets in the multiplex PCR is prevented by including all the other
multiplexed loci sequences and primers in the primer design process. This
second step is then iterated for all the loci in the same multiplex PCR
design. The multiplex PCR primer design system is accessible on our website
at http://apps.bioinfo.helsinki.fi/mpd, where the actual underlying primer
design algorithm is the Primer3 program (37). Each PCR product contains
a T7 RNA polymerase promoter sequence (TAA TAC GAC TCA CTA TAG
GGA GA) introduced by a T7-tagged forward primer, needed later for in
vitro transcription, which is introduced by a tailing of the 5′ end of the PCR
primer on the opposite strand of the ASOs (see Figure 8.1B).

Multiplexed PCR reactions are carried out in a microtiter plate format in
a reaction volume of 5–20 μl using 1–20 ng of DNA as a template.
Thermocycling is performed in a touchdown manner where the annealing
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temperature is decreased by 0.5–1°C during the first few cycles, which
produces few specific copies of amplicons at the optimal annealing temper-
ature. After touchdown cycling a final amplification is performed at the
lowest annealing temperature of the primers in the assay.

Improving the specificity of the hybridization: reduction of
template complexity

In order to avoid self–pairing of the PCR products, they are not directly
used for hybridization with the ASOs. Rather both the specificity of the
hybridization as well as number of target molecules is increased by tran-
scription of the PCR products to single-stranded RNA molecules, using the
T7 promoter sequence tailed on the forward PCR primer (see above). In vitro
transcription is performed in a 4-μl reaction volume containing 2.0 μl of
PCR template, 0.85 × T7 reaction buffer, 6.17 mM of each deoxyribonu-
cleotides, 8.65 mM of DTT and 0.35 μl of T7 RNA polymerase solution
(modified from Ampliscribe T7 High Yield Transcription Kit, Epicentre
Biotechnologies).

The transcription reaction is followed by the degradation of the PCR
products by the addition of 1.0 μl of DNaseI solution containing 0.1 U of
DNAseI in 1 × T7 reaction buffer. All the enzymatic steps are easy to auto-
mate and can be carried out in a microtiter plate format in a reaction
volume as low as 5 μl. This results in RNA target molecules that act as a
template for the extension of the spotted ASOs.

Hybridization of samples and allele-specific primer extension

In the hybridization step each sub-array on the slide is covered with a
droplet of transcribed ssRNA sample and incubated in a humid chamber at
42°C for 20 min. To prevent contamination of adjacent sub-arrays, sample
wells are formed using special tape grids or a histological wax pen (Pap Pen,
Daido Sangyo Co., Ltd, Japan). In the hybridization the complementary
ssRNA molecules anneal to ASOs on the microarray surface. After incuba-
tion the slide is washed in buffer containing 0.5 × TE, 0.3 M NaCl and 0.1%
Triton X–100, rinsed in distilled water and dried by pressurized air.

For the allele-specific primer extension each sub-array is covered with 
2.0 μl of primer extension cocktail containing 2 U Moloney Murine
Leukemia Virus reverse transcriptase (MMLV-RT), 10 mM of DTT, 1 μM of
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Table 8.2. PCR primer design parameters with Primer3

Minimum Optimum Maximum 
value value value 

PCR Primer size 18 nt 20 nt 23 nt 
PCR Primer Tm valuea 58°C 60°C 62°C 
Primer maximum GC content 55% 
ASO oligonucleotide length 16 18 22 
ASO oligonucleotide Tm 43 45 N/A 
a Tm values calculated using the Nearest Neighbor method



Cy5-labeled dCTP and dUTP nucleotides, 1.0 μM of dATP and dGTP, 0.46
M trehalose and 8% glycerol in 1 × MMLV-RT reaction buffer. The slide is
subsequently incubated at 52°C for 20 min. High incubation temperature
enhances allelic discrimination in the allele-specific primer extension
reaction. Trehalose and glycerol are used to stabilize the polymerase in
the extension reaction performed above the optimal temperature for
MMLV-RT.

During the primer extension reaction MMLV-RT polymerizes the ASOs
having complete hybridization with the ssRNA, including the crucial 3′
nucleotide with deoxynucleotides in the cocktail, simultaneously intro-
ducing fluorescent nucleotides. If the ssRNA sample has a mismatch with
the 3′ nucleotide of the ASO, the primer extension is suppressed. However,
often the allelic discrimination of the primer extension reaction is not
complete and some residual extension can take place, which needs to be
compensated for by the data analysis. In a sample that is homozygous for
a given SNP only one of the two ASOs is fluorescently labeled, whilst in a
heterozygous sample both ASOs are labeled. After primer extension, the
microarray slide is washed in buffer containing 0.5 × TE, 0.3 M NaCl and
0.1% Triton X–100, rinsed in distilled water and dried with pressurized air.

Image collection of the microarray slide and signal quantification

A digital image of the microarray slide is obtained by a microarray scanner
with CCD detector (Scan Array 4000 laser scanner, GSI Lumonics/Packard
Bioscience). The scanner measures the emitted fluorescence of the excited
ASO spots on the microarray surface and produces a corresponding digital
image. Usually a 16-bit TIFF image is used to store a high dynamic range
of values per pixel.

The signal intensities of the microarray spots are quantified by image
analysis software. The basis for signal quantification is to identify the spot
location in the image, define its borders and morphology and quantify the
signal and background intensities as well as other parameters. The simplest
form of the quantitative spot analysis consists of defining the center of the
spot and measurement of the signal within a given radius. This approach
is hampered by the fact that contact-printed spots seldom are perfect circles
and there might be differences in size and morphology between different
ASO spots. The reliability of the allelic discrimination can be increased by
utilizing an internal hybridization control oligonucleotide printed within
each ASO spot. This can be accomplished by printing an equal amount of
a control oligonucleotide to each ASO spot and respectively adding 5′-phos-
phorylated Cy3-labeled oligonucleotide, complementary to the control
oligonucleotide on the array, to the primer extension cocktail. The emitted
signal from the internal control is acquired using a different wavelength to
the ASOs and is used to normalize the ASO signal.

8.3 Data analysis – allele calling and genotype assignment

The raw signals from the image quantification process are used to derive
the allele calls and finally to assign the genotypes. The quantification data
is similar to the numerical data typically collected from gene expression
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arrays, containing noise from different sources, like the hybridization
specificity, ASO printing anomalies and chemical residues, affecting the
image. The results from the data analysis are depicted in Figure 8.3.

The data analysis starts with data normalization, where we have used
standard log transformation of background-subtracted signal intensities.
Next we calculate the mean of the summed intensities from signals
obtained for both ASOs for a given marker in all samples and exclude outlier
ASOs differing from the mean more than certain times the standard devi-
ation, for example more than 2 S.D.. This procedure is able to filter out
non-amplified samples as well as extremities of the signal intensities,
usually due to non-specific fluorescence signals.
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Figure 8.3. 

Analysis of the image data, allele calling and genotype assignment. The data shown is from a
multiplex genotyping assay of 20 SNPs. Clockwise from the left: The scanned image of a fraction of
the genotyping array, indicating the arrays-of-array layout. Each subarray represents an independent
sample and each SNP locus is represented by the two spots which contain the ASO1 or ASO2
oligonucleotide. In the three enlarged subarrays, duplicate spots per SNP allele are used, increasing
the reliability of genotyping. The spots are quantitated and by using the intensity fractions, the spot
pairs are clustered into three distinct genotypes (both homozygotes and heterozygotes). The
clustering is confirmed by checking, for example that duplicate spots are within the same cluster. 
In the graph, the x-axis is the clustered fraction of the spot pairs’ background-subtracted intensities
and the y-axis is the logarithm of the summed intensities of the spot pairs. Water controls are
routinely used and distinguished by low summed intensity values. Possible outlier spot pairs, with too
high or low summed intensity values or intensity fraction values between the clusters are excluded
and not genotyped.



Optimally the validated data should get organized to three distinct
classes, representing the two homozygotes and the heterozygote samples.
We typically use clustering methods, such as a modified version of the k-
means clustering from the one-dimensional signal intensity fraction data.
We set k =3 and pre-assign the cluster centroids to 0.2, 0.5 and 0.8 fraction
values. We also optimize the clustering so that replicates of the same sample
are to be assigned to the same cluster, if possible. Replicate samples having
discrepancies in their cluster assignments will not be assigned a genotype,
unless the researcher decides to manually exclude the conflicting samples.
Usually the clusters converge easily even in the situation where the frac-
tion values of the cluster centroids are heavily skewed to either end of the
fraction scale. This makes the clustering approach superior to static assign-
ments of genotypes based just on the intensity fraction values. The
clustering can be further directed by using reference samples, for which the
genotypes are already known, as well as no template control, for reduction
of the error due to the unspecific fluorescence emission.

In order to decrease false genotyping assignments, we next calculate
distances between the cluster centroids as well as standard deviation of the
samples from the cluster centroids. We use this information to set 
uncertainty areas between the cluster centroids and all samples in these
regions will be excluded from the allele calling, because of the reduced
probability of correct cluster assignment and thus increased possibility for
a genotyping error.

As the next quality control step we calculate the standard Hardy-
Weinberg distributions and use a Chi-Square test in order to evaluate the
likelihood for the observed genotyping assignments. Finally we enter all
genotyping data to a database, where we check the Mendelian inheritance
rules of the samples, if this information is available.

All data analysis steps described here are implemented in SNPSnapper
(http://www.bioinfo.helsinki.fi/snpsnapper/), a software specially designed
for both allele—specific primer extension and minisequencing in our labo-
ratory (Saharinen et al., manuscript in preparation). SNPSnapper also
displays all the data in various dynamic graphs and allows manual inter-
vention in each step and provides the original scanned array image, for
example for rejection of conflicting sample replicates. Finally the data is
stored in a relational database and can be exported, for example in linkage
files to downstream analysis programs.

8.4 Summary

The microarray format has been proven to be a successful tool for multi-
plexed SNP genotyping, providing medium to high throughput. With a
basic level of laboratory automation it is feasible to produce around 960
genotypes for 96 samples in 8 h, depending on the multiplexing level of
the assay. In comparison to other currently used genotyping technologies,
allele-specific primer extension on microarrays is typically quickly adapt-
able for novel SNP markers and has very low limitations on the context of
the genotyped locus. Whilst the genotyping throughput is not as high as
in most robust technologies, the method is highly applicable for smaller-
scale projects, involving for example rapid custom candidate gene
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genotyping. The special advantage of the method is that it does not require
expensive investments on instrumentation.

Since multiple fluorescent nucleotides are added in the extension reac-
tion, the amount of emitted fluorescence is higher than in minisequencing
where only a single fluorescent nucleotide is added to the detection. In the
minisequencing reaction, the detection primer bound to the array is only
extended by a single nucleotide using fluorescently labeled dideoxy
nucleotides. By using four different fluorophores for the four ddNTPs, all
different alleles can be detected.

The interpretation of the allele signal is often easier with the allele-specific
primer extension chemistry. When compared to allele-specific primer exten-
sion, minisequencing chemistry however doubles the amount of information
that can be retrieved from the same number of probes on the array. With
rare SNPs having more than two alleles, this difference is even greater.

Together with the current high-quality microarray technologies and
intelligent allele-calling and genotyping software, the reliability of the
produced genotypes is high, which is of utmost importance for the down-
stream analysis of the genotype information.
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Profiling the Arabidopsis
transcriptome
Lars Hennig

9.1 Introduction

During recent years, Arabidopsis thaliana (Thale cress) has become the most
important model species for plant physiology and genetics. In 2000, the
Arabidopsis genome was the first plant genome to be sequenced making it
the third eukaryote genome to be completed (1). Therefore, it was not
surprising that Arabidopsis became the main model plant for plant func-
tional genomics as well. Several microarrays were developed to probe the
Arabidopsis transcriptome, and the Affymetrix AG and ATH1 GeneChip®
arrays are currently the most widely used.

Development of the first Arabidopsis microarrays was driven by commu-
nity needs. In the US, NSF supported the development of a spotted
microarray with around 11 000 cDNAs (2). In parallel, the Novartis
Agriculture Discovery Institute, Inc. (NADII) and Affymetrix together devel-
oped the first Arabidopsis GeneChip® array. This AG GeneChip® array
contains around 8300 probe sets (3) and in 2000 Affymetrix made this
microarray publicly available. Again supported by the NSF, the Institute for
Genomic Research (TIGR) and Affymetrix developed a second Arabidopsis
GeneChip® array. Because this ATH1 GeneChip® array contains more than
22 000 probe sets, that is it probes nearly every Arabidopsis gene, it is
commonly referred to as a ‘full genome microarray’ (4). Importantly, a
systematic comparison of AG and ATH1 microarrays showed that results
were consistent between both microarray generations (5).

In the meantime additional Arabidopsis microarrays were developed by
both academic consortia and commercial service providers. The EU-
supported CAGE consortium constructed the CATMA microarray, which
contains nearly 20 000 cDNAs (http://www.catma.org/). The Agilent
Arabidopsis 3 Oligo Microarray Kit uses 60-nucleotide oligomers to probe
40 000 Arabidopsis transcripts (including non-coding transcripts). Qiagen
Operon offers a set of nearly 30 000 70-nucleotide oligomers that has been
used to study flower development in Arabidopsis (6). In addition to
Arabidopsis, microarrays for other plant species are entering the market as
well. They include barley, grape and soybean Affymetrix GeneChip® arrays,
oligonucleotide sets for grape, Medicago and peach from Operon and rice
oligonucleotide microarrays from Agilent.

Here, I will describe the typical work-flow of an RNA profiling experi-
ment in Arabidopsis using Affymetrix GeneChip® arrays.
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9.2 MIAME/Plant – documentation of the experiment

MIAME (Minimum Information About a Microarray Experiment, see
Chapter 22) is a standard that aims at providing a conceptual structure for
the core information to be captured from most microarray experiments (7).
The MIAME standard is very useful for the annotation of labeling and
hybridization procedures, measurement data and array design.
MIAME/Plant aims to extend the MIAME standard and to establish a list of
controlled vocabularies for plant microarray experiments. MIAME/Plant is
an extended list of plant experimental description terms from:

• experimental design,
• growth protocol,
• extraction protocol,
• genotype,
• starting material,
• developmental stage,
• plant organs.

For details on MIAME/Plant see the white paper (8).

9.3 RNA extraction

Different RNA extraction protocols work, but we usually use TRIZOL-based
extraction followed by a clean-up on RNeasy microspin columns. If possi-
ble, we treat all aqueous solutions with 0.1% DEPC overnight before
autoclaving.

9.4 Labeling

Labeling involves the synthesis of double-stranded cDNA from total RNA
followed by in vitro transcription (IVT). The quality of the T7-(T)24 primer
is critical for the success of the whole experiment. It is essential that the
primer is PAGE or HPLC purified, and we recommend verifying the quality
of this primer before embarking on further experiments. The quality of the
primer can be controlled for example by cDNA synthesis followed by IVT.
During the IVT reaction, biotin-labeled cRNA transcripts are produced by a
T7 RNA polymerase-catalyzed reaction in the presence of biotin-labeled CTP
and UTP nucleotides. Use Qiagen RNeasy columns for purification of IVT
samples. Do not use phenol/chloroform extraction to purify biotinylated
samples. Compare also the Affymetrix white papers (9).

9.5 Hybridization

The Eukaryotic Hybridization control mix contains non-eukaryotic tran-
scripts, which serve as controls for hybridization quality and array
performance. A synthetic control oligonucleotide (B2) provides alignment
signals used by the scanner software to position the grid over the array
image. Addition of the Eukaryotic Hybridization control mix to the
hybridization cocktail is not compulsory, but the B2 control oligo-
nucleotide must be added to every cRNA sample to be hybridized. In this
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protocol we use 15 μg of cRNA for the hybridization of standard
GeneChip® arrays. Use only RNAse-free plasticware (Eppendorf tubes,
pipette tips) and DEPC-treated water. All the buffers used in this protocol
must be sterile-filtered (0.22 μm filter).

9.6 Washing, staining and scanning

After hybridization, the probe array is subjected to a series of washes in the
fluidics station. Stringent and non-stringent washes are specifically opti-
mized for each probe array type. The hybridized and washed probe arrays
are next stained with strepavidin-phycoerythrin conjugate. Please check the
fluidics protocol(s) required for the array type you are using on the infor-
mation sheet provided for each Affymetrix probe array type.

The Affymetrix GeneChip® fluidics station is used for array washing,
staining and signal amplification. Place water, washing buffers, SAPE solu-
tion and antibody solution in the fluidics station. Refer to the user manual
for handling the fluidics station.

After completion of the wash program, check the probe array window
for air bubbles. To remove air bubbles, insert a clean pipette tip into the
upper septum of the array. Keep the array in a vertical position and pipette
200 μl non-stringent wash buffer into the array using the lower septum of
the array. Pipette another 150 μl buffer into the array (extra buffer will come
out through the pipette tip attached to the upper septum). Keep the probe
arrays without air bubbles at 4°C in the dark until scanning. Refer to the
instructions of the scanner and the operating software for scanning. Each
complete array image is stored in a separate raw data file (*.dat). The
GeneChip® operating software analyzes the image files and derives a single
intensity value for each probe cell of an array. These values are contained
in the cell intensity (*.cel) file.

9.7 Data pre-processing and data analysis

For preprocessing of Affymetrix GeneChip® microarray data various algo-
rithms exist, for example MAS, RMA and GCRMA (10–12). For a detailed
discussion of normalization algorithms see Chapter 17. See Chapter 18 for
approaches to detect differentially expressed genes, Chapter 19 for cluster-
ing algorithms and Chapter 20 for approaches to detect patterns in time
course series. Several online tools are available to analyze microarray data
from plants (Table 9.1). Data from completed microarray experiments
should be submitted to public data repositories (e.g. ArrayExpress, GEO) but
also to plant specific microarray databases (e.g. Genevestigator,
NASCArrays, TAIR).

9.8 Useful tips

These are only suggestions, but they can make the procedures easier.

1. Have at least 30 μg total RNA for each sample before you start; even if
labeling of one sample causes problems, you can still repeat the labeling
using the remaining RNA.
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2. For difficult tissue like seeds use a borate buffer method (13).
3. Use a double-labeling kit (e.g. from Affymetrix or Ambion) if you have

limited amounts of RNA to start with (works with as little as 50 ng total
RNA).

4. For better recovery, pass RNA-containing solutions twice over RNeasy
columns and elute twice (first with 30 μl, then with 20 μl water).

5. Store wash buffers at 4°C, but leave at room temperature over night
before use to avoid air bubbles in the fluidics station.

9.9 Summary

Although several competing microarray platforms are available for tran-
scriptional profiling of Arabidopsis thaliana, Affymetrix GeneChip® ATH1
microarrays are certainly among the most powerful. This is in part due to
the widespread availability of Affymetrix systems in laboratories and service
centers. Because ATH1 microarrays are commercially available and the tech-
nology is very robust, researchers do not need to spend time on technology
development but can focus on their primary goal – research. Moreover, the
use of standardized protocols and microarrays has enabled novel tools for
meta-analysis of independent experiments from various groups. One such
tool from our own lab, Genevestigator (14), has proven to be extremely
popular in the field of plant science. Nonetheless, there are disadvantages
of the ATH1 microarrays. First, all disadvantages common to any oligo-
nucleotide array apply to ATH1 arrays. Second, the Arabidopsis genome
contains more than 29 700 annotated genes, but only 22 000 genes are
probed by the ATH1 array. Finally, many non-coding RNAs are generated
from the Arabidopsis genomes (15). These RNAs often have important regu-
latory roles but are usually not probed by the ATH1 array. However,
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Table 9.1. Public tools for analyzing Arabidopsis microarray data

Name Application Link Ref. 

TAIR GO GO-classification http://www.arabidopsis.org/tools/bulk/go/ (16) 
index.jsp 

TAIR Aracyc Display of http://www.arabidopsis.org:1555/expression. (17) 
expression data on html 
a metabolic map 

TAIR promoter Identification of http://www.arabidopsis.org/tools/bulk/ (16) 
analysis enriched promoter motiffinder/index.jsp 

motifs 

TAIR Chromosome Mapping genes on http://www.arabidopsis.org/jsp/Chromosome (16) 
Map Tool chromosomes Map/tool.jsp 

Genevestigator Analysis of https://www.genevestigator.ethz.ch (14)
expression patterns 
during development 
and stress 

MapMan Data visualization http://gabi.rzpd.de/projects/MapMan (18) 



full-genome tiling arrays will likely become available soon (15) eliminating
many of the major current limitations.
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Protocol 9.1: RNA extraction

PRECAUTIONS
1. Wear gloves and use RNase-free tubes and pipette tips.

2. Water used in the protocol is molecular biology grade
(nuclease-free) water.

MATERIALS

Reagents and kits

• Trizol (Invitrogen)

• RNeasy RNA purification kit (Qiagen)

METHODS
1. Grind 100 mg of tissue in liquid nitrogen to a fine powder and

transfer into an Eppendorf tube.

2. Add 1 ml Trizol and continue according to manufacturer’s
protocol.

3. Purify the RNA on RNeasy microspin columns according to
manufacturer’s protocol.

4. Quality control: dilute sample 1:100 in 10 mM TRIS (pH 7.5).
Measure absorbance at 260 nm and 280 nm. The ratio
abs260nm:abs280nm should be between 1.9 and 2.1. Run 1 μg of
RNA on a 1% agarose gel. Nuclear and plastid ribosomal RNA
should be visible as distinct bands. Alternatively, the Agilent
Bioanalyzer 2100 (lab-on-a-chip) microcapillary system can be
used to assess RNA integrity. For best results use only non-
degraded RNA of high purity.
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Protocol 9.2: Labeling

MATERIALS

Reagents and kits

• 5 × fragmentation buffer (200 mM Tris-acetate, pH 8.1, 500
mM KOAc, 150 mM MgOAc)

• T7-oligodT (GGC CAG TGA ATT GTA ATA CGA CTC ACT ATA
GGG AGG CGG-(dT)24)

• SuperScript™ Double-Stranded cDNA Synthesis Kit
(Invitrogen)

• Phase Lock Gels (Eppendorf)

• BioArray High Yield IVT kit (ENZO)

• Alternatively: MEGAscript T7 in vitro transcription kit (Ambion)
or GeneChip® IVT Labeling Kit (Affymetrix).

METHODS

cDNA synthesis

1. Use 15 μg total RNA for first and second strand cDNA
synthesis according to manufacturer’s protocol.

2. Clean up the cDNA using Phase Lock Gel tubes according to
manufacturer’s protocol.

3. Generate labeled cDNA by IVT using the ENZO BioArray kit
according to manufacturer’s protocol.

4. Clean up the cRNA with Qiagen RNeasy columns according to
manufacturer’s protocol.

5. Quantify the cRNA: measure Abs260nm of cRNA (typically diluted
1/50 to 1/100) to determine the yield. When using total RNA
as the starting material, it is necessary to calculate an adjusted
cRNA yield to correct the carryover of unlabeled total RNA.
Using an estimate of 100% carryover, use the following
formula to determine the adjusted cRNA yield:

adjusted cRNA yield = RNAm – (total RNAi)

RNAm = amount of cRNA measured after IVT (μg)

RNAi = starting amount of total RNA (μg)
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Note: use the adjusted cRNA yield when calculating the
amount of cRNA needed for fragmentation and array
hybridization.

6. Check 1 μg of the purified transcripts on a 1% agarose gel.
Transcript lengths should range from 0.5 to 2 kb.

7. Fragmentation of the cRNA. Mix the following:

16 μg cRNA (Note: use adjusted cRNA yield.)

8 μl 5 × fragmentation buffer

RNAse-free H2O to 40 μl

Incubate at 95°C for 35 min. Store at −20°C. Check 2.5 μl 
(=1 μg) on a 1% agarose gel. The size of the cRNA should be
reduced to 100 bp.
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Protocol 9.3: Hybridization

PRECAUTIONS
1. Avoid fingerprints on the array cartridge window as these may

interfere with scanning. If fingerprints are present, these
should be cleaned with soft paper and ethanol.

2. Use only powder-free gloves to minimize introduction of
powder particles into the sample, buffers, or array cartridges.

MATERIALS

Reagents

• Eukaryotic Hybridization control mix (Affymetrix)

• B2 control oligonucleotide (Affymetrix)

• Herring sperm DNA

• Acetylated BSA

• 12 × MES stock, pH 6.5–6.7 (1 l, do not autoclave)

70.4 g MES free acid monohydrate

193.3 g MES sodium salt

• 2 × Hybridization buffer (50 ml)

8.3 ml of 12 × MES

17.7 ml of 5 M NaCl

4.0 ml of 0.5 M EDTA

0.1 ml of 10% Tween-20

Mix and adjust volume to 50 ml. Filter through a 0.2-μm filter.

METHODS
1. Equilibrate the probe array to room temperature immediately

before use (probe arrays should be stored at 4°C).

2. Pre-hybridize the probe array with 1 × hybridization buffer.
Keep the array upside down. Insert a clean small pipette tip
into the top septum of the array to allow venting of air from
the chamber inside the probe array. Pipette 200 μl of
1 × hybridization buffer into the array through the bottom
septum. Incubate for at least 10 min at 45°C with 60 r.p.m.
rotation (GeneChip® hybridization oven).
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3. Preparing the hybridization target: mix the following
components in a RNAse-free 
1.5-ml Eppendorf tube:

15 μg of fragmented cRNA 37.5 μl

20 × Eukaryotic Hybridization 
control mix 15 μl

3 nM B2 control oligonucleotide 5 μl

Herring sperm DNA (10 mg/ml) 3 μl

Acetylated BSA (50 mg/ml) 3 μl

2 × Hybridization buffer 150 μl

RNAse-free H2O to final volume 
of 300 μl 86.5 μl

4. Denature the hybridization cocktail at 99°C for 5 min.

5. Incubate the hybridization cocktail at 45°C for 5 min.

6. Spin the samples at maximum speed in an Eppendorf
centrifuge for 5 min to remove any insoluble material from the
hybridization cocktail.

7. Remove the pre-treatment solution from the pre-hybridized
probe arrays and add 200–230 μl of the hybridization cocktail
into the probe array. A small air bubble inside the probe array
is needed for proper mixing of the hybridization cocktail
during the hybridization. Seal the septa with small 8-mm
paper stickers to prevent any loss of hybridization cocktail
during the incubation.

8. Hybridize for 16 h at 45°C with 60 r.p.m. rotation in the
hybridization oven.
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Protocol 9.4: Washing, staining
and scanning

PRECAUTIONS
1. SAPE is light-sensitive and must be stored at +4°C in the dark.

2. Never freeze SAPE solution.

3. Keep SAPE-staining cocktail in colored Eppendorf tubes.

4. Always prepare staining cocktail freshly before use.

MATERIALS

Reagents

• 20 × SSPE (pH 7.4) (3 M NaCl, 0.2 M NaH2PO4, 20 mM EDTA)

• Stringent wash buffer (800 ml):

66.6 ml of 12 × MES

4.2 ml of 5 M NaCl

0.8 ml of 10% Tween-20

• Non-stringent wash buffer (800 ml):

240 ml of 20 × SSPE

0.8 ml of 10% Tween-20

• 2 × Stain buffer (250 ml):

41.7 ml of 12 × MES

92.5 ml of 5 M NaCl

2.5 ml of 10% Tween-20

• Acetylated BSA

• Herring sperm DNA

• R-phycoerythrin streptavidin (Molecular Probes)

• Goat IgG (10 mg/ml in PBS, pH 7.2. Store at 4°C)

• Biotinylated anti-streptavidin (0.5 mg/ml in DEPC-water. Store
at 4°C.)
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METHODS
1. Remove the hybridization cocktail from the array into a new

RNAse-free tube and store it at −20°C. The same hybridization
cocktail can be used again (denature the cocktail at 99°C for 5
min before each use).

2. Fill the probe array manually with 250 μl of non-stringent
wash buffer. The probe array can be stored up to 3 h at 4°C in
the dark before proceeding with the washing and staining.

3. Turn on the power for the hardware (note the order
recommended by the manufacturer). Open scanner-operating
software (e.g. GCOS).

4. Prepare staining cocktails.

SAPE solution (1200 μl per array)

600 μl 2 × stain buffer

540 μl RNAse-free water

48 μl acetylated BSA (50 mg/ml)

12 μl SAPE (1mg/ml)

Mix well and divide into two aliquots of 600 μl each.

Antibody solution (600 μl per array)

300 μl 2 × stain buffer

266.4 μl RNAse-free water

24 μl acetylated BSA (50 mg/ml)

6 μl goat IgG (10 mg/ml)

3.6 μl biotinylated antibody (0.5 mg/ml)

Mix well.
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Affymetrix GeneChip
analyses – the impact of
RNA quality
Ludger Klein-Hitpass and Tarik Möröy

10.1 Introduction

According to the steeply increasing number of reports in the literature
Affymetrix DNA oligonucleotide arrays (GeneChips) have gained consider-
able acceptance in the research community. The latest version of human
GeneChips, U133A Plus 2.0, representing approximately 38 500 transcripts
on a single chip allows genome-wide expression profiling in a very conven-
ient setting. In contrast to cDNA and oligonucleotide arrays from different
manufacturers, Affymetrix GeneChips measure transcripts by a set of multi-
ple probes (called a probe set), which usually consists of 11 probe pairs.
Each probe pair contains two 25mer oligonucleotide probes, a perfect
match (PM) oligonucleotide that represents part of the cDNA sequence of
interest and a mismatch (MM) oligonucleotide, which is identical to the
PM oligo except for a mismatch mutation at the central position. In the
Affymetrix image analysis method implemented in the MAS5.0 and GCOS
software, the PM-MM signal differences of the 11 probe pairs of a probe set
are converted into a single probe set signal value, which is a measure of the
abundance of the transcript. In addition, for each probe set the software
estimates the reliability of the measurement resulting in a detection call
(present, absent, or marginal) based on a significance analysis of the PM-
MM differences.

To minimize discrepancies due to varying sample preparations,
hybridization conditions, staining intensities or probe array lots, the
software provides several normalization options, which can be applied to
the datasets from different arrays. The recommended procedure for
datasets with relatively little expression differences is called ‘global scal-
ing’. During global scaling, the software examines all probes on the array
to compute a trimmed mean signal. Then, a scaling factor is calculated
and applied to each signal on the array to standardize the trimmed
mean of the array to a user-specified target signal. Another option, called
‘selected probe sets scaling’, computes the trimmed mean signal of
selected probe sets to derive a scaling factor that is again applied to all
probes and adjusts the trimmed mean signal of the selected probe sets to
the target signal value specified by the user for all arrays of a given
dataset. Selected probe set scaling is more appropriate and provides more
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accurate signal measurements, if differences between samples are rela-
tively high. However, it requires a set of transcripts known to be equally
abundant in all samples, such as a fixed amount of external controls
spiked into a constant amount of starting material.

Most probe sets cover a target sequence of about 300 bases in length
located within the region of 600 bases proximal to the 3′-end of the tran-
scripts, mostly in non-translated regions, where distinction of transcripts
encoded by highly homologous gene families is facilitated. To select these
probe set sequences, information from multiple public domain databases
as well as proprietary information of Affymetrix is used. In cases where data-
base entries suggest the occurrence of alternative splicing or
polyadenylation, multiple probe sets covering different regions of a gene
can be present on the GeneChip arrays. Information on each probe set,
including the sequences interrogated by the probe pairs and the sequences
of the oligonucleotides chosen, has been made accessible to the public via
an internet platform called NetAffx Analysis Center (www.affymetrix.com).

To be analyzed on GeneChips, mRNA molecules contained in total RNA
samples are amplified and labeled by a standardized and widely used proto-
col (Figure 10.1A), which involves conversion of mRNA molecules into
double-stranded cDNA using an oligo(dT)21 primer with a T7 RNA poly-
merase promoter tag for first strand synthesis. After second strand cDNA
synthesis, subsequent in vitro transcription by T7 RNA polymerase yields
biotinylated anti-sense copy RNA, termed cRNA target, which is sufficient
for the hybridization of several GeneChip arrays. Starting with a perfectly
intact RNA sample, the resulting cRNA target should ideally represent full
length anti-sense mRNA sequences. However, degradation of the RNA
during preparation or storage can lead to truncated or cleaved mRNA mole-
cules that cause premature stops of oligo(dT)-primed reverse transcription.
Hence, mRNA sequences located 5′ of cleavage sites are not converted into
cDNA and a 3′-biased cRNA target is obtained (Figure 10.1B). To be able to
estimate whether such a 3′-bias has occurred during cRNA preparation and
to monitor the quality of the RNA used to prepare a cRNA target, Affymetrix
expression GeneChips provide a number of probe sets, which interrogate
5′, middle, and 3′ parts of two transcripts of the housekeeping genes, Gapdh
and β-Actin, which are ubiquitously expressed at relatively high levels.
Other 5′, middle, and 3′ probe sets detect different parts of various exter-
nally added intact polyA+-spikes, which can be used as external
normalization controls and serve to monitor cDNA- and cRNA-synthesis
steps. cRNA targets derived from high quality RNA samples display 3′ to 5′
probe-set signal ratios for Gapdh and β-Actin close to 1.0, whereas cRNA
targets from degraded starting material exhibit increased ratios. With a few
exceptions, where increased 3′/5′-ratios of housekeeping genes may truly
reflect a regulated cellular process such as apoptosis, increased 3′/5′-ratios
result mostly from incomplete inactivation and removal of endogenous
ribonucleases during cell homogenization and RNA extraction, contami-
nation with exogenous ribonucleases or spontaneous cleavage, which is
frequently observed in purified RNA samples that have been subjected to
multiple freeze and thaw cycles.
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Most GeneChip users agree that array data obtained from RNA samples
showing 3′/5′-ratios for β-Actin greater than 3.0 should be treated with
special caution and must not be compared with array data from intact
control samples, since the differential representation of 5′ mRNA sequences
might introduce a significant error. While most microarray lab units
perform mandatory RNA quality checks by analyzing RNA samples on the
Agilent BioAnalyzer or by gel electrophoresis to exclude very poor RNA
preparations from further processing, a considerable variation of 3′/5′-ratios
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Figure 10.1. 

Differential representation of 5′ mRNA sequences in cRNA targets from partially
degraded samples. (A) Intact mRNAs are converted by the standard labeling
method into biotinylated full-length anti-sense cRNA. (B) Schematic representation
of anti-sense cRNA copies of a specific gene generated from an intact (left panel)
and a partially degraded RNA sample (right panel). Depending on the position of
the cleavage sites in the mRNA molecules, copies lacking variable parts of the 5′
region are generated (marked 2 to 4). A probe set interrogating more 3′ located
sequences would detect copies 1 to 3, whereas a more 5′ probe set could detect
only 1 to 2, resulting in a variable degree of under-estimation and increased signal
ratios when compared to intact samples. cRNA copy 4 is non-productive with
respect to both the 5′ and 3′ probe sets, while 3 is non-productive only with
respect to the 5′ probe set. (C) Graph showing the relationship of the measured
signals in intact and degraded total RNA and the distance between the 5′-end of
the probe-set sequences and the polyA end of the transcript. The ratio of signals
observed in degraded and control RNA for the AFFX-Gapdh and β-Actin 5′, middle,
and 3′ probe sets is plotted against the distance between the 5′-end of the probe
set and the start of the polyA tract. Accession numbers for human Gapdh and 
β-Actin full-length sequences are M33197 and X00351, respectively.



is still observed in many projects and experiments. Moreover, because some
tissues or cells contain high amounts of ribonucleases or require more time
for RNA extraction than others, systematic differences in RNA qualities of
samples to be compared can sometimes hardly be avoided.

10.2 Aim and experimental design

Since the GeneChip probe set sequences are strongly biased towards the 3′-
end of the published sequences, it is implicated that under-representation
of 5′ mRNA sequences occurring in cRNA targets from moderately degraded
RNA samples may not affect data quality in most experiments. However, a
systematical experimental analysis to what extent this might create false
positive targets is lacking. To determine the impact of degradation on
microarray data, aliquots of an intact RNA sample prepared from HeLa cells
were treated in a controlled fashion by heat in the presence of divalent
ions, which results in random cleavage of RNA molecules. After chilling,
equal amounts of a set of intact poly(A)+ RNAs were spiked into partially
degraded as well as untreated control samples. These spiked-in RNAs, which
can be measured on the arrays, served to monitor various steps of the enzy-
matic conversion into cRNA and, importantly, as external normalization
controls using the selected probe set scaling option. All targets were
prepared and analyzed by hybridization to Affymetrix HG-U133A arrays
containing more than 22 000 probe sets. Since the overall sequence content
in degraded and control RNA samples remained identical, genes that were
identified by statistical analysis to be significantly up- or down-regulated in
the degraded samples represent false positive targets, which are solely due
to the introduced 3′-bias in the cRNA target from partially cleaved RNA. In
addition, we compared the effect of two different array normalization
procedures, global scaling and selected probe set scaling to spiked-in
controls, on the rate of false up- and down-regulated transcripts.

10.3 Statistics of RNA and array quality parameters

As indicated in Table 10.1, yields of cRNA from control and partially
degraded RNA samples were highly similar (p =0.92, paired t test), sug-
gesting that cDNA synthesis and in vitro transcription efficiency were not
impaired by the pretreatment. For control RNAs, mean 3′/5′-ratios of
0.80±0.03 and 1.24±0.05 for Gapdh and β-Actin transcripts, respectively,
were determined, confirming high RNA integrity. Partially cleaved RNAs
had 3′/5′-ratios of 0.99±0.04 (Gapdh) and 2.18±0.26 (β-Actin), correspon-
ding to a 1.25-fold (Gapdh) and 1.75-fold (β-Actin) increase (p <0.001).
Other array parameters, such as noise and background average, were not
significantly different between intact and partially degraded samples.
Moreover, despite the clearly reduced RNA quality, there was no change
in the overall percentage of probe sets called present by the detection
algorithm of MAS5.0, regardless of whether degraded or intact RNA was
used for target preparation. In summary, all parameters suggested that
the quality of both sets of cRNA samples and GeneChip arrays was very
comparable and that the extent of 3′-bias introduced into the cRNAs
derived from partially cleaved RNAs was clearly within the range that
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would permit a reasonable comparison with the control samples accord-
ing to general recommendations.

10.4 Comparison of signal measures computed by different
array normalization procedures in control and
degraded samples

Signal calculation for each array image was performed in MAS5.0 in three
different ways. First, signals were calculated by omitting any normalization
procedure, yielding unadjusted signal intensities (raw signals). Second,
images were re-analyzed using the all probe sets scaling option (globally
scaled signals). Third, signals were computed using the selected probe sets
scaling option with the help of a mask file, which combines all the 27 avail-
able probe sets for the spiked-in control RNAs (spike mask scaled signal).
As the external spike controls were present in equal amounts in all RNA
samples, the latter scaling procedure ensures that the normalization step
corrects for any unknown variables but not for systematic parameters linked
to the 3′-bias in cRNA targets prepared from partially degraded RNA. Thus,
signal intensities obtained by this method should reflect the genuine
hybridization signals of the labeled cRNAs more precisely than the raw
signals or the signals computed by global scaling.
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Table 10.1. Summary of sample and array characteristics

Variable Control RNAs Degraded Ratio t test 
(applied scaling) RNAs (Degraded/ p-value 

Control) 

No. of arrays 6 6 
cRNA yield 33.7±2.8 μg 33.5±5.1 μg 0.99 0.920 
3′/5′-Ratio Gapdh 0.80±0.03 0.99±0.04 1.25 <0.001 
3′/5′-Ratio β-Actin 1.24±0.05 2.18±0.26 1.75 <0.001
Noise 2.95±0.12 2.98±0.29 1.01 0.858 
Background 63.3±4.1 63.1±6.5 1.00 0.937 
Percent present calls 53.6±1.1 54.2±0.6 1.01 0.283 
Mean signal (raw) 355.5±46.7 293.4±25.4 0.83 0.022 
Trimmed mean signal (raw) 275.8±38.7 225.8±21.5 0.82 0.025 
Cumulative signal/106 (raw) 7.9±1.04 6.5±0.57 0.82 0.022 
Scale factor (global) 4.27±0.63 5.17±0.48 1.21 0.020 
Mean signal (global) 1495.8±23.7 1507.9±24.4 1.01 0.402 
Cumulative signal/106 (global) 33.3±0.53 33.6±0.54 1.01 0.402 
Scale factor (spike) 0.67±0.10 0.65±0.06 0.97 0.937 
Mean signal (spike) 234.7±3.7 189.8±5.7 0.81 <0.001 
Trimmed mean signal (raw) 181.9±4.0 145.9±3.4 0.80 <0.001 
Cumulative signal/106 (spike) 5.2±0.1 4.2±0.1 0.81 <0.001 

Starting with three different pools of control and degraded RNA samples, cDNAs were generated in duplicate
from each pool and used in IVT labeling reactions to generate six cRNA targets in each group, which were
hybridized to HG-U133A arrays. Data are mean ±S.D. Array images were analyzed in MAS5.0 in three different
ways, to yield unadjusted raw, globally scaled and spike-mask-scaled signals. User-specified target intensities
during global and spike-mask scaling were 1000. t test p-values were determined using the SSPS software.



Statistical analysis of the raw signal data revealed that mean (83%),
trimmed mean (82%), and cumulative raw signals (83%) were significantly
decreased in degraded RNAs (Table 10.1). Scale factors generated by scaling
to the spike mask were highly similar in degraded and control samples,
demonstrating that the spiked-in controls were indeed equally abundant in
all samples. Consistent with the observations already made at the level of
raw signals, resulting mean (81%), trimmed mean (80%), and cumulative
signals (81%) after the spiked-in control probe-set scaling proved to be
highly significantly decreased in degraded samples (p <0.001). A detailed
analysis of the size distribution of the mean raw and spike-mask-scaled
probe-set signals showed a general downshift to lower intensities in
degraded samples (Figure 10.2A, B). In contrast, size distributions of glob-
ally scaled signals of control and degraded samples did not correctly reflect
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Figure 10.2. 

The effects of various array normalization methods on the distribution of resulting
signal measures in control and partially cleaved RNA samples. (A) Unadjusted mean
raw signal measures of control (n =6) and degraded samples (n =6) were
logarithmically transformed (base 2) and sorted into bins of equal size (0.5).
Increasing bin numbers represent higher signal bins. (B) Signal measures resulting
from spike-mask scaling are represented as in (A). Signals from degraded samples
show a general downshift due to the presence of partial, non-productive cRNA
copies, which is also evident in the distribution of the raw signals. (C) Signal
measures resulting from global scaling are shown as in (A). Note, that this
procedure arithmetically compensates some of the signal drop observed in
degraded samples. Thus, signal measures of degraded samples do not accurately
reflect hybridization signals any more. (D) Spike-mask-scaled signals of 12 118
reliably measured probe sets (≥50% present detection calls in the 12 arrays
hybridized) were binned as shown in (C). The resulting distributions show that the
peaks observed at lower signal intensities in (A)–(C) represent probe sets which
received absent and/or marginal detection calls in the majority of analyses.



this signal drop any more (compare Figure 10.2B and C), as the difference
is largely compensated by correspondingly increased scale factors (p =0.02).
Because all arrays were taken from the same batch and very little intra-
group variation was observed, raw as well as spike-mask-scaled data indicate
a significant drop in signal intensities on arrays hybridized with targets
from partially cleaved RNA samples. Since all arrays were hybridized with
equal amounts of labeled cRNA, we conclude that due to the partial cleav-
age mimicking RNA degradation and the 3′-biased amplification procedure,
there is a considerably increased fraction of cRNA molecules present in
targets prepared from the degraded starting material that does not gener-
ate hybridization signals. As indicated in Figure 10.1B, such non-productive
or less productive molecules are generated during the cDNA and cRNA
synthesis steps, when RNA cleavage occurred at a position located within
or 3′ of the sequences represented by the corresponding probe set.

10.5 SAM of degraded versus control RNA

Using Significance Analysis of Microarrays (SAM), a statistical procedure
specifically designed for analysis of large microarray datasets (1), the
number of probe sets displaying significantly different signals in control
and degraded samples was first determined in the dataset derived by scaling
to the external spike-in control RNAs, which reflects the ‘most straight’
measurement of the hybridization signals. Prior to statistical analysis, all
probe sets, which received less than six (50%) present detection calls in the
12 array analyses, were eliminated from the dataset in order to reduce most
of the technical noise present in the lower signal range. Since the detection
call algorithm implemented in MAS5.0 is independent of the scaling proce-
dure and because there was no significant difference in the percentage of
present detection calls in control and degraded samples (Table 10.1 and
Figure 10.2D), this step was not expected to introduce any further bias.

At a median false discovery rate of 0.1%, 6358 (52.5%) of the remaining
12 118 probe sets were called significant by SAM (Table 10.2). The major-
ity (96.7%) of the significant probe sets indicated a down-regulation (true
under-representation) of the corresponding genes in cRNAs from partially
degraded samples, clearly reflecting the signal drop observed on the arrays
hybridized with the more 3′-biased targets. At a fold-change cut-off of 2.0,
which is commonly used in microarray data mining, as many as 1067 probe
sets displayed significantly reduced (down) and only 10 up-regulated (up)
signals. Due to the experimental design, true up-regulation of transcripts
was not expected to occur in the degraded samples. Thus, the up-regulated
probe sets might largely reflect the number of genes occurring by chance
at the given level of significance of SAM statistics (false discovery rate 0.1%).
One-hundred and thirty-four probe sets, that is 0.6% of all probe sets
present on the HG-U133A array, showed more than fourfold reduced
signals, while nine probe sets displayed even more than 10-fold reduced
hybridization signals in the more 3′-biased samples.

Compared to the dataset obtained from the spike-mask-scaled images,
SAM analysis of the signals derived by all probe set scaling revealed a lower
number of significant probe sets (3073), whereas a markedly higher frac-
tion of probe sets with apparently increased signals in degraded samples
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was evident at all fold-change cut-offs up to fourfold (Table 10.2). At the
twofold cut-off, 514 probe sets were identified that indicated down-regula-
tion of the corresponding transcripts, while the number of probe sets with
up-regulated signals (46) identified by SAM clearly exceeded the number of
probe sets expected at the given false discovery rate of 0.1% (12.1). Thus,
we conclude that global scaling of arrays derived from degraded and intact
RNA samples introduces an increased risk for false up-regulated probe-sets
signals in degraded samples and results in a smaller number of probe sets
displaying reduced signals in degraded samples.

10.6 Summary

A heat fragmentation procedure introducing random cleavage sites into the
total RNA was chosen in this study to generate partially cleaved or degraded
RNA samples displaying less than twofold increased 3′/5′-signal ratios for
β-Actin, in order to achieve a degree of 3′-bias that is within the range
frequently observed in RNAs isolated from patient material, but generally
judged as being acceptable in Affymetrix GeneChip studies. The results
presented here show that those cRNA targets displaying 3′/5′-ratios for β-
Actin of 2.18±0.26 yield lower hybridization signals reaching only
approximately 81% of those obtained with targets derived from intact RNA
exhibiting ratios of 1.24±0.05. This difference was associated with the pres-
ence of an increased fraction of incomplete and non-productive anti-sense
cRNA copies in targets from degraded RNA samples. While this result per se
is astonishing, such an intensity drop could be well tolerated and be
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Table 10.2. Statistical analysis of microarray data

Fold-change Scaling to pA+spike mask Global scaling
cut-off 

No. of Up Down No. of Up Down 
probe sets probe sets 

No 6358 207 6151 3073 1315 1758 
1.5 2926 69 2857 1610 409 1201 
2.0 1077 10 1067 560 46 514 
3.0 300 2 298 165 4 161 
4.0 134 0 134 80 2 78 
6.0 38 0 38 22 0 22 
8.0 16 0 16 11 0 11 
10.0 9 0 9 4 0 4 
12.0 4 0 4 0 0 0 

Microarray data sets obtained after global scaling or scaling to the polyA+spike mask were analyzed using
Significance Analysis of Microarrays (SAM) (1). Signals were log2 transformed prior to analysis. Of the 22 283
probe sets present on the HG-U133A array, only those receiving six or more present detection calls in the
Affymetrix single array analysis were selected for SAM (12 118 probe sets). Unpaired analysis was performed with
1000 permutations of the data set. Probe sets called significant at a median false discovery rate (FDR) of 0.1%
were selected by adjusting the delta parameter. Data indicate the number of genes passing the indicated fold-
change cut-off. Down/up: down- or up-regulated in degraded as compared to control RNA sample.



corrected perfectly by global scaling, if the percentage of non-productive
cRNA molecules was identical for each individual transcript measured.
However, this is clearly not the case, since SAM analysis of our data showed
that the degree of under-estimation in cRNA targets from degraded RNA as
measured by individual probe sets is highly variable and reaches ratios
greater than 10-fold (Table 10.2). The increased fraction of non-productive
cRNA molecules present in targets from degraded samples is generated from
mRNA templates, where cleavage occurred within or at a position located
3′ of the sequences represented by the corresponding probe set (Figure
10.1B). If heat-induced or enzymatic cleavage occurs in a random fashion,
then the fraction of non-productive cRNA molecules increases with the
distance between the 5′-end of the sequences interrogated by the probe set
and the polyA tract of the individual transcript. Indeed, as exemplified by
the signals observed on 3′, middle, and 5′ probe sets for Gapdh and β-Actin,
the degree of transcript under-estimation in degraded samples is lowest on
the most 5′ probe set and increases with the distance from the polyA site
in a linear fashion (Figure 10.1C), proving that more distant probe sets are
especially vulnerable to signal under-estimation in degraded samples.

Assuming that the linear relationship holds true for all transcripts, the
degree of under-estimation observed in the experiment described here can
be used to extrapolate the true distance between probe set target sequence
and the functional polyA site in the used HeLa cell line. Examination of a
number of more than 10-fold under-estimated probe sets in degraded
samples indeed revealed examples where the extrapolated distance of more
than 3 kb was confirmed by sequence data. In many cases, such distant
probe sets have been designed on purpose to allow detection of a shorter
transcript variant with a more 5′ polyA site. However, in a number of cases,
sequence data in the public databases suggested that these highly under-
estimated probe sets were located within the region of 600 bp proximal to
the 3′-end of the known sequence. Such discrepancies could point to cases
where the cDNA sequences deposited in the public domain databases are
incomplete at the 3′-end, resulting in probe set selection that is not as 3′-
biased as intended by Affymetrix’ probe selection process.

As revealed by the SAM analysis of the dataset obtained by selected probe
set scaling of the approximately 12 000 reliably measured transcripts in this
study using HG-U133A arrays, more than 1000 probe sets showed greater
than twofold reduced signals in the partially cleaved RNAs. Thus, direct
comparison analysis of two samples or statistical evaluation of groups of
samples with non-matching RNA quality bears an enormously high risk to
measure falsely down-regulated transcripts in partially degraded RNAs,
which even further increases as the gap between the 3′/5′-ratios of the
samples to be compared widens (data not shown). A one-sided increase of
the fold-change cut-off for down-regulated genes in the data mining process
could help to greatly reduce the number of false positives in such poor
versus good RNA comparisons. However, this does not represent an ideal
solution, as it will also eliminate many true positive targets from the lists
of down-regulated transcripts. Similarly, while the number of falsely down-
regulated targets in degraded samples benefits from global scaling
normalization due to the arithmetical compensation of the signal shift
(compare Figure 10.2B and C), this procedure also cannot rescue such data,
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as the rate of truly positive down-regulated genes is concomitantly reduced.
Moreover, resulting adjusted signals on probe sets exhibiting far below
average distances from the polyA site represent slightly over-estimated
(over-scaled) values, explaining the increased incidence of false up calls in
the SAM analysis comparing globally scaled arrays of degraded versus
control samples. Clearly, knowledge of all the probe sets exhibiting above-
average distance to the 3′-end of the transcript would allow us to put flags
on error-prone probe sets and to more selectively sort out false positive
targets occurring in poor versus good RNA comparisons. While the study
presented in this chapter identified a substantial number of such probe sets
on the HG-U133A array, it is obvious that this information cannot be
readily transferred to HG-U133A data derived from other cells or tissues,
due to differences in alternative splicing, usage of polyA sites and possible
genomic alterations. However, to allow some basic risk assessment, it would
be helpful if Affymetrix would integrate information regarding the distance
of each probe set to the most 3′ located known polyA site into the anno-
tation table that is provided for each GeneChip type. Moreover, as more
and more GeneChip datasets are deposited in public databases, such as GEO
(www.ncbi.nlm.nih.gov/geo), it appears feasible to recognize probe sets
bearing a high risk for under-representation by statistical evaluation of
excellent versus poor quality RNAs (based on the reported 3′/5′-ratios of the
samples) in additional cell types and tissues.

In summary, our study reveals a highly variable and previously under-
estimated potential for erroneous measurement of transcript abundance by
individual probe sets in GeneChip analyses of partially degraded RNAs.
While Affymetrix GeneChips were used in this study, it is important to state
that any type of oligonucleotide or cDNA array is prone to the described
problem, if the chosen oligonucleotides or cDNA fragments display vari-
able distances to the polyA end of the individual transcripts and
preparation of the hybridization samples involves oligo(dT)-primed reverse
transcription. Direct labeling of total RNA through cross-linking or the use
of random primers during first strand cDNA synthesis might yield less 3′-
biased targets from degraded samples, but require more material and
capture the bulk of non-polyadenylated RNAs, resulting in strongly
decreased sensitivity. Since there is currently no mRNA selective target
preparation procedure in sight that avoids the introduction of 3′-bias in
partially degraded RNAs, the newly designed Affymetrix GeneChip, Human
Genome X3P, which contains more strongly 3′-biased probe set sequences
than HG-U133A, might represent an improvement that eliminates at least
part of the problem associated with the analysis of partially degraded RNA
samples.
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Protocol 10.1: Affymetrix
GeneChip analyses

HeLa cell total RNA was prepared according to the manufacturer’s recommendation using TRIzol
(Stratagene) and dissolved in nuclease-free water (Ambion). For each time point, two 40-μl RNA
aliquots containing 34 μg of total RNA were each combined with 10 μl of 5 × RNA
fragmentation buffer (200 mM Tris-acetate, pH 8.1, 500 mM KOAc, 150 mM MgOAc), heated
for 70, 80, or 90 s at 90°C in a thermocycler and immediately chilled. Control reactions were
kept on ice. After addition of 1 μl of a mixture of five different polyadenylated spike RNAs (DapX,
LysX, PheX, ThrX, TrpnX) in staggered concentrations, duplicate control and heat-treated
samples were pooled and repurified on RNeasy mini columns (Qiagen), including an on-column
DNase I digestion step. RNA was eluted in water and quantified by OD260 measurement. As
analyzed by non-denaturing agarose gel electrophoreses, RNAs subjected to heat fragmentation
showed obvious signs of degradation, for example a clearly decreased ratio of the 28S and 18S
ribosomal RNA bands, while controls appeared to represent intact RNA.

Synthesis of double strand cDNA was performed in duplicate with 13.5 μg of total RNA from
control or progressively degraded samples as described previously by using an anchored T7-
oligo-d(T)21-V primer (5′-GCATTAGCGGCCGCGAAATTAATACGACTCACTATAGGGAGA(T)21V-3′,
MWG Biotech, Ebersberg, Germany) for first strand synthesis (2, 3). cDNAs were purified by
phenol/chloroform/IAA/PLG extraction, precipitated and transcribed for 16 h at 37°C in 50-μl
reactions containing 40 mM Tris-HCl pH 8.0, 16 mM MgCl2, 2 mM spermidine, 5 mM DTT,
1.1% PEG 20 000, 4 mM GTP and ATP, 1.4 mM UTP and CTP, 0.6 mM Biotin–11-CTP and
Biotin–11-UTP, 40 U pyrophosphatase, 50 U RNase inhibitor, and 1.5 μg T7 RNA polymerase.
Biotinylated cRNAs were purified on RNeasy mini columns (Qiagen, Hilden) and quantified by
OD260 measurement. Gel electrophoretic analysis of cRNA samples revealed a detectable shift 
to smaller average sizes in degraded samples, as expected (not shown). After heat fragmentation
of cRNA samples to an average size of 100 to 200 nucleotides, hybridization of Affymetrix 
HG-U133A arrays with 10 μg of cRNA each from control (n =6) and samples degraded for 70 s 
(n =2), 80 s (n =2) or 90 s (n =2) was performed, followed by washing, staining, and scanning as
recommended by the manufacturer (Affymetrix Expression Analysis Technical Manual, 2000). All
12 arrays used in this study were taken from the same batch (lot no. 3 000 016).
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Molecular karyotyping by
means of array CGH:
linking gene dosage
alterations to disease
phenotypes
Joris Veltman and Lisenka Vissers

11.1 Introduction

Chromosome banding is one of the most widely used techniques in rou-
tine cytogenetics (1) and has been invaluable in the search for
chromosomal aberrations causally related to, for example, congenital
mental retardation and malformation syndromes. Conceptual and tech-
nical developments in molecular cytogenetics are now enhancing the
resolving power of conventional chromosome analysis techniques from
the megabase to the kilobase level. Tools that have mediated these
developments include (i) the generation of genome-wide clone resources
integrated into the finished human genome sequence, (ii) the develop-
ment of high-throughput microarray platforms, and (iii) the
optimization of comparative genomic hybridization protocols and data
analysis systems. Together, these developments have accumulated in a
so-called ‘molecular karyotyping’ technology that allows the sensitive
and specific detection of single copy number changes of submicroscopic
chromosomal regions throughout the entire human genome.

Array-based comparative genomic hybridization (CGH) builds upon
previously well-established CGH procedures (2, 3) using differentially
labeled test and reference DNAs to be co-hybridized to cloned genomic frag-
ments with known physical locations, in a microarray format (4, 5). In
comparison with conventional CGH, the array format provides a higher
resolution, a higher dynamic range, and better possibilities for automation.
In addition, it allows for direct linking of copy number alterations to known
genomic sequences.

11



11.2 Array preparation, labeling, hybridization 
and data analysis

Many of the basic procedures followed in microarray-based genome profil-
ing are similar, if not identical, to those followed in expression profiling,
including the use of specialized microarray equipment and data-analysis
tools. Since microarray-based expression profiling has been well established
over the last decade, much can be learned from the technical advances
made in this area. However, there are also distinct differences such as target
and probe complexity, stability of DNA over RNA, the presence of repeti-
tive DNA and the need to identify single copy number alterations in
genome profiling.

Specifically, the array CGH procedure includes the following steps. First,
large-insert clones such as BACs are obtained from a supplier of clone
libraries such as BACPAC Resources at the Children’s Hospital Oakland
Research Institute (http://bacpac.chori.org/). Then, small amounts of clone
DNA are amplified by either degenerate oligonucleotide-primed (DOP) PCR
(6) or ligation-mediated PCR (7) in order to obtain sufficient quantities
needed for spotting (~1 μg/μl). Next, these PCR products are spotted onto
glass slides coated with substrates such as aminosilane using microarray
robots equipped with high-precision printing pins. Depending on the
amount of clones to be spotted and the space available on the microarray
slide, clones can either be spotted once per array or in replicate. Repeated
spotting of the same clone on an array increases the precision of the meas-
urements if the spot intensities are averaged, and allows for a detailed
statistical analysis of the quality of the experiments. Patient and control
DNAs (100 ng–1 μg) are usually labeled with either Cy3 or Cy5-dUTP using
random priming and are subsequently hybridized onto the microarray in a
solution containing an excess of Cot1-DNA to block repetitive sequences.
Hybridizations can either be performed manually under a coverslip, in a
gasket with gentle rocking or, automatically using commercially available
hybridization stations. These automated hybridization stations allow for an
active hybridization process, thereby improving the reproducibility as well
as reducing the actual hybridization time, which increases throughput. The
hybridized DNAs are detected through the two different fluorochromes
using standard microarray scanning equipment with either a scanning
confocal laser or a charge coupled device (CCD) camera-based reader,
followed by spot identification using commercially or freely available soft-
ware packages.

The increase in data obtained through high-density arrays requires stan-
dardized storage systems as well as thorough statistical tools, similar to
those required for microarray-based gene expression profiling (8, 9). Owing
to the complicated process of producing and hybridizing spotted micro-
arrays, a certain degree of systematic variation does exist in the data
produced. Normalization of microarray data is used to eliminate such
systematic variation and, therefore, represents an important preprocessing
step in the analysis of almost all microarray data. One of the most
frequently applied normalization procedures in microarray-based expres-
sion studies is the locally weighted scatterplot smoothing (LOWESS).
Several laboratories have successfully introduced this procedure in array
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CGH applications (10–12). After data normalization, automated statistical
procedures are required for reliable detection of genomic copy number
changes. One such algorithm is the Hidden Markov Model (HMM) which,
in our hands, is not only suited for distinguishing genuine copy number
changes from random microarray noise, but also for precisely localizing the
start- and end-points of each copy number alteration (unpublished results;
see Figure 11.1). Finally, digitized intensity differences in the hybridization
patterns of the DNAs onto the cloned fragments can be interpreted as copy
number differences between the test and reference genomes.

This technique, once established and validated, allows high-throughput
DNA copy number screening with a resolution limited only by the size of
the clone fragments used (currently ~100 kb using BAC arrays).

11.3 Molecular karyotyping in clinical genetics

The microarray format allows for a virtually unlimited flexibility in the
choice and amount of genomic fragments to be studied. Many laboratories
have started their array CGH studies using low-density custom-made arrays
consisting of probes specifically targeted at selected genomic regions.
Examples of these are arrays targeting all subtelomeric regions (13, 14),
arrays targeting regions known to be involved in microdeletion or
microduplication syndromes (10, 15–19), or arrays targeting other chro-
mosomal regions of interest (20–24). These low-density arrays are relatively
easy to design and implement and, in contrast to high-density arrays, inter-
pretation can be carried out without extensive statistical expertise. The
ultimate power of the microarray-based approaches, however, lies in the
genome-wide copy number assessment of patient samples without any a
priori knowledge of the genomic regions involved. To this end, high-density
arrays have been constructed with the aim of performing such genome-
wide analyses, initially with a resolution of 0.75 to 1.4 megabases (11, 12,
25, 26) and, more recently, with a 50–100 kilobase tiling resolution using
approximately 32 000 clones (27). In addition to home-made arrays, there
are now several companies that offer microarrays for genomic profiling,
either for genome-wide analyses or for more targeted approaches (28–30).

Array-based genome-wide copy number screening is expected to have a
profound impact on the diagnosis and genetic counseling of patients with
congenital mental retardation and malformation syndromes. Its resolution
for identifying chromosomal abnormalities reaches far beyond the detec-
tion limit of routine chromosome banding techniques (reviews: 1, 31, 32).
In addition, the integration of BAC clones into genome browsers like those
from Ensemble and UCSC allows for a direct inspection of candidate genes
affected by the copy number alterations, which will be of major help in
explaining the phenotype. The first attempts to implement these tech-
nologies into a routine diagnostic setting are currently ongoing. Initial
studies using 1-Mb genome-wide BAC arrays (11, 33) have indicated that
this approach can reveal causative microdeletions and/or duplications in
10–20% of patients with unexplained mental retardation and congenital
malformations, and this percentage is likely to increase with the introduc-
tion of full-coverage 50- to 100-kb resolution arrays. These pilot studies
already have provided insight into the quality and reproducibility aspects
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of the array CGH procedure, the need for validation of microarray findings
by independent technologies such as fluorescent in situ hybridisation (FISH)
or multiplex ligation-dependent probe amplification (MLPA; 34), as well as
the way to translate these molecular findings into clinical practice.

In this light it is important to note that these pilot studies have indicated
that submicroscopic copy number alterations do not always have pheno-
typic consequences, as in some of the cases identical alterations were found
in either one of the normal parents. This notion has been substantiated by
recent studies revealing the presence of large copy number variations
(LCVs) in apparently normal individuals (35, 36). In addition, once it has
been established that a copy number alteration has occurred de novo in a
patient, it may be that this alteration has not been described before in the
literature, posing serious problems for genetic counseling. However, in due
time increasing numbers of these abnormalities will be documented, either
in individual case reports (see for example 37) or in publicly available
online databases, and thus further our understanding of the genetic basis
of these disorders.

11.4 Gene identification by array CGH

Haploinsufficiency of specific genes is a known cause of disease, both in
acquired (cancerous) and congenital disorders. Haploinsufficiency can be
brought about by single-base changes or deletions of stretches of DNA. The
genome-wide detection of DNA alterations by array CGH can mark genomic
sites where genes associated with a particular disease may be located.
Previously, Albertson et al. (38) used this approach to identify ZNF217 and
CYP24 as putative oncogenes in breast cancer. Similarly, we narrowed down
the critical region of deletion for the gene(s) causing congenital aural
atresia, located on chromosome 18q22.3-q23 (21). More recently, we have
applied this approach successfully to identify the causative gene for
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Figure 11.1. 

Proposed flow-scheme for application of the array CGH procedure in a clinical
setting. As an example DNA from a patient with Prader Willi Syndrome, containing
a known microdeletion on 15q11-q13 is labeled and hybridized onto our genome-
wide tiling resolution BAC array (~32 000 clones, each printed once onto the
microarray slide) in a label swap experiment versus a sex-mismatched reference
pool. The normalized log2 test-over-reference ratios (y-axis) are plotted for each
clone ordered per chromosome by Mb position (x-axis), from p-ter to q-ter.
Chromosome X and Y serve as control for deletion and duplication detection in
these sex-mismatch experiments. The results of the individual experiments indicate
the presence of potential copy number alterations; however, the combination of
both experiments increases the statistical significance of an observed copy number
alteration. This is indicated by the solid line at −1 for the microdeletion region (see
combined chromosome 15 profile), which means a 100% probability for a
downstate (deletion) as computed by a Hidden Markov Model. The gene content
of this region can now be studied, if needed array findings can be validated
(especially useful for deletions smaller than 1 megabase) and finally parents can be
tested to distinguish causative alterations from normal variation.



CHARGE syndrome (39). CHARGE syndrome (OMIM 214800) is a non-
random pattern of congenital anomalies including choanal atresia and
malformations of the heart, inner ear and retina. In this study a de novo
microdeletion of 4.8 megabases was identified on 8q12 by hybridizing
genomic DNA from a CHARGE patient versus a normal control on our 1-
Mb-resolution BAC array. A literature search identified another CHARGE
patient with an apparently balanced chromosome 8 translocation, identi-
fied by routine karyotyping (40). Array CGH analysis of this patient revealed
another microdeletion partially overlapping with the one encountered in
our index patient. Further analysis of 17 additional CHARGE patients on a
tiling resolution chromosome 8 array did not reveal additional microdele-
tions. As a next step, sequence analysis of nine genes located within the
minimal region of deletion overlap identified 10 de novo heterozygous
mutations in a novel gene called CHD7, including seven stop-codon muta-
tions, two missense mutations and one mutation at an intron-exon
boundary. This latter study showed that array CGH may indeed serve as an
effective new approach to localize disease-causing genes. This approach is
of particular interest for sporadic malformation syndromes that cannot be
tackled by other mapping procedures because of reproductive lethality.

11.5 Summary

Chromosome analysis has rapidly developed in the post-genome era. Novel
genomic tools like array-based comparative genomic hybridization (array
CGH) allow the mapping of genomic copy number alterations at the sub-
microscopic level, directly linking disease phenotypes to gene dosage
alterations. These approaches are excellently suited for gene identification
studies, for genotype-phenotype mapping as well as for molecular kary-
otyping in a routine clinical setting, thereby rapidly bridging the gap
between DNA diagnostics and cytogenetic diagnostics. With increased reso-
lution, these technologies not only identify disease-causing alterations but
also highlight variation in the normal population.

References

1. Ried T (2004) Cytogenetics – in color and digitized. N Engl J Med 350:
1597–1600.

2. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F and
Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic
analysis of solid tumors. Science 258: 818–821.

3. Lichter P (2000) New tools in molecular pathology. J Mol Diagn 2: 171–173.
4. Solinas-Toldo S, Lampel S, Stilgenbauer S, Nickolenko J, Benner A, Dohner H,

Cremer T and Lichter P (1997) Matrix-based comparative genomic hybridiza-
tion: biochips to screen for genomic imbalances. Genes Chromosomes Cancer 20:
399–407.

5. Pinkel D, Segraves R, Sudar D, et al. (1998) High resolution analysis of DNA copy
number variation using comparative genomic hybridization to microarrays. Nat
Genet 20: 207–211.

6. Telenius H, Carter NP, Bebb CE, Nordenskjold M, Ponder BA and Tunnacliffe
A (1992) Degenerate oligonucleotide-primed PCR: general amplification of
target DNA by a single degenerate primer. Genomics 13: 718–725.

144 DNA Microarrays



7. Klein CA, Schmidt-Kittler O, Schardt JA, Pantel K, Speicher MR and Riethmuller
G (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA
sequence analysis of single cells. Proc Natl Acad Sci USA 96: 4494–4499.

8. Stoeckert CJ Jr Causton HC and Ball CA (2002) Microarray databases: standards
and ontologies. Nat Genet 32(Suppl): 469–473.

9. Quackenbush J (2002) Microarray data normalization and transformation. Nat
Genet 32(Suppl): 496–501.

10. Wang NJ, Liu D, Parokonny AS and Schanen NC (2004) High-resolution molec-
ular characterization of 15q11-q13 rearrangements by array comparative
genomic hybridization (array CGH) with detection of gene dosage. Am J Hum
Genet 75: 267–281.

11. Vissers LE, de Vries BB, Osoegawa K, et al. (2003) Array-based comparative
genomic hybridization for the genome wide detection of submicroscopic chro-
mosomal abnormalities. Am J Hum Genet 73: 1261–1270.

12. Cowell JK, Wang YD, Head K, Conroy J, McQuaid D and Nowak NJ (2004)
Identification and characterisation of constitutional chromosome abnormalities
using arrays of bacterial artificial chromosomes. Br J Cancer 90: 860–865.

13. Veltman JA, Schoenmakers EF, Eussen BH, et al. (2002) High-throughput analy-
sis of subtelomeric chromosome rearrangements by use of array-based
comparative genomic hybridization. Am J Hum Genet 70: 1269–1276.

14. Harada N, Hatchwell E, Okamoto N, et al. (2004) Subtelomere specific micro-
array based comparative genomic hybridisation: a rapid detection system for
cryptic rearrangements in idiopathic mental retardation. J Med Genet 41:
130–136.

15. Yu W, Ballif BC, Kashork CD, et al. (2003) Development of a comparative
genomic hybridization microarray and demonstration of its utility with 25 well-
characterized 1p36 deletions. Hum Mol Genet 12: 2145–2152.

16. Locke DP, Segraves R, Nicholls RD, Schwartz S, Pinkel D, Albertson DG and
Eichler EE (2004) BAC microarray analysis of 15q11-q13 rearrangements and
the impact of segmental duplications. J Med Genet 41: 175–182.

17. Klein OD, Cotter PD, Albertson DG, Pinkel D, Tidyman WE, Moore MW and
Rauen KA (2004) Prader-Willi syndrome resulting from an unbalanced translo-
cation: characterization by array comparative genomic hybridization. Clin Genet
65: 477–482.

18. Shaw CJ, Shaw CA, Yu W, Stankiewicz P, White LD, Beaudet AL and Lupski JR
(2004) Comparative genomic hybridisation using a proximal 17p BAC/PAC
array detects rearrangements responsible for four genomic disorders. J Med Genet
41: 113–119.

19. Van Buggenhout G, Melotte C, Dutta B, et al. (2004) Mild Wolf-Hirschhorn
syndrome: micro-array CGH analysis of atypical 4p16.3 deletions enables refine-
ment of the genotype-phenotype map. J Med Genet 41: 691–698.

20. Buckley PG, Mantripragada KK, Benetkiewicz M, et al. (2002) A full-coverage,
high-resolution human chromosome 22 genomic microarray for clinical and
research applications. Hum Mol Genet 11: 3221–3229.

21. Veltman JA, Jonkers Y, Nuijten I, et al. (2003) Definition of a critical region on
chromosome 18 for congenital aural atresia by array CGH. Am J Hum Genet 72:
1578–1584.

22. Solomon NM, Ross SA, Morgan T, et al. (2004) Array comparative genomic
hybridisation analysis of boys with X linked hypopituitarism identifies a 3.9 Mb
duplicated critical region at Xq27 containing SOX3. J Med Genet 41: 669–
678.

23. Ekong R, Jeremiah S, Judah D, et al. (2004) Chromosomal anomalies on 6p25
in iris hypoplasia and Axenfeld-Rieger syndrome patients defined on a purpose-
built genomic microarray. Hum Mutat 24: 76–85.

Molecular karyotyping by means of array CGH 145



24. Veltman JA, Yntema HG, Lugtenberg D, et al. (2004) High resolution profiling
of X chromosomal aberrations by array comparative genomic hybridisation. J
Med Genet 41: 425–432.

25. Snijders AM, Nowak N, Segraves R, et al. (2001) Assembly of microarrays for
genome-wide measurement of DNA copy number. Nat Genet 29: 263–264.

26. Fiegler H, Carr P, Douglas EJ, et al. (2003) DNA microarrays for comparative
genomic hybridization based on DOP-PCR amplification of BAC and PAC
clones. Genes Chromosomes Cancer 36: 361–374.

27. Ishkanian AS, Malloff CA, Watson SK, et al. (2004) A tiling resolution DNA
microarray with complete coverage of the human genome. Nat Genet 36:
299–303.

28. Larrabee PB, Johnson KL, Pestova E, Lucas M, Wilber K, LeShane ES, Tantravahi
U, Cowan JM and Bianchi DW (2004) Microarray analysis of cell-free fetal DNA
in amniotic fluid: a prenatal molecular karyotype. Am J Hum Genet 75: 485–491.

29. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH and Lese Martin C
(2004) Comparative genomic hybridization-array analysis enhances the detec-
tion of aneuploidies and submicroscopic imbalances in spontaneous
miscarriages. Am J Hum Genet 74: 1168–1174.

30. Schoumans J, Anderlid BM, Blennow E, Teh BT and Nordenskjold M (2004) The
performance of CGH array for the detection of cryptic constitutional chromo-
some imbalances. J Med Genet 41: 198-202.

31. Smeets DF (2004) Historical prospective of human cytogenetics: from micro-
scope to microarray. Clin Biochem 37: 439-446.

32. Shaffer LG and Bejjani BA (2004) A cytogeneticist’s perspective on genomic
microarrays. Hum Reprod Update 10: 221–226.

33. Shaw-Smith C, Redon R, Rickman L, et al. (2004) Microarray based comparative
genomic hybridisation (array-CGH) detects submicroscopic chromosomal dele-
tions and duplications in patients with learning disability/mental retardation
and dysmorphic features. J Med Genet 41: 241–248.

34. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F and Pals G
(2002) Relative quantification of 40 nucleic acid sequences by multiplex liga-
tion-dependent probe amplification. Nucleic Acids Res 30: e57.

35. Sebat J, Lakshmi B, Troge J, et al. (2004) Large-scale copy number polymorphism
in the human genome. Science 305: 525–528.

36. Iafrate AJ, Feuk L, Rivera MN, Listewnik ML, Donahoe PK, Qi Y, Scherer SW and
Lee C (2004) Detection of large-scale variation in the human genome. Nat Genet
36: 949–951.

37. Koolen DA, Vissers LE, Nillesen W, Smeets D, van Ravenswaaij CM, Sistermans
EA, Veltman JA and de Vries BB (2004) A novel microdeletion,
del(2)(q22.3q23.3) in a mentally retarded patient, detected by array-based
comparative genomic hybridization. Clin Genet 65: 429–432.

38. Albertson DG, Ylstra B, Segraves R, Collins C, Dairkee SH, Kowbel D, Kuo WL,
Gray JW and Pinkel D (2000) Quantitative mapping of amplicon structure by
array CGH identifies CYP24 as a candidate oncogene. Nat Genet 25: 144–146.

39. Vissers LE, van Ravenswaaij CM, Admiraal R, et al. (2004) Mutations in a new
member of the chromodomain gene family cause CHARGE syndrome. Nat Genet
36: 955–957.

40. Hurst JA, Meinecke P and Baraitser M (1991) Balanced t(6;8)(6p8p;6q8q) and
the CHARGE association. J Med Genet 28: 54–55.

146 DNA Microarrays



Protocols

CONTENTS
Protocol 11.1: Clone preparation and array fabrication

Protocol 11.2: Array CGH procedure

Protocol 11.3: Hybridization and posthybridization procedure

MATERIALS

Reagents

Clone preparation DOP PCR primers: 5′-CCG ACT GCA GNN NNN NAT GTG G-3′,
dissolved in distilled water or TE (100 μM) – store at −20°C

dNTP mix (dATP, dCTP, dGTP, dTTP; 100 mM) – store at −20°C

Magnesium chloride (100 mM)

Taq 2000 DNA polymerase (5 U/μl, Stratagene) – store at −20°C

10 × PCR buffer (supplied with Taq DNA polymerase) – store at −
20°C

BAC DNA sample

TE (10 mM Tris-HCl, 1 mM EDTA)

Spotting buffer: 30% dimethyl sulfoxide (DMSO)

DNA purification QIAamp kit containing lysis buffer AL, wash buffer AW1, wash buffer
AW2 and AE elution buffer (QIAgen)

Ethanol (100%)

DNA samples

DNA sonication Distilled water

DNA samples

DNA labeling Distilled water

Bioprime labeling kit containing 2.5 × Random Primed and Klenow
polymerase (Amersham Biosciences)

dNTP mix containing 2 mM of the nucleotides dGTP, dCTP, dATP
and 1mM of dTTP, 1 mM EDTA pH 8.0 and 10 mM Tris pH 8.0

Cy3-dUTP (Amersham Biosciences)

Cy5-dUTP (Amersham Biosciences)
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Purification of labeled DNA Labeled DNA samples

QIAquick kit containing PB buffer, PE buffer and EB elution buffer
(QIAgen)

DNA precipitation Purified labeled DNA

Human COT1-DNA (1 μg/μl, Roche)

3 M NaAc pH 5.2

100% ethanol

Probe preparation Precipitated DNA (test and reference)

Distilled water

Yeast tRNA (100 mg/ml, Invitrogen)

20% SDS

Mastermix containing 50% formamide, 10% dextran sulfate,
2 × SSC and 4% SDS

Slide pre-treatment Distilled water

20 × SSC

BSA

1 M Tris pH 9.0

10% SDS

Ethanolamine

Formamide

Filter sterile 20 × SSC pH 5.0

Nonidet P-40

Distilled water

0.2 M Na2HPO4

0.2 M NaH2PO4

Gel electrophoresis 0.5 × TBE

Agarose

100 bp marker

Multiscreen plate (Millipore)

50-ml falcon tube

0.5-ml reaction tube, amber

1.5-ml reaction tube

0.2-μm filter

Coplin jar

Additional reagents
and materials:

Posthybridization
procedure
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250-ml beaker

1-l beaker

Forceps

Bunsen burner

QIAamp DNA purification kit (QIAgen)

QIAquick PCR purification kit (QIAgen)

CMT-GAPS coated slides (Corning)

Exicator

Equipment

Arrayer (Omnigrid 100, Genomic Solutions)

UV Stratalinker 

Thermal cycler

Speedvac

Gel electrophoresis system

Power supply

Sonicator (Soniprep; Soniprep150)

Water bath (37°C, 42°C and 50°C)

Hybridization station (GeneTAC, Genomic
Solutions)

Centrifuges

Scanner with Cy3 and Cy5 lasers (Affymetrix 428
scanner, Affymetrix)
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Protocol 11.1: Clone preparation
and array fabrication

1. Prepare a PCR premix containing the following reagents (the
amount of each reagent is given for one PCR reaction. They
should be scaled up appropriately according to the number of
PCRs being set up).

80.5 μl sterile distilled water

10.0 μl 10 × PCR buffer

3.0 μl 100 mM MgCl2

2.3 μl 100 μM DOP PCR primer

1.2 μl 100 mM dNTP

1.0 μl Taq 2000 DNA polymerase

Dispense a 98-μl aliquot of the PCR premix into a microtiter
plate (or microcentrifuge tube) containing 2 μl of DNA sample
(approximately 50–100 ng).

2. Place the microtiter plate in a thermal cycler. Suggested
cycling conditions: denaturing at 94°C for 3 min, followed by
30 cycles 94°C for 30 s, 37°C for 30 s and a linear ramp from
37°C to 72°C and 72°C for 1 min, followed by a final
extension of 10 min at 72°C.

3. DOP PCR products are purified using a multiscreen plate
(Millipore) and finally dissolved in 55 μl TE.

4. Check amplified DNA quality and fragment length by agarose
gel electrophoresis on a 1% 0.5 × TBE agarose gel. Load 1–2
μl of the purified DOP PCR product.

5. Dry the amplified BAC clones in a microtiter plate using a
speedvac.

6. Dissolve BAC clones in spotting buffer containing 30% DMSO.

7. Arrays can now be prepared for spotting onto aminosilane-
coated slides according to manufacturers instructions using a
split-pin system. Depending on the number of clones to be
spotted, they can be spotted once or in replicate.

8. Dry the slide overnight in the arrayer.

150 DNA Microarrays



9. Crosslink the slide according to procedures provided by the
different manufacturers.

10. Store the slide in an exicator at room temperature for up to 6
months.
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Protocol 11.2: Array CGH
procedure

DNA PURIFICATION
1. Purify the high-molecular DNA samples with QIAamp columns

using the standard protocol supplied by the manufacturer.

2. Determine DNA concentration and purity by
spectophotometry and agarose gel electrophoresis.

DNA SONICATION
1. Place the sonicator tip in a tube filled with distilled water.

2. Start sonication to clean the tip.

3. Dry the tip and place it in the tube containing the DNA
sample. Sonicate the DNA sample.

4. Place the DNA sample on ice for at least 10 min.

5. Check fragment length of the sonicated DNA by agarose gel
electrophoresis on a 1% 0.5 × TBE agarose gel.

6. The DNA must show a smear with estimated fragment size
between 400 and 3000 kb. If not, repeat from step 3.

DNA LABELING
1. Dilute 500 ng sonicated genomic DNA to a final volume of

34.4 μl with distilled water; use amber 0.5-ml reaction tubes.

2. Add 32 μl of 2.5 × Random primer (mix before use), vortex
5–10 s and spin down.

3. Place the reaction for 10 min at 100°C (boiling water).

4. Place the reaction on ice for at least 5 min to ensure complete
cooling of the reaction.

5. Spin down before adding the next components:

4.0 μl Cy-dye (Cy3 for patient DNA, Cy5 for reference DNA)

8.0 μl dNTPmix, vortexed before adding

1.6 μl Klenow fragment DNA polymerase

6. Vortex the reactions gently and spin down.

7. Incubate the reactions overnight in a 37°C water bath.
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PURIFICATION OF LABELING
1. Purify the labeled DNA to remove all unincorporated dyes by

use of QIAquick columns as described by the manufacturer.

2. Elute the labeled DNA in two rounds of 60 μl EB buffer.

DNA PRECIPITATION
1. Mix the labeled patient (test) and control (reference) DNA

(total volume is now 240 μl).

2. Add 120 μg of human COT1-DNA.

3. Add 0.1 × volume 3 M NaAc, pH 5.2.

4. Add 2.5 × volume 100% ethanol. Invert the reaction tube and
precipitate the probe for at least 15 min at −20°C.

5. Centrifuge the DNA 30 min at 16 100 g at 4°C.

PROBE PREPARATION
1. Dry the pellet for a maximum of 10 min. Do not overdry the

pellets because this will hamper resuspension. Keep the tubes
in the dark during this procedure to prevent fading of the Cy-
dyes.

2. Resuspend the pellet in 7.9 μl of distilled water, 12.0 μl of
yeast tRNA and 16.3 μl 20% SDS.

3. Dissolve the pellet in the dark for 15 min. Subject the probes
to a visual inspection to ensure that the probe is fully
dissolved.

4. Add 84.0 μl of Mastermix. Vortex carefully and spin down.

5. Denature the probes at 70°C in a water bath for 15 min. Spin
down afterwards.

6. Prehybridize the probes in a water bath of 37°C for 30 min.

7. The probes are now ready for hybridization on the
hybridization station.

Slide pretreatment

NOTE 1: This section should be performed simultaneously with the purification of the labeling.

NOTE 2: Use aminosilane-coated slide only.

1. Prepare the following buffers and preheat at the right
temperature:
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Ethanolamine (120 ml; preheat at 50°C):

360 ml ethanolamine

12 ml Tris pH 9.0

1.2 ml 10% SDS

108 ml water

Blockwash buffer (120 ml; preheat at 50°C):

24 ml 20 × SSC

96 ml water

1.2 ml 10% SDS

Prehybridization buffer (120 ml; preheat at 42°C): 

30 ml 20 × SSC

90 ml water

1.2 g BSA

1.2 ml 10% SDS

2. Place the slide in a coplin jar or slide container and pour
prewarmed ethanolamine blocking buffer onto the slide, and
incubate the slide for 60 min at 50°C.

3. Wash the slide 5–7 times with distilled water.

4. Pour prewarmed Blockwash buffer onto the slide and incubate
for 60 min at 50°C.

5. Wash the slide 5–7 times with distilled water.

6. Place the slide into a vertical slide holder (prevent drying of
the slide).

7. Place the slide in boiling distilled water for 3 min for
denaturation of DNA on the array.

8. Wash the slide two times with distilled water.

9. Place the slide back into the coplin jar or slide-container and
pour prewarmed prehybridization buffer and incubate for
45 min at 42°C.

10. Wash the slide five times with distilled water.

11. Dry the slide as quickly as possible by centrifugation (5 min,
216 g)

12. Scan the slide to check for autofluorescence. The scan should
now show a very low autofluorescence signal, if any. If not,
repeat pretreatment of the slide.
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Protocol 11.3: Hybridization and
posthybridization procedure

1. Prepare PN buffer for the posthybridization washes to be
performed tomorrow.

PN buffer (1000 ml): 

Take 473.5 ml 0.2 M Na2HPO4/0.1% NP-40.

Add 400 ml distilled water.

Adjust pH to 8.0 with 0.2 M NaH2PO4/0.1% NP-40.

Adjust to 1000 ml with distilled water. Store at room
temperature.

2. Prepare the hybridization station as suggested by the
manufacturer.

3. Place the pretreated slide in the hybridization station.

4. Start the hybridization program:

Step 1. O-ring conditioning: 3 min 75°C

Step 2. Introduce probe: 37°C hold step until probe is loaded

Step 3. Hybridization: Overnight 37°C hold step (usually 18 h)

Step 4. Formamide wash: Temperature increases to 45°C
followed by five cycles of 10-s flow time, 60-s hold time

Step 5. Preparation for PN buffer wash: Reducing temperature
to 20°C

Step 6. PN buffer wash: Five cycles at 20°C of 30-s flow time,
60-s hold time

Step 7. PN buffer hold: One cycle at 20°C of 10-s flow time, 
2-h hold time

NOTE: During the hold time of step 7, you can abort the
program when you are ready to remove the slide from the
station.

5. Remove the slide from the hybridization station and place it in
a coplin jar filled with PN buffer.

6. Incubate the slide for 10 min.
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7. Dip the slide in water and place it in a 50-ml falcon tube. Dry
the slide immediately by centrifugation (216 g, 5 min, room
temperature).

8. Slide is now ready for scanning. Keep the slide in the dark until
use.
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DNA microarrays: analysis
of chromosomes and
their aberrations
Heike Fiegler, Susan M Gribble and Nigel P Carter

12.1 Introduction

Comparative genomic hybridization (CGH) has been widely used for the
analysis of copy number changes in tumors to identify genes involved in
the development and pathogenesis of cancers. In conventional CGH,
metaphase chromosomes are used as the target for hybridization (1).
However, the resolution with which copy number changes can be detected
using this technique is limited to approximately 3–5 Mb (2). By replacing
the metaphase chromosomes with mapped sequences (typically from large
insert clones such as BACs, PACs and cosmids), analysis resolution becomes
dependent only on the insert size and the density of the clones used to
construct the array.

For this purpose, the sequencing of the human genome has provided a
valuable resource of mapped and sequenced clones. Due to the increased
sensitivity and resolution compared to conventional CGH, array CGH is
now not only being applied to the analysis of copy number alterations in
tumors, but also to the identification of genomic imbalances (microdele-
tions/microduplications) in patients with constitutional rearrangements
and to rapidly map translocation breakpoints.

12.2 Array construction and application of genomic
microarrays

Array construction using DOP PCR

Large insert clones such as cosmids, bacterial artificial chromosomes (BACs)
and P1 artificial chromosomes (PACs) are used typically for the construc-
tion of genomic DNA microarrays. DNA derived from these clones was
originally prepared from large-scale cultures (3, 4), which, when expanded
to the number of clones that are required to construct an array with a reso-
lution of 1 Mb (~3500 clones) or even a whole genome tiling path array
(~37 000 clones) becomes a costly and time-consuming procedure.
Therefore, several PCR-based methods have been developed to remove the
requirement of large-scale cultures. These include ligation-mediated PCR (5,
6), rolling circle PCR using Phi29 (7), or degenerate oligonucleotide primed
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PCR (DOP PCR) using an amine-modified version of the standard DOP PCR
primer 6MW (8).

We have also chosen a DOP PCR-based approach for the construction of
a large insert clone DNA microarray. DOP PCR uses a mixture of primers,
whereby each of the primers consists of a defined 5′ sequence and six
defined bases at the 3′ end flanking random hexanucleotide sequence (9,
10). Thus, DOP PCR allows a general amplification of any target DNA.
However, the reaction relies on the frequency with which bases in the target
sequence match the six 3′ bases of the primer. If the matches to the primer
are infrequent in a particular target sequence, the DOP PCR product will
be a poor representation of the target (9, 10). In order to increase the level
of representation, we have designed three DOP PCR primers that would be
efficient in amplifying human genomic DNA, but inefficient in the ampli-
fication of Escherichia coli DNA, a known contaminant of DNA preparations
from clone cultures (11). Amplification of the contaminating E. coli DNA
together with the clone insert will reduce the capacity of the spotted
product to hybridize with the DNA of interest thus reducing the sensitiv-
ity of the array. We found that the use of these three DOP PCR primers in
combination resulted in a significant increase in signal to background ratio,
sensitivity and reproducibility. Following this strategy, we have constructed
a large insert clone DNA microarray consisting of 3523 Golden Path
sequencing clones spaced at approximately 1 Mb intervals across the
human genome. Each of the clones was amplified in three separate PCR
reactions using the three different DOP PCR primers. This was followed by
a secondary PCR reaction with a 5′ amine-modified primer designed such
that the 3′ end matched the 5′ end of the DOP PCR primers to enable cova-
lent attachment of the products to specially coated glass slides (12). In order
to interpret and report copy number changes correctly across the genome
it is essential to map the exact position of each clone along the chromo-
somes. Clone information is available through various genome browsers
but often not easily accessible for large clone collections. We have there-
fore generated a specific view of the human genome within the Ensembl
genome browser (Cytoview, www.ensembl.org/homo_sapiens/cytoview)
that displays the 1 Mb clone set in relation to the Golden Path sequencing
clones. In particular, Cytoview facilitates the downloading of clone lists
(from specific regions of interest to whole chromosomes and the whole
genome) together with their corresponding map position. Additional
information, such as location by fluorescent in situ hybridization (FISH),
BAC-end sequence data, genes or expressed sequence tags (ESTs) for any
region of interest can be viewed within the context of the 1 Mb clone set.
Ensembl also provides an automatic update of all this information with
every new assembly of the human genome (12).

Array CGH in tumor biology

Many tumors are characterized by the presence of copy number alterations
ranging from gains or losses of whole chromosomes to less than a megabase
of DNA. In human cancers, regions of gain potentially harbor oncogenes,
while tumor suppressor genes are likely to be located within regions of copy
number loss. We have used the 1 Mb array described above in several large-

158 DNA Microarrays



scale studies, one of which involved the screening of 22 bladder-tumor-
derived cell lines. The array results confirmed numerous genetic changes
previously identified by conventional CGH, M-FISH, or LOH analyses. The
most frequent copy number alterations included a complete or partial loss
of chromosome 4q and gain of chromosome 20q. In addition to previously
identified homozygous deletions on chromosomes 9p21.3 (harboring
CDKN2A), 9q33.1 (harboring DBCCR1) and 10q (harboring PTEN) in some
of the cell lines used in this study, we could also identify several potentially
new homozygous deletions and high-level amplifications with a previously
reported amplification at 6p22.3 being the most frequent. Subsequent real
time PCR analysis of genes in that region revealed a novel candidate gene
(NM_017774) with consistent over-expression in all the cell lines display-
ing the 6p22.3 amplicon (13).

Another large-scale study used the 1 Mb array to investigate copy number
changes in 48 colorectal cancer cell lines and 37 colorectal primary carci-
nomas. Colorectal cancer (CRC) is the second most common malignancy
in the Western World and accounts for around 20 000 deaths in the UK
per year. So far, only a few genes have been identified in which somatic
mutations contribute to the pathogenesis of CRC. These include APC,
SMAD4, p53, KRAS, and β-catenin. Conventional CGH analyses of CRCs
revealed consistent copy number changes such as gain of chromosomes 20,
13 and 8q and loss of chromosomes 18q and 8p. These observations were
confirmed by array CGH; however, due to the increased resolution we could
also identify the most frequently altered regions within these large-scale
gains or losses. The most frequently gained regions were detected on chro-
mosomes 20q (harboring potential candidate genes such as LIVIN, HD54,
EEF1A2 and PTK6), and 13q (harboring FLT1 and FLT3), and the most
frequently lost region on chromosome 18q (harboring SMAD2 and SMAD4).
In addition, we detected previously unreported copy number changes, such
as a common region of amplification on chromosome 17q11.2-q12 (harbor-
ing AATF and TBC1D3) and a common deletion on chromosome 1q41
(harboring TGFβ2). Interestingly, both, colorectal cancer cell lines and
primary carcinomas revealed a strikingly similar pattern of copy number
alterations across the genome (14).

Array CGH for cytogenetic analyses

Array CGH is being increasingly applied to the identification and analysis
of sub-microscopic deletions (microdeletions) or gains (microduplications)
in patients with constitutional genomic rearrangements in order to iden-
tify genes contributing to the patient’s phenotype. Array CGH-based
approaches are particularly suited for the analysis of patients with learning
disability and dysmorphology (15–17). In a study of 50 patients with cyto-
genetically normal karyotypes but with learning disability and dysmorphic
features, we identified 12 patients (24% in total) harboring subtle genomic
copy number changes. These copy number aberrations ranged in size from
those involving only a single clone to regions as large as 14 Mb.
Interestingly, none of the rearrangements coincided with previously
reported cases from similar patient groups. We detected seven different
microdeletions of which six were de novo and one deletion inherited from
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a phenotypically normal parent, and five different microduplications of
which one was de novo and four inherited. While the de novo rearrange-
ments are likely to account for the phenotype of the patient, the pathogenic
significance, if any, of the inherited copy number changes is unknown (15).

Array CGH is also proving valuable in the more detailed analysis of
genomic regions contributing to cytogenetically defined syndromes. We
have used array CGH to study a patient with a chromosome 21-derived
marker chromosome who displayed some features similar to Down syn-
drome. Down syndrome is usually caused by trisomy of chromosome 21
and is characterized by, for example, cognitive impairment, hypotonia
and specific phenotypic features such as flat faces and ridge formation on
hands and feet. The Down syndrome critical region, which is thought to
be responsible for the physical phenotype of the patients, has been
mapped to 21q22.1-21q22.3. However, it is not clear whether other
regions on chromosome 21 contribute to the complex phenotype of
Down syndrome. The patient with the chromosome 21-derived marker
chromosome did not show any of the characteristic dysmorphic features
of Down syndrome, but presented with learning disability and cognitive
defects typical of Down syndrome. The array CGH analysis revealed a
partial tetrasomy of chromosome 21 that did not involve the Down syn-
drome critical region. We suggest that the genes located within the
amplified region may contribute to aspects of learning disability and cog-
nitive impairment, but do not play a role in the typical dysmorphic
features associated with Down syndrome (18).

Array painting

Although array CGH is able to identify genomic copy number alterations,
chromosome rearrangements which do not result in genomic imbalance,
such as reciprocal, balanced translocations, cannot be detected by this
method. We have therefore developed a technique (‘array painting’) that
utilizes flow-sorted derivative chromosomes in combination with the array
technology to analyze the constitution and the breakpoints in balanced
translocations. Briefly, each derivative chromosome involved in the translo-
cation is flow-sorted, amplified by DOP PCR, differentially labeled and
hybridized to the arrays. Signal intensities above background will only be
obtained from clones that contain sequences present in the flow-sorted
derivative chromosomes. The ratio of the intensities determines from which
derivative chromosome the hybridizing DNA sequence has been derived.
Breakpoint-spanning clones are identified by intermediate ratio values
when sequences present on both derivatives hybridize to the same clone
(19). For example, we have analyzed the DNA of a patient with a de novo
46,XY,t(17;22)(q21.1;q12.2) translocation by array painting. The derivative
chromosomes 17 and 22 were flow-sorted, differentially labeled and
hybridized to the 1 Mb array. Only clones representing chromosomes 17
and 22 showed strong signals above background. We also obtained weak
signals on chromosome 19. However, chromosome 19 is close to the deriv-
ative chromosome 17 on the flow karyotype and inevitably contaminated
the derivative chromosome 17 isolation during the sort. Plotting the fluo-
rescent intensities against the position of the clones along the
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chromosomes clearly showed a transition from low to high ratios (chro-
mosome 17) or vice versa (chromosome 22), but intermediate ratios that
would identify breakpoint spanning clones were not detected using the 
1 Mb array (Figure 12.1). However, by constructing a custom array consist-
ing of tiling path clones within the previously identified 1 Mb intervals and
hybridizing the same derivative DNAs, breakpoint-spanning clones were
identified and could be confirmed by FISH analysis (19).
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Figure 12.1. 

Array painting results for chromosomes 17 and 22 in the analysis of a t(17;22) patient. The flow-
sorted derivative chromosomes were differentially labeled with Cy3 (der17) and Cy5 (der22) and
hybridized to the arrays. Only clones that correspond to sequences present in the derivative
chromosomes will show signal intensities above background. The fluorescent ratio of the hybridizing
clones will either be high or low depending to which derivative chromosome the sequence
corresponds (e.g. clones mapping to the chromosome 17 sequences on the der17 will generate low
ratios whilst clones mapping to the chromosome 17 sequences on the der22 will give high ratios).
Breakpoint-spanning clones are identified by an intermediate ratio as both derivative chromosomes
will hybridize to the same clone. Taken from Journal of Medical Genetics, Vol. 40, pages 664–670.
Copyright (2003), with permission from the BMJ Publishing Group.
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While array painting is particularly efficient in the analysis of the
breakpoints of apparently balanced translocations, only the derivative
chromosomes are screened. A more complete analysis of the patient’s 
karyotype can be achieved by combining array painting of clearly
rearranged chromosomes with the more general array CGH approach for
the detection of genomic imbalances. In a study of 10 patients with
apparently balanced chromosome translocations, we found a surprisingly
high level of breakpoint complexity and genomic imbalance. Six of the
patients studied showed complex rearrangements involving deletions,
inversions and insertions at or near a breakpoint, the involvement of
additional chromosomes in the translocation process and previously
undetected microdeletions or microduplications unrelated to the translo-
cation (20).

12.3 Conclusion

The analysis of genomic copy number aberrations and chromosomal
rearrangements using large insert clone DNA microarrays is becoming an
increasingly widespread application. The development of chromosome
specific or whole genome-wide tiling path arrays, as well as arrays consist-
ing of clones with inserts of even smaller size such as fosmids or PCR
products, will allow the detection of increasingly subtle genomic changes
to be identified by this technology. Thus, microarray analysis will facilitate
the identification of new genes involved in tumor development and
progression, as well as genes contributing to cytogenetically important
syndromes and previously undiagnosed cases.
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Protocol 12.1: DOP PCR

REAGENTS

DOP PCR primer:

DOP 1: CCGACTCGAGNNNNNNCTAGAA

DOP 2: CCGACTCGAGNNNNNNTAGGAG

DOP 3: CCGACTCGAGNNNNNNTTCTAG

TAPS salt solution (final volume 96 ml), store at −20°C:

250 mM TAPS, pH 9.3 6.08 g

166 mM (NH4)2SO4 2.20 g

25 mM MgCl2 2.5 ml of 1 M stock solution

TAPS2 buffer (final volume 1 ml), UV-sterilize prior to use:

TAPS salt solution 960 μl

Bovine serum albumin (BSA), 5% 
stock solution 33 μl

β-mercaptoethanol 7 μl

DOP PCR (REACTION VOLUME 50 μL):
TAPS2-buffer 5 μl

DOP primer (20 μM) 5 μl

dNTPs (2.5 mM each) 4 μl

Polyoxyethelene ether W1 (1%) 2.5 μl

AmpliTaq polymerase 0.5 μl

H2O 28 μl

Clone template DNA (1 ng/μl) 5 μl

PCR reactions are performed in PTC-225 Tetrad thermocyclers (MJ Research). After initial
denaturation at 94°C for 3 min, the reaction is as follows: 10 cycles of 94°C for 1.5 min, 30°C for
2.5 min, ramp at 0.1°C s−1 to 72°C, 72°C for 3 min followed by 30 cycles of 94°C for 1 min,
62°C for 1.5 min, 72°C for 2 min, and a final extension step of 72°C for 8 min. The average
obtained product size ranges from 0.2 to 2 kb.
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Protocol 12.2: Aminolinking PCR

REAGENTS

Amino Primer:

GGAAACAGCCCGACTCGAG

|

NH2

Aminolinking buffer:

KCl 500 mM

MgCl2 25 mM

Tris pH 8.5 50 mM

The Aminolinking buffer should be made up prior to use and filter-sterilized (0.2 μm syringe
filter). Storage at −20°C is not recommended.

Aminolinking PCR (reaction volume 60 μl):

Aminolinking buffer 6 μl

dNTPs (2.5 mM each) 6 μl

Aminoprimer (200 ng/μl) 3 μl

AmpliTaq polymerase 0.6 μl

H2O 42.4 μl

Template (DOP-PCR product) 2 μl

PCR reactions are performed in PTC-225 Tetrad thermocyclers (MJ Research). After initial
denaturation at 95°C for 10 min, the reaction was as follows: 35 cycles of 95°C for 1 min, 60°C
for 1.5 min, 72°C for 7 min, followed by a final extension at 72°C for 10 min.

After combining the appropriate amino-linked products, the samples are prepared for arraying
by adding 39 μl 4 × microarray spotting buffer (1 M sodium phosphate buffer, pH 8.5, 0.001%
sarkosyl) to 120 μl of PCR products. The samples are then filtered by centrifugation at 600 g for
5 min through 0.2-μm filter plates.
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Protocol 12.3: DOP PCR
amplification of flow-sorted
chromosomes

PRIMARY DOP PCR REACTION:
To each tube of flow sorted chromosomes (500 sorted chromosomes in 33 μl H2O):

TAPS2 buffer 5 μl

DOP2 primer (20 μM) 5 μl

dNTP mix (2.5 mM each) 4 μl

Polyoxyethelene ether W1 (1%) 2.5 μl

AmpliTaq 0.5 μl

PCR reactions are performed in Biometra thermocyclers. After initial denaturation at 94°C for 10
min, the reaction is as follows: 10 cycles of 94°C for 1.5 min, 30°C for 2.5 min, ramp at 0.23°C
s−1 to 72°C, 72°C for 3 min followed by 30 cycles of 94°C for 1 min, 62°C for 1.5 min, 72°C for 3
min, and a final extension step of 72°C for 8 min.

SECONDARY DOP PCR REACTION TO INCREASE THE CONCENTRATION OF
THE PCR PRODUCTS:

Primary DOP PCR product 2 μl

TAPS2 buffer 5 μl

DOP2 primer (20 μM) 5 μl

dNTP mix (2.5 mM each) 4 μl

Polyoxyethelene ether W1 (1%) 2.5 μl

H2O 16.5 μl

Amplitaq 0.5 μl

PCR reactions are performed in Biometra thermocyclers. After initial denaturation at 94°C for 4
min, the reaction is as follows: 35 cycles of 94°C for 1 min, 62°C for 1 min, 72°C for 1.5 min,
and a final extension step of 72°C for 9 min.
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Protocol 12.4: Random primed
labeling of DNA for array CGH

EQUIPMENT AND REAGENTS
BioPrime Labeling Kit (Invitrogen)

10 × dNTP mix (1 mM dCTP, 2 mM dATP, 2 mM dGTP, 2 mM dTTP
in TE buffer)

1 mM Cy3-dCTP (NEN Life Science)

1 mM Cy5-dCTP (NEN Life Science)

Micro-spin G50 columns (Pharmacia Amersham)

METHOD
1. 0.15 μg DNA and 60 μl 2.5 × Random Primers Solution are

resuspended in water to a final volume of 130.5 μl.

2. The solution is denatured in a heat block for 10 min at 100°C,
and immediately cooled on ice.

3. The following reagents are added on ice:

• 15 μl 10 × dNTP mix

• 1.5 μl Cy3- or Cy5-labeled dCTP

• 3 μl Klenow fragment.

4. The reaction is incubated at 37°C overnight and stopped by
adding 15 μl of stop buffer supplied in the kit.

5. Labeled nucleotides are removed from the DNA labeling
reactions using microspin G50 columns according to the
instructions of the suppliers.
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Protocol 12.5: Array
hybridization (grid size 2 × 3 cm)

EQUIPMENT AND REAGENTS
Pre-/Hybridization buffer: 50% formamide

10% dextran sulfate

0.1% Tween 20

2 × SSC

10 mM Tris pH 7.4

3 M NaAc pH 5.2

Human Cot1 DNA

Herring sperm DNA

100% ethanol, 80% ethanol

Yeast tRNA (100 μg μl−1, dissolved in H2O)

HYBRIDIZATION
Tube 1: Cy3-labeled DNA 180 μl

Cy5-labeled DNA 180 μl

Human Cot1 DNA 135 μl

3M NaAc pH 5.2 55 μl

Yeast tRNA 6 μl

100% EtOH (cold) 1000 μl

Tube 2: 10 mg ml−1 herring sperm DNA 80 μl

Human Cot1 DNA 135 μl

3M NaAc pH 5.2 23 μl

100% EtOH (cold) 400 μl

Samples are mixed and precipitated at −20°C overnight or for 30 min at 
−70°C.

Pre-hybridization

1. Precipitated DNAs are spun for 15 min at max. speed.
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2. Pellets are washed with 500 μl 80% EtOH, and re-spun at
max. speed for 5 min.

3. Supernatant is removed and samples are 
re-spun at max. speed for 1 min.

4. Supernatant is taken off with a small tip. Process is repeated
until the pellet is dry.

5. DNAs are resuspended in:

Tube 1: 35 μl Hybridization buffer

a. Samples are denatured for 10 min at 70°C.

b. Incubate for 60 min in a 37°C heat block (in the dark)

Tube 2: 45 μl Hybridization buffer

a. Samples are denatured for 10 min at 70°C.

b. 30 μl of the denatured herring sperm/Cot1 mix are applied
onto the grid which is then covered with a coverslip.

c. The microarray slide is transferred into a humidity chamber
saturated with 40% formamide/2 × SSC and incubated for
60 min.

d. The coverslip is removed after incubation by placing the
slide into a tall glass trough containing PBS.

e. The pre-hybridization solution is washed off and the slide is
dried by spinning at 150 g for 1 min.

Hybridization

Thirty μl of the hybridization solution is applied onto the grid which is then covered with a
coverslip. The slide is placed into a slide mailer humidified with 20% formamide/2 × SSC, sealed
with Parafilm and incubated at 37°C for 24–48h.

Washing

1. The coverslip is removed by placing the slide into a tall glass
trough containing PBS/0.05% Tween 20 to wash off any
excess hybridization solution.

2. The slide is then transferred into a new glass trough and
washed in PBS/0.05% Tween 20 for 10 min at RT (shaking).

3. Slide is placed into a pre-heated 50% formamide/2 × SSC
solution and incubated for 30 min at 42°C (shaking).

4. The slide is then transferred into fresh PBS/0.05% Tween 20
and washed for 10 min at RT (shaking).

5. The slide is dried by spinning at 150 g for 1 min and can be
stored in a light-proof box until ready for scanning.
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Mapping transcription
factor binding sites using
ChIP-chip – general
considerations
Rebecca Martone and Michael Snyder

13.1 Introduction

The precise spatial and temporal control of gene expression is crucial for
mediating cellular and developmental processes. A global understanding of
transcriptional regulation will require the identification of cis-acting regu-
latory elements, the factors that bind them, and the regulatory cascades in
which these factors function. With the recent determination of the genome
sequence of humans and many other organisms it is now possible to iden-
tify many genes; however, the factors, DNA sequences and regulatory
pathways that control their expression remain poorly understood. Below
we discuss the use of chromatin immunoprecipitation and DNA micro-
arrays to globally identify targets of transcription factors and use this
information to construct regulatory networks.

A variety of indirect approaches have been used to identify targets of tran-
scription factors. Analysis of genes with common expression patterns has
led to the identification of shared motifs (e.g. 1); however the factor that
binds these motifs is not usually apparent. The monitoring of gene expres-
sion patterns with and without a transcription factor of interest using
expression microarrays or differential display can identify candidate targets
(2). Although comprehensive, this approach identifies alterations in gene
expression, which may be due to secondary or downstream signaling
events. Similarly, genetic screens for identifying targets are neither direct
nor comprehensive. Methods involving in vitro DNA binding selections do
not account for the complexities of cooperative binding or cofactor regu-
lation of transcription and therefore do not accurately mimic in vivo
binding. Hence, a need exists for a direct method to identify all of the DNA
targets of a transcription factor of interest in a single experimental system.

In the last few years a new microarray (chip) technology has allowed the
use of chromatin immunoprecipitation (ChIP) (3, 4) to identify in vivo
targets of transcription factors on a genome-wide scale; this procedure has
been coined ‘ChIP-chip’. ChIP-chip has gained increasing popularity as a
means of identifying transcription factor targets on a global scale. The
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experimental approach is built on the premise of reversibly crosslinking
proteins to DNA so that the DNA attached to a protein of interest can then
be isolated by purifying the protein and subsequently used to probe a
microarray composed of regulatory regions containing putative transcrip-
tion factor binding sites (Plate 5).

This approach was first invented for yeast (5, 6) and has now been
successfully performed for a multitude of different transcription factors in
many organisms (see Table 13.1). Several important considerations are crit-
ical to the ChIP-chip approach including experimental design, array
selection, and data analysis. Here we will focus on experimental consider-
ations and then report several studies employing ChIP-chip, which are
meant to highlight the various microarray platforms suitable for this type
of analysis.

13.2 Experimental approach

Published ChIP-chip protocols are fairly consistent, despite the organism
or factor of interest (6–8). A general scheme of the approach is depicted in
Figure 13.1. Generally, cells are grown in the conditions that are relevant
to the goal of the experiment and treated with formaldehyde to crosslink
protein-DNA, as well as protein-protein, interactions. Although other
crosslinking agents are available, formaldehyde is attractive because heating
samples at 65°C reverses the crosslinking, allowing the DNA to be used in
subsequent enzymatic reactions (4). Extracts are then prepared and the
chromatin is either sonicated to shear the DNA to 500–700 base pairs for
spotted arrays (9), or enzymatically treated to generate much smaller frag-
ments for higher-resolution oligo arrays (10). Following clarification of the
extracts, the protein-bound DNA is selected by immunoprecipitation with
either antibodies specific for the protein of interest or antibodies specific
for a tag if the protein has been tagged with a moiety such as myc or HA.
The crosslinks are then reversed and the DNA is purified. The DNA is then
subjected to a labeling reaction, slides are hybridized and scanned, the
image is quantified and the data analyzed.

Prior to hybridization, the purified DNA is fluorescently labeled by gener-
ally one of two methods: either direct incorporation of a modified
nucleotide or chemical coupling of a fluorescent molecule after incorpora-
tion of an aminoallyl-modified nucleotide (6, 8). The reference sample is
usually labeled with one fluor, that is Cy3, while the experimental or
enriched DNA sample is labeled with another fluor, Cy5 for example. The
probes can then be combined and hybridized to a microarray. Both the
hybridization buffer and reaction temperature must be optimize, as both
will impact on stringency potentially altering the final outcome of the
experiment. After several washing steps of varying stringency to remove
unincorporated dye and non-hybridizing DNA, slides are scanned with
lasers optimized for detection at specific wavelengths corresponding to the
dyes. Most scanners are equipped with dual lasers, thus allowing for rapid
simultaneous data acquisition of both background and experimental
probes. The results of the hybridization will allow detection of enriched
segments in the IP reaction, thereby identifying transcription factor
binding sites.
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13.3 Experimental considerations

Several considerations are important in the experimental design. First, due
to the low yield of DNA in the ChIP it is important to determine the optimal
number of cells to generate robust signals on the microarray. This can also
vary depending on the labeling technique, as some protocols allow for less
starting material by adding an amplification step to the labeling reaction
(10, 11). Others choose to avoid amplification biases by increasing the
number of cells (9, 12).

Another important aspect to consider is the use of antibodies or epitope
tags in the immunoprecipitation step. In organisms where inserting an
epitope directly at the gene locus is readily feasible, such as the case in
yeast, this approach is often ideal since a standard well-proven protocol is
available. This allows researchers to directly compare tagged versus
untagged samples to determine transcription factor binding sites (see
below). Generally the signals generated by this approach are robust as
several copies of the tag are inserted into the genome and antibodies
directed toward the tag are highly specific. One drawback, however, is that
the protein is modified so the binding profile is not of a native protein.
Thus, it is important to ensure that the modified factor is functional using
genetic and/or biochemical tests.

In most organisms it is not possible to epitope tag a protein expressed at
endogenous levels. Although it is often possible to transfect tagged
constructs in these systems, this runs the caveat that the levels of protein
will affect site occupancy and thus the final target lists. Thus, for these
systems it is most desirable to use antibodies specific for the protein of inter-
est. Antibodies for many factors are available, although their quality and/or
characterization are often poor. Thus, it is important to ensure that anti-
bodies can specifically immunoprecipitate a factor of interest. In addition,
if a bona fide target of the transcription factor is known, then a standard
ChIP using PCR confirmation should be performed to ensure the antibod-
ies function in a ChIP assay.

One final important consideration is the selection of a reference channel
so that enrichment for transcription factor binding in the ChIP can be
determined. This reference or background sample is commonly either
genomic DNA or a mock immunoprecipitation (IP). However, it can also
be IP DNA from a non-induced sample that is compared with the induced
state. The latter is obviously attractive when studying an inducible tran-
scription factor where binding only occurs in one state. Transcription
factors that translocate to the nucleus upon activation such as NF-κB and
STAT1 are suitable for this type of approach (9). Whichever reference is
chosen, the main consideration is an adequate signal-to-noise ratio so that
the highest quality data is generated.

13.4 Data analysis

The analysis of DNA microarray data is discussed in detail in other chap-
ters and will be discussed only briefly here. Inherent to all microarray
experiments are large, noisy datasets where the challenge is to process them
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in a fashion that produces the most reliable and meaningful results. The
data acquisition and analysis processes are fairly well established: first the
slides are scanned to measure fluorescence intensity, signals from the
features are then scored and normalized, the differential expression is deter-
mined and finally statistical methods and clustering algorithms are
employed to generate meaningful datasets. The scanning and quantifica-
tion steps are generally speaking very straight forward, however the
normalization of the raw data and the calling of ‘hits’ is an area with a lot
of experimental variability.

Both differential expression and ChIP-chip experiments rely on the ratio
of ‘reference’ signals to ‘experimental’ or ‘test’ signals; however it quickly
becomes apparent to the experimentalist that several parameters can poten-
tially skew the raw data resulting in erroneous face value ratios including:
differences in dye intensity, regional heterogeneity on the slide, faulty
washing leaving behind dust and salt residues, and differences in spot
intensity. Inconsistencies introduced in the hybridization reaction and
subsequent washing steps, as well as experimental noise could alter the final
outcome of the experiment if they are not accounted for (13).

Seeking to assist microarray users with generating meaningful datasets in
a consistent and automated fashion, various web-accessible data processing
platforms have been developed. One example is the ExpressYourself
program developed by bioinformaticists at Yale University. The aim of this
program is to address each aspect of the data analysis process, including:
background correction, intra- and inter-slide normalization, data quality
and scoring. One aspect of this program that sets it apart from others is
that it allows users to select from a variety of scoring algorithms, some of
which have been especially tailored to handle datasets generated by ChIP-
chip experiments. Typically, researchers identify targets that have
significant p values less than 10-4 or standard deviations from the median
in multiple experiments (13).

13.5 Array selection

The ChIP-chip procedure has now been successfully carried out for many
factors and a number of different organisms. Ideally the microarray used in
a ChIP-chip experiment will contain the entire sequence of the genome of
interest, as this provides the most comprehensive platform for monitoring
all potential regulatory sequences. This has been feasible for smaller organ-
isms such as Saccharomyces cerevisiae where ChIP-chip studies on individual
transcription factors were first carried out (5, 14). These experiments used
intergenic arrays containing PCR products representing all the non-coding
sequence in the yeast genome and operated under the presumption that
this sequence would contain all of the regulatory sites. Shortly after these
initial studies, separate large-scale reports in S. cerevisiae emerged, includ-
ing the mapping of yeast transcription factors involved in the cell cycle (15,
16), revealing the power of ChIP-chip in elucidating transcriptional
circuitries. These whole-genome studies were feasible due to the size and
relatively compact nature of the yeast genome, where the intergenic regions
contain most of the regulatory regions and are relatively small.
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After the success of the technique in yeast the natural progression was
to scale up to mammalian systems. Ideally when setting out to do ChIP-
chip, one would use arrays that tile across both the coding and
non-coding regions of the genome, however until recently the lack of
reliable and stable genomic sequence in higher eukaryotic organisms has
been a major limiting factor. Likewise, researchers have had to grapple
with several challenges associated with more complex genome sequence;
these include repetitive elements, poor annotation, and large spans on
intergenic and intronic sequence.

Despite these limitations, several reports of ChIP-chip carried out in
higher organisms have been published (Table 13.1). The first reports of
mammalian ChIP-chip came in 2002 (7, 11, 16, 17). Two groups inde-
pendently investigated the cell-cycle-specific transcription factor E2F
binding (7, 17). These initial studies overcame the challenges associated
with the more complex mammalian genome mentioned above by the use
of arrays containing limited regions of the genome. One group fabricated
a CpG island microarray containing 7776 distinct DNA elements that were
selected based on their high GC content (7). Many regulatory elements
reside in CpG islands (18), and thus would presumably be a useful means
to study transcription factor binding. However CpG islands do not guar-
antee the inclusion of all promoter elements, nor does it take into
consideration binding outside of promoter sites. Despite these drawbacks,
68 target sites were identified representing genes involved in the cell cycle
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Table 13.1. ChIP-chip studies to date.

Organism Type of array Transcription factor Reference 

Saccharomyces Whole genome Gal4, Ste12 (14) 
cerevisiae (intergenic) 

SBF, MBF (5) 
106 general TFs (15) 
Nine G1/S-specific TFs (16) 
Ste12, Tec1 (21) 
203 general TFs (22) 
Fhl1, Ifh1 (23) 

Whole genome Histone H4 (24) 
(ORF & intergenic) 

TBP (25) 

Drosophila Whole-chromosome Pol II, ORC (26) 
melanogaster tiling array 

Homo sapiens Promoter/CpG E2F4 (7, 17) 
pRb (27) 
HNF1α, HNF4α, HNF6 (28) 
and Pol II 
ERα (29) 
PRC2/3 (30) 

Genomic tiling GATA1 (11) 
NF-κB (p65) (9, 19) 
Sp1, c-Myc, p53 (10) 
CREB (20) 



as well as in DNA damage and recombination – two processes not previ-
ously known to be regulated by E2F.

The second group chose to look at E2F binding in promoter regions using
an alternative approach. They constructed a microarray containing the
proximal promoter regions of 1444 human genes, around 1200 of which
were cell-cycle-regulated as the E2F family of transcription factors is known
to function in regulating this cellular event (17). The array contained PCR
products designed to amplify 700 bp upstream and 200 bp downstream of
the putative transcription start site of the genes. Although successful in
identifying targets of E2F, the study was less than comprehensive, as the
approach was biased to cell-cycle-specific genes and limited to promoter
regions identified by potentially error-prone computer algorithms. Despite
their limitations, both studies mapping E2F binding represent pioneering
efforts to globally map transcription factor binding sites.

The third group used a limited genomic tiling array in which all
sequences of a region of interest were represented on the array. The binding
profile of the transcription factor GATA1 within the β-globin locus was
mapped using an array composed of 1-kb PCR fragments representing the
entire 75-kb locus (11). This study was comprehensive in that no interac-
tions with DNA go undetected due to lack of content on the array. Indeed
a new binding site for the well-studied GATA–1 factor was discovered.

Building on the tiling approach researchers generated a tiling array of an
entire human chromosome. The binding of the NF-κB family member p65
along human chromosome 22 was elucidated using an array that had nearly
complete coverage of the non-repetitive sequence of the chromosome (9,
19). This microarray was comprised of nearly 22 000 PCR fragments repre-
senting both the coding and non-coding portions of the chromosome,
making it suitable to survey transcription factor binding in an unbiased and
comprehensive fashion. Human chromosome 22 is 34 MB in length, and
although this represented only 1% of the genome, it was an important
analysis of transcription factor binding nonetheless. It revealed that p65
bound genomic regions in addition to the expected 5′ proximal promoter
sites – including intronic regions, intergenic regions, as well as near novel
transcribed regions. This study was the first mapping of a transcription
factor on an entire chromosome and revealed the importance of tiling
arrays in identifying potential regulatory regions in the genome.

These findings were further supported by two subsequent publications,
one mapping the binding sites of Sp1, Myc and p53 using Affymetrix
Chromosome 21 and 22 tiling microarrays (10) and the other mapping
CREB binding on the previously mentioned Chromosome 22 array (20).
Both of these groups report similar chromosome-wide binding distributions
for all the factors as observed for p65. Taken together, these studies suggest
that the complexity of global transcription factor binding and subsequent
contribution to gene regulation is perhaps underappreciated and can only
be elucidated in the context of the whole-genome tiling arrays.
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13.6 Conclusion

It is now possible to map transcription factor binding sites across entire
genomes of organisms with small genomes and many segments of the
human genome. With higher density arrays becoming available through
arrays constructed using photolithography (Affymetrix and Nimblegen) it
will likely be possible to carry out whole human genome analysis of tran-
scription factor binding using ChIP-chip. The use of these arrays for the
analysis of the 1500–2000 mammalian transcription factors in many cell
types will provide a transcriptional circuitry for mammalian development
and cell function.
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ChIP-on-chip: searching
for novel transcription
factor targets
Esteban Ballestar and Manel Esteller

14.1 Introduction

Chromatin immunoprecipitation (ChIP) is currently the most powerful
technique for investigating in vivo interactions between a nuclear factor and
its genomic target sequences (1, 2). The technique consists of immunopre-
cipitating chromatin with specific antibodies to isolate DNA sequences that
are bound by the nuclear proteins against which the antibodies are raised.
After that, immunoprecipitated DNA is typically analyzed by PCR with
specific primers to investigate the presence of a candidate DNA sequence.
In practice, two different aspects can be explored. One is the binding of
different nuclear factors to their binding sites (3, 4) (Figure 14.1). The other
is that, since histones are associated with DNA throughout the entire
genome, it is possible to explore the association of different post-transla-
tional modifications of histones with specific genomic sequences by using
antibodies that recognize these modifications (5, 6) (Figure 14.1).
Consequently, ChIPs provide dynamic information about not only nuclear
factor occupancy at their target binding sites but also specific histone modi-
fication patterns in selected DNA sequences.

Microarrays provide an excellent platform for investigating changes on
a genomic scale. The first microarrays to be designed and used were cDNA
microarrays, which have been routinely used to characterize variations in
gene expression (7, 8). More recently, genomic microarrays have become
available as the entire genome has been sequenced and the gene regulatory
regions have become better known. One potential application is the use of
comparative genomic hybridization (CGH) to investigate DNA copy-
number imbalances in cancer at high resolution (9). The development of
novel types of genomic microarray also provides an exceptional opportu-
nity for a new application: hybridization of ChIP samples on a microarray
(ChIP-on-chip). With this elegant combination of techniques it is now
possible to uncover novel binding target sequences for nuclear factors or
DNA sequences with specific histone-modification patterns (10, 11) on a
genomic scale.
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14.2 Genomic microarrays

A number of genomic microarray platforms have become available in recent
years. It is important to distinguish between microarrays that have a spotted
selection of genomic sequences and those with a broad representation of
the entire genome. Several microarrays have been designed for CGH meas-
urements. In this case, large-insert genomic clones, such as bacterial
artificial chromosomes (BACs), are used for array spots (10). Although this
type of microarray can be used in the ChIP-on-chip technique, the large
size of the BAC clones makes it difficult to identify the target sequence of
the nuclear factor. Once a positive spot has been identified, additional
studies would be necessary to map the target sequence at a higher resolu-
tion within the BAC clone.

An interesting specialized genomic microarray, designed by Tim Huang
(11), consists of a library of CpG island clones. This microarray has been
used in combination with a method known as differential methylation
hybridization. Linker-ligated genomic DNA is digested with a methylation-
sensitive restriction enzyme, amplified by PCR, and hybridized to the array.
Many CpG islands become methylated in cancer and are thereby protected
from methylation-sensitive restriction cleavage and so can be amplified by
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Figure 14.1. 

Diagram showing the different aspects that can be investigated with ChIP assays. A
nucleosome is represented as a circle, histone tails appear as protruding curly lines
and DNA is represented as a black line. Antibodies (represented as three-way black
lines) can be directed against different histone modifications (a, b) or against a
variety of nuclear factors (c). Immunoprecipitated DNA can be analyzed either by
studying candidate gene sequences, for instance by PCR amplification with specific
primers, or by hybridizing appropriate microarrays (ChIP-on-chip).

Specific primers
“ChIP”

 Microarray hybridization
“ChIP-on-chip”

(a)

(b)

(c)



PCR, producing array-hybridization signals (12, 13). Since CpG islands
generally coincide with the promoter of many genes, a CpG island micro-
array can be useful for investigating the binding sites at the regulatory
regions of CpG-island-containing genes (14). We have recently used Tim
Huang’s CpG-island microarray to reveal novel targets of methyl-CpG
binding domain (MBD) proteins in cancer (15).

Finally, there are several promoter-based microarrays. Although this type
of microarray is obviously of great interest for its potential use for study-
ing the binding of factors to regulatory regions, it must be remembered that
the entire human genome is not represented on the microarray.

14.3 Performing a successful ChIP assay

In order to guarantee the success of a ChIP-on-chip experiment it is impor-
tant to optimize the conditions for the equivalent single-ChIP experiment.
Many protocols describing ChIP assays (see a schematic diagram in Figure
14.2) have been published and are now easily accessible.

There are two major considerations when setting up an experiment: the
proper fixation of DNA-protein contacts, and the fragmentation of chro-
matin. It is also very important to ensure that the antibody is highly specific
and able to immunoprecipitate.

The most common crosslinking agent used in ChIP analysis is formalde-
hyde, a dipolar reagent that produces both protein-nucleic acid and
protein-protein crosslinks, through the imino group of amino acids, such
as Lys, Arg and His, and DNA (adenines and cytosines). A key property of
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Figure 14.2. 

Schematic representation of the ChIP assays. The central column shows the critical
steps in the ChIP assay, as discussed in the text, and several technical tips are
indicated in the right column.

ChIP assay Critical steps How to...?

Crosslinking 1% HCHO, 15–60 min

Sonication 300–1000 bp fragments

Immunoprecipitation Ensure antibody specificity

Crosslinking reversal 65°C, 4–6 h



the crosslinks obtained by using formaldehyde is their reversibility, which
is achieved by treatment at low pH in aqueous solution or incubation at
60–70°C in the presence of SDS. Due to the small size of formaldehyde 
(2 Å) only proteins located within this distance of the DNA will become
crosslinked. Some of the chromatin-modifying enzymes, such as histone
deacetylase, do not directly bind DNA and their gene-specific regulatory
functions occur through recruitment by additional DNA-binding proteins
that associate regulatory sequences. Although these proteins exhibit no
DNA-binding properties, it is possible to investigate their association with
particular sequences by using additional protein-protein crosslinkers (16).
For instance, dimethyl adipimidate (DMA) has been used to investigate the
association with the yeast HDAC Rpd3 (17).

Efficient fixation of proteins to DNA is crucial for the ChIP assay.
Standard conditions for formaldehyde crosslinking usually consist of a
concentration of 1% and incubation times between 15 min and 1 h,
depending on the proteins to be analyzed. It is important to avoid a long
formaldehyde crosslinking treatment as this increases resistance to frag-
mentation by sonication and decreases the efficiency of the technique.
Moreover, formaldehyde is a moderately denaturing agent for proteins and
a high concentration or long exposure to this reagent may result in the loss
of antigen epitopes. It is advisable to determine empirically the effects of
formaldehyde on the protein under study. After standard fixing conditions
for different exposure times, immunolocalization analysis can detect loss
of fluorescence signal due to denaturation.

When choosing fixation conditions, it is important to ensure that the
increased mechanical resistance of chromatin still allows fragmentation by
sonication. In fact, the size of the chromatin fragments is the second crit-
ical consideration when performing ChIP assays, since these will determine
both the yield of immunoprecipitated material and the degree of resolu-
tion of the technique. Chromatin fragmentation is generally achieved by
sonication (although micrococcal nuclease can also be used in protocols
that avoid fixation by formaldehyde) and conditions must be optimized for
each sonicator prior to any immunoprecipitation experiment.

In many studies, accurate mapping can be achieved by designing primers
that amplify DNA fragments of 200–300 bp. Large chromatin fragments are
specifically immunoprecipitated less efficiently than small fragments.
Nevertheless, the size of the fragments determines the resolution of the
technique and, therefore, fragments should not greatly exceed the size of
the sequence to be analyzed. If the average chromatin fragments are much
larger than the sequence to be PCR-amplified or probed, one cannot be sure
that the protein for which the antibody was used is actually bound to that
particular region or to a neighboring region.

Finally, the quality of the antibody is extremely important in ChIP assays.
It is essential to ensure, firstly, that the antibody efficiently recognizes the
antigen and, secondly, that most of the immunoprecipitated material repre-
sents specific DNA sequences. Ideally, a ‘no-antibody’ control and
pre-immune serum control should be included.
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14.4 Obtaining material for hybridization

One important consideration in ChIP-on-chip experiments is the amount
of immunoprecipitated DNA required for the hybridization. A standard
ChIP DNA sample contains a variable amount of DNA of between 50 and
several hundred nanograms. In a ChIP-on-chip experiment, between 1 and
2 μg of immunoprecipitated material is required for a single hybridization
experiment. Two approaches have been taken to overcome this limitation
and obtain the required amount. Firstly, it is possible to scale up the ChIP
experiment, which generally means increasing the amounts of cells and of
antibody. However, in some cases, both these quantities are limited, and
an alternative approach is possible that exploits random PCR amplification
of the immunoprecipitated material.

In the first case, it is best to perform multiple single-standard ChIP assays
rather than amplifying the volume in a single experiment. Usually, 30
single IP experiments should yield enough material for hybridization.
Samples should be treated and processed separately, and only after DNA
samples have been resuspended in water should they be combined to
proceed with fluorescent labeling and hybridization.

When the amount of biological material or the availability of the anti-
body is limited, it is possible to use an amplification step. This protocol has
been described by Kuukasjarvi et al. (19) and modified by Huang et al. (20).
Basically, two consecutive amplification steps are performed. The first
requires the use of Thermosequenase, a degenerate primer (5′-CCG ACT
CGA GNN NNN NAT GTG G-3′) and low-stringency amplification condi-
tions (3 min at 94°C, followed by four cycles of 1 min at 94°C, 1 min at
25°C, 3 min transition at 25–74°C, 2 min extension at 74°C, and a final
extension of 10 min). The second step consists of a more standard PCR
amplification, standard Taq polymerase and more stringent conditions are
used (3 min at 94°C, followed by 35 cycles of 1 min at 94°C, 1 min at 56°C,
2 min extension at 72°C, and a final extension of 10 min). It is important
to run a confirmatory gel. There should be a smear of DNA, of length
between 300 and 1000 bp, present for the antibody-treated samples.
Negative controls should be added for each DOP-PCR step in order to rule
out the existence of non-specific amplification of contaminant DNA.

Before labeling and hybridizing the ChIP samples, it is advisable to test
a small aliquot of the samples for PCR amplification of a positive and nega-
tive control for both antibody-treated and no-antibody samples. This test
depends on the availability of known in vivo binding targets for the protein
of interest.

14.5 Labeling and hybridizing the DNA

Once the required amount of DNA (1–2 μg) has been obtained for both the
antibody ChIP sample and the no-antibody control, it is labeled with the
fluorescent Cy5 and Cy3 dyes. There are several commercially available
DNA labeling systems for incorporating these dyes into the DNA samples.
Once the labeled samples have been obtained, DNAs are cohybridized to
the selected microarray. Following hybridization, the arrays are washed,
scanned and analyzed like other types of microarray. Many institutions
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have established core-facility units specialized in microarray hybridization
and it is advisable to use their expertise during the analysis.

14.6 Validating ChIP-on-chip results

A key step when using any type of microarray is the independent valida-
tion of the results. If RT-PCR is used to validate the results of an
expression-microarray analysis, in the case of ChIP-on-chip experiments,
individual single-ChIP assays should be performed to confirm the target
sequences identified by this technique. It would be ideal to perform ChIPs
with two different antibodies raised against the same protein. Specialized
validating experiments are advisable. For instance, when we performed
ChIP-on-chip analysis to investigate MBD targets in breast cancer cells (15),
we validated the results by using both individual ChIP assays and a specific
assay. In this case, since MBDs are known to associate specifically with
methylated DNA (21), we investigated the methylation status of the CpG
islands that each of the anti-MBD antibodies had been able to isolate. The
specific methylation profile of each of the identified targets was an inde-
pendent test that served not only to validate the results from the
ChIP-on-chip analysis but also to reveal novel targets of epigenetic inacti-
vation in human breast cancer. In the same system, for instance, when
studying genes for which only one allele is methylated, an appropriate vali-
dating method is the coupling of individual ChIPs with bisulfite genomic
sequencing (22). For nuclear factors that have a known or inferred binding
site, it would be useful to search for that particular binding site in the posi-
tive clones resulting from the ChIP-on-chip experiment. Additionally,
electrophoretic mobility-shift experiments can be used to test in vitro the
ability to bind the resulting targets (23).

14.7 Summary

ChIP-on-chip is a powerful tool that can be used to discover novel target
sequences for transcription factors or to reveal DNA sequences with partic-
ular chromatin features. This potential is the result of the elegant
combination of ChIP assays with microarray technology. ChIP assays allow
the isolation of a genomic library of sequences that are bound by a specific
factor or that contain specific histone modifications. Microarray technol-
ogy makes it possible to analyze thousands of sequences in a single
experiment. The applicability of this technique relies on the availability of
genomic microarrays, but fortunately, both genome-wide and specialized
microarrays are now available. Combination of ChIP-on-chip with other
types of microarrays, such as cDNA microarrays, will surely help to lead to
a functional understanding of the way by which the genome is regulated.
ChIP-on-chip experiments will greatly contribute to the mapping of the
epigenomic landscape.
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Protocol 14.1: Performing a
successful ChIP assay

We have obtained the best results by using the following protocol, which is based on that
described by Upstate Group, Inc and Spencer et al. (18):

1. Stimulate or treat cells as appropriate. Cells should be treated
under conditions for which transcriptional activation of the
gene of interest has been demonstrated. Use 1 × 106 cells for
each antibody.

2. Crosslink histones and other nuclear factors to DNA by adding
formaldehyde directly to culture medium to a final
concentration of 1%. Incubate for 15–60 min (as previously
determined) at room temperature. Preliminary experiments to
estimate the best combination of crosslinking time and
fragmentation should be performed. When planning to store
crosslinked cells, glycine should be added to a final
concentration of 0.125 M and incubated for 5 min. After that,
1 × phosphate-buffered saline (PBS) washes should be
performed as described below.

3. Aspirate medium, removing as much of it as possible. Wash
cells twice using ice-cold 1 × PBS containing protease
inhibitors (there are several cocktails of protease inhibitors
commercially available that cover a wide spectrum of
inhibition).

4. Scrape cells and transfer to a conical tube. For suspension
cells, the PBS washes need to be performed in the tube.

5. Pellet cells for 4 min at 2000 g at 4°C. Warm cell lysis buffer
(1% SDS, 10 mM EDTA, 50 mM Tris-HCl, pH 8.1) to room
temperature to dissolve precipitated SDS and add protease
inhibitors.

6. Resuspend cell pellet in cell lysis buffer and incubate for 
10 min on ice. Each 1 × 106 cells should be resuspended in
200 μl of cell lysis buffer.

7. Sonicate the cell lysate to shear DNA to lengths between 
200 and 1000 bp, being sure to keep samples ice-cold. When
optimizing sonication conditions, at this point, 20 μl of 5 M
NaCl are added to each 500 μl and incubation at 65°C for 4 h
is performed to reverse crosslinks. This incubation is followed
by phenol/chloroform extraction and samples are analyzed in
agarose gels to visualize shearing efficiency.
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8. Once sonication conditions have been optimized, centrifuge
samples following sonication for 10 min at 13 000 g at 4°C.
The size of a sample will be the equivalent amount of 200 μl of
the sonicated cell lysate.

9. Dilute the sonicated cell lysate 10-fold in ChIP dilution buffer
(0.01% SDS, 1.1% Triton-X–100, 1.2 mM EDTA, 16.7 mM
Tris-HCl, pH 8.1, 167 mM NaCl), adding protease inhibitors,
as above. This is done by adding 1800 μl of ChIP dilution
buffer to each 200 μl of sonicated cell lysate to give a final
volume of 2 ml for each immunoprecipitation condition. If
proceeding to PCR a portion of the diluted cell pellet
suspension, a small volume can be kept to quantitate the
amount of DNA present in different samples for the PCR
protocol. This sample is considered to be the input/starting
material, and needs to be heated at 65°C for 4 h in order to
reverse crosslinks.

10. To reduce nonspecific background, it is advisable to treat the
diluted cell lysate with 80 μl of protein A/G-agarose/salmon
sperm DNA (50% gel slurry in TE buffer, containing 15 μg of
sonicated salmon sperm DNA; Upstate Group, VA) for 30 min
at 4°C with agitation.

11. Pellet agarose beads by brief centrifugation and collect the
supernatant fraction.

12. Add the immunoprecipitating antibody (the amount will vary
per antibody) to the 2 ml of supernatant fraction and incubate
overnight at 4°C with rotation. For a negative control, perform
a no-antibody immunoprecipitation and a pre-immune serum
precipitation (when available).

13. Add 60 μl of protein A/G-agarose/salmon sperm DNA beads
for 1 h at 4°C with rotation to collect the antibody-protein
complex.

14. Pellet agarose by gentle centrifugation (2000 g at 4°C for 1
min). Carefully remove the supernatant and keep this fraction,
which consists of unbound DNA. Wash the protein A/G
agarose beads for 5 min on a rotating wheel with 1 ml of each
of the following solutions: 

• Low-salt wash buffer (0.1% SDS, 1% Triton X–100, 2 mM
EDTA, 20 mM Tris-HCl, pH 8.1, 150 mM NaCl)

• High-salt wash buffer (0.1% SDS, 1% Triton X–100, 2 mM
EDTA, 20 mM Tris-HCl, pH 8.1, 500 mM NaCl)

• LiCl wash buffer (0.25 M LiCl, 1% NP40, 1% deoxycholate,
1 mM EDTA, 10 mM Tris-HCl, pH 8.1)

• 1 × TE (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)
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Repeat.

15. After the last washing, protein-DNA complexes can be eluted
from the antibody by adding 250 μl of freshly made elution
buffer (1% SDS, 0.1 M NaHCO3) to the pelleted protein A
agarose-antibody-protein-DNA complex. Vortex briefly to mix
and incubate at room temperature for 15 min with rotation.
Pellet the agarose beads, and carefully transfer the supernatant
fraction (eluate) to another tube and repeat elution. Combine
eluates. The total volume should be approximately 500 μl.

16. Add 20 μl of 5 M NaCl to the combined eluates and reverse
protein-DNA crosslinks by heating at 65°C for 4 h. The input
sample as well as the unbound samples should also be treated
in a similar manner by adding the equivalent volume of 5 M
NaCl.

17. Add 10 μl of 0.5 M EDTA, 20 μl of 1 M Tris-HCl, pH 6.5 and 2
μl of 10 mg/ml proteinase K to the combined eluates and
incubate for 1 h at 45°C.

18. After protein removal, add an equal volume of
phenol:chloroform:isoamyl alcohol (24:23:1) to the sample
and mix, then centrifuge at 12 000 g for 1 min. The upper
aqueous phase is transferred to a new microcentrifuge tube
and phenol:chloroform extraction is repeated. The DNA is
then precipitated by adding one-tenth of the volume of
sodium acetate to the aqueous phase, a carrier, such as
glycogen or yeast tRNA, and 2.5 volumes of absolute ethanol,
and then incubating the sample at −80°C for at least 1 h. After
that, wash the DNA pellet with 70% ethanol and air dry.

19. Resuspend each pellet in 20 μl of water for PCR analysis. In
standard ChIPs, the input sample is used at different dilutions
to establish conditions for which specific PCR products are
obtained below saturation.
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Turning photons into
results: principles of
fluorescent microarray
scanning
Siobhan Pickett and Damian Verdnik

15.1 Introduction

The microarray image is your window into the biology you want to
measure. The clearer that window is, the easier it will be to identify, inter-
pret, and understand the phenomena you observe. Accurate imaging,
including scanning and image processing, ensures that the data reported
by the instrument provide the most accurate representation of the actual
fluorescent signal on the array.

15.2 Scanning parameters

Microarray scanner evolution

Microarray scanner technology evolved from scanning fluorescence micro-
scopes that were used to image subcellular components. These microscopes
combined high-powered excitation light sources, user-selectable emission
filters, and a detection system to collect and store digital images of the fluo-
rescent sample. Laser-based systems use motion control elements to scan
the laser beam across the sample and photomultiplier tubes (PMTs) to
collect emitted light one pixel at a time. White-light-based systems use
mercury or xenon arc lamps to excite an entire field of view, and a charged-
coupled device (CCD) to capture emitted light from the entire field of view.
Both types of systems are used in microarray imagers today.

However, microarrays have different imaging requirements than cells
and organelles. Microarray spots usually range from about 50 to 100
microns in diameter, which is extremely large compared to subcellular
components. Unlike cellular imaging, the substructure of microarrays
spots is of no interest (beyond optimizing spot uniformity). Microarray
spots are deposited in known locations with plenty of separation between
them, whereas cells and organelles are irregular in shape and location.
Therefore, while cellular imaging requires ever-more powerful magnifica-
tion and sub-micron pixel sizes to clearly resolve tiny structures, most
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microarrays can be accurately imaged at 5- or even 10-micron pixel
resolution. In addition, cellular microscopy has historically focused on the
presence and location of specific elements of interest, rather than quanti-
tation. (Note that this is changing, due in part to the development of
flat-field imaging optics.) The primary purpose of microarrays is to
quantify the signal from each spot. The data must be accurate and
comparable over the entire 25 × 75-mm slide surface. Therefore, field
uniformity is a critical parameter in microarray instrumentation.

How an image is acquired: scanner design considerations

Unlike light microscopy, which allows the viewer to look directly at the
sample itself, fluorescence imaging requires a fluorescent label to be bound
to the sample. When interpreting the results of microarray experiments, it’s
important to keep in mind that fluorescence imagers do not detect DNA,
proteins, cells, or any other biological material – they only detect the fluo-
rescent dyes that are bound to the biomolecules.

Fluorescence is the property of some molecules that absorb light of a
given wavelength, and then emit light of a higher wavelength. Fluorescent
dyes are characterized by their excitation and emission spectra. The exci-
tation spectrum represents the efficiency with which the dye will absorb
light over the given range of wavelengths. The emission spectrum indicates
the probability that a photon of emitted light will be of a given wavelength.
Thus, the peak of the excitation spectrum indicates the wavelength of light
that is most efficiently absorbed by the dye, and the peak of the emission
spectrum indicates the predominant wavelength of light that will be
emitted as a result of the excitation. The difference between the excitation
peak and the emission peak is called the Stokes’ shift (1).

Not all fluorescent dyes are equally bright, even at their excitation and
emission peaks. The brightness of dyes is determined by specific constants
for each dye. The extinction coefficient indicates the efficiency with which
the dye absorbs incident light (usually at the peak of the absorption spec-
trum). The quantum yield indicates the ease with which the dye molecule
releases a photon of fluorescent light over the entire emission spectrum.
The resulting fluorescence intensity is proportional to the product of these
two constants. Therefore, equimolar amounts of two different dyes will not
necessarily produce equally bright signals. Filter choices and excitation
light properties (which also vary with wavelength) also contribute to differ-
ences in signal brightness.

In a fluorescence imaging system, excitation light is provided by either
a halogen arc lamp or a laser. The light is delivered to the sample through
a series of lenses and filters. The fluorophore on the sample emits light,
which then travels through additional lenses and filters to the detector (a
CCD or PMT). The analog signal from the detector is converted into a digital
signal, which is then used to display an image of the sample on the
computer screen.

Detailed descriptions and design considerations for white light and laser
imaging systems have been discussed previously (2). This chapter focuses
on critical instrument performance metrics, and some analysis methods
that can be used to evaluate them.
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Critical performance characteristics of a microarray fluorescence
imaging system

Microarray scanners are complex instruments consisting of hundreds of
individual parts, including light sources, detectors, circuit boards, moving
parts, lenses, filters, wiring, and sensors. While the design and selection of
each of these subunits is important, no single component defines the
performance of the instrument. Ultimate instrument performance is deter-
mined by the integration of all of the subunits into a complete working
system. The design of the electronic circuitry, alignment of optical
elements, and behavior of moving parts all affect the data quality and long-
term instrument performance. The specifications of individual components
do not measure the ultimate function of combined subunits. The scanned
image is the final output of the instrument; therefore the only way to char-
acterize and compare the performance of the complete system is to compare
scanned images. In addition, the appearance of the image on the screen is
the result of the algorithms used to convert the analog fluorescent signal
into a digital value, the color and display settings chosen, and even the
monitor itself. Visual assessment of images can be misleading; therefore the
signals must be quantified using appropriate background subtraction
methods before valid comparisons can be drawn.

Scanner calibration

One slide does not constitute a microarray experiment. You may scan
hundreds of slides over many months before reaching significant biologi-
cal conclusions. Microarray scanners must perform consistently so that
experimental results can be compared over time, and be validated and
shared among different research groups. However, mechanical, optical, and
electronic components have a finite lifetime, so instrument performance
will change over time. Instrument calibration can ensure imaging repro-
ducibility among multiple scanners of the same model over time.

Scanner calibration uses a known standard to set instrument output to
predefined levels. The standard might be a precisely controlled light source
or a fluorescent material. It must be stable such that it yields the same signal
output after repeated long-time use. For example, GenePix® scanners are
benchmarked at the factory to produce a specified signal output from a
stable standard using defined scan settings. The test standards are a set of
fluorescent materials that absorb and emit light consistent with each of the
excitation and emission channels in the instrument. The standard is
shipped with the instrument so that the user can invoke the calibration
routine as often as they want to re-tune the instrument to the benchmark
levels. Multiple instruments can be adjusted in the same way to produce
the same benchmark signal levels.

Detection limit

A brighter image is not necessarily a better image. Absolute pixel intensity
values will vary depending on different types and brands of detectors,
variations in electronic signal processing, analog-to-digital conversion algo-
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rithms, and other design differences. Color and display settings and even
monitor settings can also influence the appearance of images scanned on
different systems. Visual inspection is non-quantifiable and highly subjec-
tive, and is not a reliable method for detection limit comparisons on
different instruments. Signal intensity and detection limit must be quanti-
fied using appropriate calculations and background subtraction methods
(see below).

A detection limit performance specification should indicate the
minimum signal that the system can quantify accurately. As a signal
approaches the surrounding background level, the potential error in each
measurement increases. In other words, as a spot fades into the background,
so does your confidence in its existence. The signal-to-noise ratio (SNR) is
the most reliable detection limit metric. The SNR calculation incorporates
signal, the average background level, and the variation in background
values to measure how clearly the signal can be distinguished from the
background. For imaging applications, SNR is calculated as:

SNR =

On most microarray scanners, spots may be visible below this limit;
however, the accuracy of the measurement begins to diminish. As an anal-
ogy, consider looking for a 2-m-tall scarecrow in a cornfield. If all the
cornstalks are 1 m tall, then the average background is uniform and lower
than the signal (the scarecrow), so the scarecrow is clearly visible. If all the
cornstalks are 2 m tall, then the signal is the same as the average back-
ground. Although the background noise is low, the average background is
high so the scarecrow is not visible. Finally, if the cornstalks range in
height equally distributed from 0.5 to 3 m tall, the average background is
1.75 m. The average background is lower than the signal, but the variation
in height (i.e. the noise) will make it difficult to see the scarecrow. Thus,
the signal, the average background, and the background variation must all
be considered when determining detection limits in imaging applications.
A commonly accepted criterion in many signal detection disciplines
(including radio, electronic communications, trace chemical detection,
and other fields) defines the minimum quantifiable signal at threefold
greater than the background noise – that is the sample value for which
SNR = 3 (3, 4).

Fluorescence imaging instruments do not detect DNA or proteins – they
detect fluorescent dyes that are bound to the biomolecules. The detection
limit of a fluorescence imaging instrument is measured in moles of fluo-
rophore per square micron. The true detection limit can only be determined
through careful quantitation of meticulously prepared dilutions of fluores-
cent dyes. In addition, the concentration of active fluorophore in a batch
of dye varies according to batch preparation, age, and environmental condi-
tions. Prior to arraying, the precise dye concentrations must be quantified
on an independent platform such as a spectrofluorometer. The volume of
solution that adheres to the slide during arraying must also be known.
There can be no post-spotting washes or other treatment that may alter the
amount of active fluorophore at each spot. The array must be used imme-

(Signal − Background)
(Standard Deviation of Background)
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diately for detection limit determination because even the slightest decay
in signal may cause the faintest spots to fade below the detection limit.
These tests are time-consuming and are not practical for routine instrument
comparisons.

An acceptable alternative to assess SNR differences among instruments
is to compare any dilution series that covers a wide range of signal
values. Several slide replicates should be scanned in alternating order on
different instruments to assess and compensate for any photobleaching
or slight differences among the replicates. The difference in SNR for
identical spots near the background level gives a simple comparison
of sensitivity across instruments, without knowledge of the absolute
dye concentrations.

Field uniformity

Field uniformity is one of the most important specifications for microarray
imaging. Microarray analysis entails measuring thousands of tiny signals
on a relatively large field, with sufficient accuracy to allow spots to be
compared among all locations on the array. A uniform imaging field
ensures that the instrument is not contributing to regional variations that
might bias the data and interfere with accurate comparisons.

The microarray substrate and surface matrix are the primary determi-
nants of field uniformity. Most standard microscope slides are specified to
about 40-μm flatness over the entire surface; that is, they may have hills
and valleys as high as 40 μm. Optically flat slides for microarrays are also
available. The slide surface variations can cause quantitative variations as
the imaging plane comes in and out of focus. A scanner with a larger depth
of field can better accommodate slide surface variations, ensuring accurate
light collection over the entire scanned area.

Instrument components such as the slide holder, motion control mech-
anisms, the excitation source, and the illumination and collection optics
can all affect field uniformity. In any microarray imaging system, all of
these components must be precisely specified and aligned to ensure
uniform illumination at all points on the sample surface.

A test standard to measure field uniformity must be more uniform than
the instrument in question so that the sample itself doesn’t contribute
additional non-uniformity to the measurement. Such a standard doesn’t
yet exist in a microscope slide format. However, any fluorescent microarray
can be used in a simple alternative test. You can scan the array in one
orientation, rotate it 180°, and scan it again. A comparison of the signal
intensities for identical spots in each scan quantifies field uniformity (Plate
6). Consistently lower signal in the second scan might indicate photo-
bleaching. A third scan in either orientation can be used to quantify the
photobleaching and subtract its contribution from the uniformity analysis.
This rotation test is the most reliable measure of field uniformity using
currently available tools. However, it is limited to variations that are
asymmetrical with respect to the rotation. For example, a uniform hill or
valley in the middle of the slide might go undetected.
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Repeatability

A single microarray experiment is insufficient to reveal meaningful biolog-
ical conclusions. Experimental replicates are critical to identify and
eliminate experimental error and other variations, especially when an
experiment uses many microarrays over the course of many months. Any
complete microarray experiment should include array replicates, sample
replicates, probe replicates (e.g. dye-swaps), and hybridization replicates. It
is unwise to exclude replicates; however, you can reduce the cost of repli-
cates and retain more data for analysis by minimizing the variation among
them. If you devote some time to optimizing your protocols prior to start-
ing a major experiment, and use care at each step in the microarray process,
you will be rewarded with more reproducible results.

Instrument reproducibility is also an important parameter. Lasers and
white-light sources need time to stabilize after igniting. In addition,
extreme temperature and humidity fluctuations can cause variations in
instrument behavior. To ensure repeatable results, users must observe the
recommended warm-up times and operating conditions for their instru-
ments. The best insurance against both short-term fluctuations and
long-term signal drift is a calibration procedure such as that described
above.

Signal repeatability of a microarray imaging system can be tested by
repeatedly scanning a stable fluorescent standard (such as that described
under “Scanner calibration” above) at identical scanner settings (Plate 7).
Any reasonably stable fluorescent sample can also be used to test short-term
scan-to-scan repeatability, although any photobleaching must be measured
and subtracted.

15.3 Analysis parameters

Standardization is a hot topic in microarray data analysis. Microarrays
generate so much data, which may be shared among many labs world-
wide, that standardized experimental and analysis methods are becoming
more important to the microarray community. When the issue of stan-
dardization is raised, conversation quickly turns to MIAME (Minimum
Information About a Microarray Experiment) (see also Chapter 22) (5) and
MAGE-ML (Microarray Gene Expression Markup Language) (6). MIAME is
a guide to the types of information that scientists should record and report
when describing microarray experiments. MAGE-ML is a file format for
microarray data that contains MIAME descriptors in the file. The intended
advantage of MAGE-ML over other file formats is that anyone can look at
a MAGE-ML file and determine how the data was analyzed.

MIAME and MAGE-ML are successful in their intent, but they are a
solution to only a very small part of a very large problem. Knowing how
a microarray image was analyzed does not answer the much more
important question: What is the best way to analyze a microarray
image? What is the best segmentation method, the best background sub-
traction method, the best ratio measure, or the best normalization
method? Do you even need to do all of these? The microarray commu-
nity does not agree on an answer to any of these questions. This is a
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Plate 1. 

Classification of renal cell carcinoma samples using prediction analysis for
microarrays (PAM) (21). The frequencies of correct tumor classification (y-axis) are
plotted for each tumor sample (x-axis; green: ccRCC; grey: pRCC; orange: chRCC).
The sample that is incorrectly classified in all repetitions is marked with a red
triangle, all others with blue circles.

Plate 2. 

Visualization of the set of 18 genes the PAM classifier is based on. The three kidney
tumor types are indicated at the top (green: ccRCC; grey: pRCC; orange: chRCC).
Gene designations are listed on the right hand side and the sample numbers at the
bottom. Red indicates high generalized log ratios, blue denotes low log ratios.
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Plate 3. 

(A) The top sequence represents the consensus sequence with the interrogating
polymorphic site indicated in red. Overlapping consensus oligos are designed
according to the four-nucleotide tiling system. SNPs in the flanking region (outside
the green sequence of the first overlapping oligo) do not affect the hybridization
pattern. At the bottom an example of an allele-specific oligo designed with the
SNP positioned at the center is given. (B) Array printing layout. Consensus-
restricted hybridization (the red labeled sample does not hybridize because it
contains a SNP while the reference does hybridize) is shown in green. Balance
hybridization (similar hybridization between consensus and test sample) is shown
in yellow. Allele-specific hybridization (only test sample hybridizes to the allele-
specific oligo while the reference sample does not) is shown in red.



Fluorescence intensity

k Co Va1

+ =

Va2

(Log2 ratio=0)

(Log2 ratio>1)

(Log2 ratio>1)

(Log2 ratio≤1)

(Log2 ratio=0 with low intensity)

(Log2 ratio>1)

(Log2 ratio≤1)

(Log2 ratio≤1)

a,a homozygosity

b,b homozygosity

a,b heterozygosity

b,c heterozygosity

(I)

(II)

(III)

(IV)

Reference consensus DNA
from homozygous source

two identical alleles
Co1 and Co2

Test DNA
two alleles:

Test1 and Test2

– –

–

–

Plate 4. 

Principle of SNP detection using consensus four-nucleotide tailing oligos and allele-
specific oligo. Portrait of differentially labeled reference (Cy3) and test (Cy5)
samples hybridized to overlapping consensus oligos (consensus oligos = Co) or
variant-specific oligos (Va1 and Va2). The homozygous reference sample consists of
two alleles identical to the consensus. Differentially fluorescence-labeled reference
and test samples are cohybridized to an array slide spotted with the overlapping
consensus oligos and variant oligos. k represents the most conserved region and is
used to normalize the data set. Reference sample consistently hybridizes to Co and
never to Va oligos. Hybridization of test sample will determine the variability in
ratio of fluorescence intensity as portrayed by the digital images from a GenePix
scanner. Possible combinations are: a,a type homozygosity (row I); b,b
homozygosity (row II); a,b heterozygosity with one known allele (row III) and b,c
heterozygosity with two known alleles (row IV).
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Plate 6. 

Field uniformity. A hybridized gene expression microarray was scanned on a
GenePix® 4000B (Molecular Devices) in the ‘forward’ orientation, then rotated
180° and scanned again in the ‘reverse’ orientation. The average difference
between forward and reverse scans is 4.5% for the green channel (A) and 6.4% for
the red channel (B).
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Plate 8. 

Scatter plots of 635-nm versus 532-nm intensities. (A) No background subtracted; (B) local
background subtracted. Data for all figures was generated using GenePix Pro and Acuity® microarray
analysis software (Molecular Devices).

Plate 7. 

Repeatability. A non-bleaching fluorescent test standard was scanned repeatedly
and the average signal was quantified. Signal value variance among all scans was
1.6% in the green channel and 2.1% in the red channel. Error bars =2σ; n =4.
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Plate 9. 

MA plots (log ratio of medians versus total intensity) of the same data as in Plate 8. (A) No
background subtracted; (B) local background subtracted; (C) global background subtracted; 
(D) morphological background subtracted. The horizontal lines indicate log ratios of +1 and −1.
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Plate 10. 

Scatter plot of local-background-subtracted intensity in the red channel (x-axis)
versus the red channel background (y-axis), showing a dependence of background
on intensity. At high feature intensities, there are corresponding high background
measures.
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Plate 11. 

MA plot of log median of ratios versus total intensity of the same data as in Plate 8.



much greater concern than agreeing on a common file format. Without
data analysis standards, the existence of a common file format does not
get us very far along the road to standardization.

Two outstanding microarray data analysis problems that are related to
image acquisition and analysis are background subtraction and normaliza-
tion. If these methods are not applied correctly, data analysis can distort
the data from even the best microarray scanner.

Background subtraction

The fluorescence intensity that is measured in a feature usually includes a
certain amount of stray light from various sources:

• auto-fluorescence of the slide;
• non-specific binding of labeled sample to the microarray substrate.

This stray fluorescence, known as background, needs to be accounted for
in order to calculate a true measure of the fluorescence in a feature. Many
methods exist for removing background from microarray images. Each
method has advantages and disadvantages.

Local background subtraction methods calculate a unique background
value for each feature from a region near the feature. The advantage of local
methods is that they subtract only the nearby background from each
feature. Local background subtraction methods are the most commonly
used for microarrays because microarray features are very small relative to
the entire array, and background can vary significantly across the field.
However, if there are artifacts or binding variations near or within a feature,
local methods may produce unrealistically high or low background values.
For example, if non-specific binding is different on features compared with
the space between features, then the background estimated from the space
between features will not correctly estimate the background fluorescence
within features.

Global background subtraction methods calculate a single value for each
wavelength. The advantage of global methods is that they provide a single
background estimation for the whole slide. Global methods are useful
particularly when the features are so close together that local methods
cannot be applied. However, if the background varies significantly across a
slide, one single estimate may not accurately represent the background
contribution to all features.

Negative control background subtraction methods calculate a back-
ground value from the intensity of specified negative-control features.
Choose negative controls that you know do not hybridize with your
sample, so that they always give the same intensity values independent of
the experiment. Negative-control methods have several advantages over
local and global methods. First, non-specific binding may differ where
features have been printed on a slide, compared to the space between
features. In such cases one can estimate non-specific fluorescent back-
ground from negative-control features, rather than from local regions
between features. Second, negative-control features can be used to calcu-
late background for nearby features, compensating for both non-specific
hybridization and non-specific binding to the support matrix. However,
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unlike all the other background subtraction methods, which are purely
computational and can be applied to any slide, the disadvantage to using
negative controls is that they must be included in the microarray slide
design from the beginning. In addition, if negative controls are used as the
only background method, they should be distributed widely throughout
the array, and can therefore take up a lot of space on the array.

Morphological methods (7) address a problem that all of the other three
methods can exhibit, namely that the background estimated for a feature
can be higher than the feature intensity. This situation is rather cata-
strophic, as a negative background-subtracted intensity leads to a negative
ratio, and hence an undefined log ratio, so that the feature is lost from all
further data analysis.

In morphological methods, a copy of each single-wavelength image is
created, and then each image is filtered to construct a background image
for each wavelength. The two standard morphological methods are:

• Opening. A local minimum filter is applied to the whole image.
• Closing followed by Opening. Small dark regions are filled in on the

background image, and then a local minimum filter is applied to the
whole image.

The Opening method produces a significantly lower estimate of back-
ground than any other background-subtraction method. It guarantees
that the background estimate is always lower than the feature intensity.
However, it may underestimate the true background level. Closing fol-
lowed by Opening produces background estimates that are slightly lower
than standard local background methods for low background regions,
but significantly lower for regions with bright patches in the back-
ground. However, background-subtracted intensities can still be negative
using this method.

Regardless of the method chosen, the calculated background intensity is
subtracted from the feature intensity before any ratios are calculated. The
process of subtraction itself can have several serious effects: it can lead to
negative background-subtracted intensities, it can contribute background
noise to the feature measurement, and it can add dye bias, especially to low
intensity features (8). The contribution of background subtraction to noise
and dye bias in extracted data can be quite large, yet for an effect of such
severity it is not well characterized.

Background subtraction can add noise and dye bias to a microarray. Plate
8A is a plot of the raw red and green intensities from an array plotted
against each other on a log scale, while Plate 8B shows the same data with
the local background subtracted. Note the bias towards the green channel
at low intensities in the background-subtracted data. The log ratios show a
similar effect. Plate 9A–D shows plots of total intensity on the x-axis and
log ratio on the y-axis (MA plots) (9) for the various types of background
subtraction; the horizontal lines indicate log ratios of +1 and −1 to help see
the scatter in the data. Using both local (Plate 9B) and global (Plate 9C)
background-subtraction methods, a large amount of scatter and dye bias is
introduced at low intensities. This effect is much less marked if the back-
ground estimate is small, as is the case with morphological background
subtraction (Plate 9D).
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Another problem with some background subtraction methods is that the
results can depend upon the segmentation method used to separate fore-
ground (i.e. feature) signal from background. If the segmentation method
is inappropriate for the image, foreground intensity can be counted as
background. For example, very bright spots can sometimes appear larger
than dim spots due to either excess material on the slide or optical flare in
the instrument. If the feature indicators are smaller than the largest spots,
signal from the spots will be outside the feature indicators and will be
counted as background. This effect is apparent as an intensity-dependence
in the background distribution (Plate 10).

For all these reasons, there is a growing trend in the microarray commu-
nity to not use background subtraction at all, or to use methods like
morphological opening that are independent of segmentation and provide
relatively low estimates.

An alternative to simply ignoring background is to use a model-based
method that estimates the true intensity of a spot by modeling the contri-
bution of the background (10). Model-based methods for estimating
background are also becoming popular for analyzing data from the
Affymetrix platform. The Robust Multichip Analysis method of calculating
expression levels from Affymetrix arrays entirely ignores the mismatch
probes, which are designed to estimate background (11).

Finally, one can use a ratio calculation method that is less skewed by
background subtraction. The y-axis values in Plate 9 all represent the ratio
of medians, which is the ratio of the median pixel value of a feature. An
alternative ratio measure is the median of ratios, which is the median of
the ratios of the individual pixels in each feature. Plate 11 shows an MA
plot of the background-subtracted median of ratios. It has less dye bias than
the background-subtracted ratio of medians in Plate 9B, and while it shows
more spread than the raw data distribution in Plate 9A, it is significantly
closer to this distribution than to Plate 9B. Another advantage of the
median of ratios over the ratio of medians is that it has a Gaussian distri-
bution, while the ratio of medians does not (12).

15.4 Normalization

Normalization is the process of removing bias from a measurement. Data
on a microarray may be biased for several reasons including differences in
dye properties, probe labeling, and hybridization efficiencies, as well as
inappropriate detector settings on the scanner (see also Chapter 17). We
address only the scanner issues in this chapter.

A common misconception with microarrays is that a 1:1 ratio of signals
on the array corresponds to a 1:1 ratio of gene expression. As discussed
above, equimolar amounts of different dyes may not produce equally bright
signals. Equal signal is guaranteed to represent equal gene expression only
if the dye is the same for all probes, the probes are labeled to the same
density, and the probes have equal hybridization efficiency to their respec-
tive targets. However, quantifying the contribution of each of these factors
for each microarray experiment would be extremely cumbersome. The dyes
and filters commonly used for microarrays have been optimized to mini-
mize differences caused by inherent dye properties, and including dye swap
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replicates is a useful way to control for dye batch, labeling and hybridiza-
tion differences. With carefully prepared and properly controlled
experiments, multi-channel microarrays can provide reliable estimates of
actual biological ratios.

The purpose of adjusting the PMT is to maximize the range of numeri-
cal values that are available to represent the fluorescent signal from the
sample. All channels should be set to the highest gain possible without
causing saturated pixels. In addition, it is easier to visually evaluate micro-
array images if the channels are equally bright, as indicated by a ratio of
approximately 1.0. Note that the human eye is very sensitive to color, and
is a very reliable judge of signal intensity, so many researchers simply rely
on visual inspection to balance the channels.

In many whole-genome gene expression experiments the mean of all
ratio values should be close to 1.0 because for any given experimental
system relatively few genes are differentially expressed, and approximately
the same number are over-expressed as are under-expressed. The PMT gain
can be set to balance the signal from both channels by calculating the mean
ratio of all features on the array, and adjusting the feature intensities so
that this mean is set to approximately 1.0.

However if the microarray contains a small or functionally specific set
of genes, or in microarray experiments that examine organisms under
extreme conditions, such as heat shock, starvation or stationary phase,
we may expect many of the genes to be differentially expressed. In this
case normalizing the data to force a global mean ratio of 1.0 may mask
important differential expression. In such cases, one may prefer to use
housekeeping genes or spiked-in controls (13). Spiked-in controls of
known ratios across a range of expression values provide an external
standard by which one can normalize all genes on a microarray, regard-
less of the distribution of the genes being probed. When using external
controls, one must ensure that the controls are measured at the expected
ratios. External controls should be calibrated against an independent
technique such as quantitative PCR. Properly calibrated external controls
provide a robust method of normalization.

Using so-called ‘housekeeping’ genes as controls has fallen out of favor
because in some organisms, such as yeast, no gene exists that is unchanged
under all conditions. However, if you are studying a subset of the genes in
a genome, specific experimental conditions, or specific tissues it may be
possible to select a set of housekeeping genes that reliably yields the same
signal across all arrays in the experiment (14).

Once you have balanced the PMT settings of the scanner, you can use
computational normalization methods to adjust for many other types of
non-uniformity in the data, both physical and statistical:

• Spatial non-uniformity
• Print-tip non-uniformity (a special case of spatial non-uniformity)
• Intensity dependence of ratio values
• Intensity dependence of variance.

Locally-weighted scatterplot smoothing (LOWESS) normalization
corrects for the first three non-uniformities (unless the spatial non-unifor-
mity is seen within print-tip groups). A variance stabilization method such
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as that proposed by Durbin et al. (15) can correct the last problem. Further
discussion of these methods is beyond the scope of this chapter and is
addressed in Chapter 17.
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Microarray detection
with laser scanning
device
Ralph Beneke

16.1 Introduction

Microarrays are revolutionizing biology and so are the detection instru-
ments required to read Biochips in an automated fashion, providing
millions of raw data in a few minutes. Because the quality of the raw image
is so critical for accurate microarray quantification, the primary goal when
designing a detection system should be to maximize sensitivity, accuracy
and reproducibility.

16.2 CCD or PMT?

Currently the technologies used to image microarrays are detection systems
for absorbance, fluorescence or luminescence quantification. Charge-
coupled device- (CCD-) based non-confocal systems image fixed area sizes
with a limited number of pixels over a scalable dwell time. Sensitivity
increases with dwell time and number of photons per μm2 detected. But the
longer the dwell time the higher the dark current noise. Because of non-con-
focality of CCD systems the intrascenic dynamic range is limited to
functional 12- or 14-bit compared to 16-bit confocal laser scanning systems.
The contrast from bright signal to background for the maximum resolution
is 10–100 times better with microarray scanners compared to CCD imagers
(Figure 16.1). The lower the number of fluorescence molecules the more sen-
sitive the scanners are compared to CCD imaging systems for similar
throughput. CCD chips acquire data on a limited area providing a snapshot
depending on the size of the CCD chip. The data acquired by a CCD on a
typical 3 × 1-inch microarray glass slide are stitched together. The back-
ground and signal correction is introduced by sophisticated software
algorithms. This contributes to a lower image quality and reliability com-
pared to images acquired by confocal scanners. The non-confocal detection
of glass chips by a CCD camera results in a significant increase of background
in the neighborhood of bright signals and the contribution of unspecific
background from the backside of a contaminated glass chip. For transparent
plastic chips and microplates the contribution of auto-fluorescence of the
polymer is incredibly high for non-confocal imaging systems.
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Scanners with an optimized confocality for planar glass surfaces currently
provide the highest dynamic range and resolution in combination with
sensitivity and speed: 

(i) Laser scanning systems for gel detection (2D proteomics, 1D SAGE, etc.)
have a lower optical resolution and are less confocal in order to opti-
mize detection of larger features (mm range in all three dimensions) on
larger areas (43 × 35-cm blots). Compared to microarray scanners,
which are designed to scan 3 × 1-inch glass slides or even smaller chip
areas to detect tens-of-thousands of 50- to 200-μm spots by 5- to 
10-μm pixel digitization, typical gel scanners cannot be used for micro-
array detection providing sufficient data quality.

(ii) Microarray laser scanners illuminate fluorescence markers of the sample
pixel by pixel by moving the optics and/or the chip very fast (10–
30 Hz). The emitted fluorescence photons are gathered pixel by pixel
in a photomultiplier tube (PMT) using mirrors, lenses, dicroics, filters,
and pinholes. The PMT converts photons into electrons resulting in
voltage-dependent analogue signal, which is translated by A/D
converter into digital 16-bit raw image data. Depending on PMT gain
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Figure 16.1. 

Intrascenic Dynamic Range of images acquired by laser scanners is 10 times higher than for images
acquired by CCD imagers.



(voltage-dependent) one photon generates a bunch of electrons trans-
lated into arbitrary counts of a pixel. Providing high signal-to-noise
ratio on pixel, feature and image level as well as calibrating sample
image data to a fluorescence standard is prerequisite to enable relative
and quantitative comparable results.

16.3 Engineering of Tecan’s LS series

Format flexibility

The Tecan LS series microarray scanner provides flexible scanning tech-
nology to automatically scan many different format samples such as: glass
slides; evanescence resonance glass slides (NovaChip, Novartis Pharma,
Basel); plastic slides (black or transparent); segmented slides and plates with
tiny upper structure (e.g. HTA Greiner-Bioone); clear-bottom microplates
(e.g. Nunc, Greiner-Bioone, Matrix Technologies, Schott–Nexterion
Telechem); small micro-fluidic chips; membranes (FAST slides from
S&S/Whatman); mini PAA gels, hydrogel protein arrays (PerkinElmer);
CodeLink hydrogel slides (Amersham/GEHC); mirrored or gold-coated
slides; tissue arrays; colony plates; and coverslips. Basically all formats in
the range of 6 × 6-mm square to 127 × 85-mm square and up to 15 mm in
height can be placed on the sample tray of the LS and automatically
focused. The fluorescing sample itself can be 5 mm deeper than the top of
the chip or chip-adapter. LS enables the scanning of more complex formats
than just a glass slide of 3 × 1 inch size and 1 mm thickness.

Selective excitation with lasers

Laser for selective excitation

The LS series of scanners provide selective excitation by the option to
choose from four different lasers. A mix or contamination of different wave-
lengths coming from one laser is prohibited by band-selective filters for all
lasers. They excite at their predetermined fixed wavelengths only (633 nm
red, 532 nm green, 594 nm orange/yellow and 488 nm blue). Currently two
lasers are industry standard gas lasers: HeNe for selective 633 and 594 nm
excitation. All four lasers can be placed in the same housing including the
solid-state 488- and 532-nm laser. Laser power for three out of the four
lasers is optimized for microarray fluorescence scanning (10 mW 532 nm,
7 mW 633 nm, 3 mW 594 nm) and is running with 100% capacity, except
for the 488-nm laser, which is continuously adjustable to avoid massive
bleaching (1–20 mW). Note that gas lasers by their very nature slowly lose
30% intensity over time, which results in a 20% loss of sensitivity. Usually
HeNe gas lasers are not ‘leaky’ below this level. HeNe lasers in LS Reloaded
are rated for 20 000–40 000 working hours. Both solid-state lasers of the LS
Reloaded are specified for more than 8 000 working hours. After the speci-
fied lifetime is reached, 80% of the lasers are still working. After 20 minutes
warm-up time the HeNe lasers are very stable during measurement and
therefore no active referencing is necessary compared to several solid-state
lasers. In order to avoid noise it is recommended to reduce referencing activ-
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ity (e.g. of laser) during a measurement. Calculation of noise coming from
instable lasers increases noise in the image. The variation of stable gas lasers
in the LS series is about 0.5%. The 488-nm solid-state laser is internally
power-stabilized.

Block of reflections

Depending on the optical setup and lens system several artificial optical
effects have to be considered: the direct reflection of the laser beam from
the sample surface and the unspecific reflections generated in the lens
system. A special optical setup using a laser beam angle offset from perpen-
dicular excitation and a system of optical apertures enable the artificial
unspecific reflections in the LS Reloaded to be reduced. In addition, a
pinpoint mirror and a small ‘spoon’ shutter block the direct reflection of
the laser beam from the cone of emitted light.

Selective beam splitting: dicroics

To enable dual color simultaneous detection with LS, a set of two laser
beams is synchronized and focused on the same area. The generated fluo-
rescence spectra from different dyes are collected by a lens and mirror
system. The mix of two dye spectra is subsequently discriminated by differ-
ent dicroics (wavelength-selective mirrors with a discrimination line at 575
or 625 nm). To discriminate between red and green the LS uses a 625-nm
dicroic and to discriminate blue from yellow and red a 575-nm dicroic is
used (Figure 16.2).

Emission filter sets

Fluorescence dyes are adapted to be excited by lasers to cover a variety of
applications. In order to cover a large range of different dyes excited in
the visible range, LS Reloaded offers the option to choose more than the
red (633 nm) and green (532 nm) lasers. The yellow (594 nm) and espe-
cially the blue (488 nm) laser are necessary to excite additional dyes to
perform multicolor assays (e.g. specific labeling of four nucleotides in
SNP/sequencing reactions). For each single dye and for dye combinations
there are optimized fluorescence-emission-filter settings with specific
characteristics defined as blocking efficacy, maximum pass and band-
width (FWHM: 50% transmission efficiency) depending on the spectral
characteristics of the dye used. In Tecan’s LS Reloaded filter carriers most
of the available fluorescence filters from more than a hundred different
standard and special filters on stock can be applied. Laser and filter com-
bination is strictly controlled by software to protect PMTs against
damage. Therefore emission filter combinations, which do not block the
laser lines at the same time, cannot be used.

The standard proposals are: 690/40 nm, 575/50 nm, 635/35 and 535/25
nm, or 625/25 nm and 520/10 nm, and many others.
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Scanning principle

Scanner mechanism

The 20-Hz voice coil resonance scanner oscillates over the short x-axis of
the glass slide and the data are acquired up to 22-mm amplitude. The
shorter the amplitude the longer can be the dwell time for data acquisition
without compromising speed but gaining the advantage of getting more
photons to improve the signal-to-noise ratio (SNR) , which can be selected
in acquisition software. The transport table holding the sample (e.g. slide
adapter) is moved slowly in the y-direction in steps of 4 to 40 μm depend-
ing on the resolution selected.

Focal distance and numeric aperture

The focus or working distance is 6.5 mm. In other words, you can ‘look’
6.5 mm ‘into’ the substrate – if required. Thus formats other than flat planar
glass slides can be inserted and focused. Even with this enormous focal
distance the numerical aperture (NA) of the special huge lens (0.6) is still
high in order to cover a reasonable field of the emitted light providing the
high sensitivity required for microarray detection.

Independent of this the maximum height of the ‘carrier’ on the table
should not exceed 15 mm for sample loading.

Detection principle

Selectable confocality

The confocal mode of the LS series of laser scanners provides better back-
ground suppression and also better discrimination between bright and dark
signals (contrast, intrascenic dynamic range) in the sample. The LS Series
Laser Scanner offers three user-selectable pinhole sizes, which give the user
three grades of more or less confocal measurements. While handling
samples of considerable optical depth (e.g. flow-through chips, gels) or
warped surfaces, the instrument can be easily switched from confocal to
non-confocal mode.

Adjustable sensitivity

First generation scanners had much slower scanning speed, meaning the
time over which each spot/pixel was excited was long enough to make it a
concern. The Tecan scanner is much faster, meaning that photo-bleaching
has for all intents and purposes become a ‘non-issue’. In-house bench
studies suggest 1% photo-bleaching per scan depending on default laser
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Table 16.1

Small pinhole (0.3mm) 70 μm = ± 35 μm around the focus 

Medium pinhole (1.0 mm) 300 μm = ± 150 μm around the focus 

Large pinhole (3.0 mm) 800 μm = ± 400 μm around the focus 



power. Bleaching and stability in general strongly depends on oxygen,
surface chemistry, temperature, humidity and light exposure. Only the
latter can be influenced by the instrument.

Photon statistics dictate that the best signal/noise ratios are obtained by
having maximum photon output (to a certain degree, of course), which is
only achieved by having maximum laser power. Reducing the laser power
therefore always reduces the achievable signal/noise ratio, whereas reduc-
ing the PMT gain for a wide range does not affect signal/noise. Therefore,
the best way to adjust dynamic range is to maximize photon output and
to adjust the gain of the detector accordingly. PMTs and electronics of the
LS are working linear over the 16-bit dynamics. The software allows adjust-
ment of the PMTs in LS systems over five logs to amplify the photon signal.
Commonly array detectors offer two logs (1–100%) adjustable range.

In addition to using maximal laser power in order to increase photon
collection, image data acquisition with LS offers several options for
improvement:

(i) Use ‘optimize integration time’ (increase dwell time to maximum) and
reduce scan width and resolution accordingly.

(ii) Average scan from two up to eight times.
(iii) Scan the sample through a glass matrix to increase photon collection

by a factor of two.
(iv) Increase the pinhole size if required to achieve high uniformity on

bulky and warped sample.
(v) Scan evanescence resonance glass slides from Novartis (NovaChip) and

adjust the angle of incidence of laser beam according to the laser wave-
length used (0° for 633 nm and 20° for 532 nm). The LS Reloaded can
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Figure 16.2. 

Detection principle and optic scheme of LS for confocal or non-confocal scan.



achieve more than 20-fold higher sensitivity for single and dual color
scans.

Adjustable laser beam angle: evanescence resonance scanning

The high sensitivity achievable with Evanescence Resonator Chip technol-
ogy offers the advantage of detecting signal of low abundance genes from
limited amounts of sample (e.g. biopsy assays). The continuous adjustable
angle of incidence of the laser beam in LS scanners enables high sensitivity
dual-color scanning of slides supporting evanescence resonance technology.

Selectable resolution

Resolution in an optical scanning system is always the result of a combi-
nation of several factors. Most important parameters are: pixel size, laser
beam size, confocality and the scanning scheme. Only if we consider the
combination of all parameters do we get the full picture (in terms of
resolution). Let’s start with a fundamental law of information theory that
says that you always need to sample a signal with twice the bandwidth or
frequency you actually want to see or hear. In a first order approach for an
optical scanner system this means that the pixel size should be
approximately half of the laser beam diameter. For a laser beam diameter
of 12–16 μm the ideal pixel size therefore would be 6–8 μm. Most of the
microarray features have a 100 μm diameter. On the other hand this also
means that reducing the size of the laser beam without reducing the pixel
size does not give the full benefit in terms of resolution. Therefore a pixel
size of 5 μm and a laser beam size with the same dimensions might be
slightly better, but is no way near twice as good as 5 μm pixel size with a
laser beam of 10 μm diameter. However, there are two drawbacks of a very
tight laser focus at the sample. First there is a higher risk of bleaching
because the intensity at the small focus is much higher. The intensity
providing higher sensitivity, and therefore the risk of bleaching, scale with
the square of the beam diameter.

The second problem is under-sampling. If a laser beam diameter is rated
as 10 μm according to standard definition this means that within a range of
± 5 μm the intensity of the beam is already down 1/e2. At the borders of such
a beam only 14% of the maximum intensity is left. If a fluorescent molecule
happens to sit away from the center of the beam it will be excited by a much
lower intensity. In other words many of the labeled molecules will not be
very efficiently excited and contribute much less to the overall signal than
they could. Obviously this is a very sub-optimal (less sensitive!) way to make
use of the rare sample molecules found in a spot at the end of the whole
array process. The LS is designed to scan microarray spots from 60 to 200 μm
in order to generate a minimum 100 pixels per feature on small spots and
without the issue of under-sampling on larger spots.

Scattered light scan: slide quality control

Microarray spots, which have no label, can be detected for quality reason
without using an indicator dye, if they contain salt crystals (SSC in spot-
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ting buffer). Any light will be scattered at these spot crystals and can be
detected by using the delivered absorbance filter of the LS for scanning. An
automated image analysis for local and global background, spot density,
spot morphology, and spot position, can be applied. A report of ‘passed or
failed’ spots and slides by using appropriate (customized) statistics means
that low quality slides can be rejected from hybridization and false nega-
tive and positive spots can be discarded from the analysis and re-evaluated.

Correction of crosstalk from dyes

High-throughput sequencing, single nucleotide polymorphism (SNP) detec-
tion, gene expression analysis and many other applications often demand
multiplexed labeling on one array chip. The option of parallel dual-channel
detection allows two dyes to be measured at the same time for maximum
imaging throughput. A single dye calibration step is sufficient to give the
required specificity for each measurement. Unwanted signals from dyes in
either channel are easily accounted for by rapid recalculations using accom-
panying inbuilt software. Sequential scanning of three or more dyes or with
different gain settings to achieve extended dynamic range can be performed
by running batch mode scripts.

The LS series of instruments operate up to four lasers and 28 filters. Each
LS Series Laser Scanner has one to four lasers (633-nm HeNe). On the detec-
tion side, more than 100 fluorescence emission filters are available. A
collection of 28 emission filters can be used for each instrument at a time.

Signal-to-background and signal-to-noise

Most microarray processing steps suffer from introducing high unspecific
background by contamination or sub-optimal stringency of incubation and
washing. The detector itself produces a dark current signal as a more or less
flat (dark current noise) baseline background. This background can be
subtracted by default from the image data by a given offset implemented
by the system. The offset of a detection system cannot be simply measured
by a user. Spreading the entire signal range over 16 bit, some holes in the
histogram indicate the value of subtracting the dark current count. More
substantially the background and the noise of the image can be an indica-
tor of the image (and detection) quality. The ‘quick and easy’ evaluation is
to take a reference slide with a bright (not saturated) signal and the back-
ground from a surrounding area (10 pixel distance to signal) and calculate
the CVs and the signal-to-background ratio. For measuring the detection
limit Tecan recommends to achieve a factor of 2 from SNR calculation ((raw
intensity − background)/standard deviation background)). SNR can vary
and are highly dependent upon the type of sample and what dyes are used.
Although Tecan has not established specific SNR numbers for Cy3/Cy5
‘standard’ arrays, note that noise from the sample (vs noise from the
instrument) limits SNR in 98% of cases. As a rule of thumb one could say
that at maximum signal the LS Reloaded can achieve SNR of 5 logs. The
electronic dark current count noise of LS Reloaded – independent of a
sample – is typically 3–5 counts. Comparing two scanner systems it is
recommended to use a set of two replicate slides on both systems and make
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sure that bleaching and degradation of the dyes is a non-issue for the test.
Calibration or validation of fluorescence scanners is not trivial because most
of the current test tools are not stable.

Dynamic range

Dynamic range of a detection system is established here as the ratio
between the highest signal and electronic noise measuring a full spot
containing 100 pixels. Electronic noise floor = square root of number of
pixels × 5 counts per pixel. Maximum signal = number of pixels × 65 000
counts per pixel. Maximum signal results = 6.5 million counts/50 counts
which yields five orders of magnitude difference.

The intrascenic dynamic range is important to quantify bright signal
against low signal or background. An adjacent area to a very bright spot
should not be influenced by the high signal value (about 60 000 counts
mean) of the bright spot area. The image should have a background of close
to zero in the spot pitch distance (about 10 pixels) of a bright spot. Almost
all CCD systems have problems in achieving four logs here because they
have broad area illumination and imaging capacity. They cannot excite and
detect pixel-by-pixel and lack a confocal scanning mode (Figure 16.1).

Automatic sample load, focal adjustment and scan

Batch mode capability

A slide holder with the same outside dimensions as a standard (SBS)
microplate allows automatic sample loading with standard handling
devices such as Tecan’s Connect autoloader  (Figure 16.3). Even without
automatic loading, up to four standard microscope slides can be processed
with no further user intervention in one run. In addition, almost any user-
defined method can be applied to up to 200 slides or 50 microplates in a
single run using autoloading system Connect™ from Tecan and ArrayPro®

Analyser from Media Cybernetics allowing fully automated batch process-
ing of image acquisition and analysis.

In addition, each individual scan area (on a slide or microplate) can be
re-scanned in the same batch run by applying different scan settings as a
series of gains, lasers and filters defined as a simple scanlist.txt file in order
to extend the dynamic range and to use up to four dyes on one slide. With
its automatic focus and gain control and the option to implement Tecan’s
Connect as an autoloader system the LS series instruments have batch mode
capability and optimized dynamic range of each individual scan area.
Array-Pro supports the fully automated analysis of multicolor images 
(e.g. four-color sequencing and SNP analysis) in an unlimited number of
experiments.

Balance of automation and interactivity options

Each format and sample is different. Positioning the sample on a mechan-
ical adapter or table can vary over several tens or hundreds of micrometers
in every device. This is absolutely critical if the scan is done confocally.
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Because of small mechanical tolerances LS systems use an autofocus system,
which is activated just before the actual scan takes place in order to adjust
the sample automatically in the focus (max peak of CV on slide area <5%).
The autofocus and sample tray corrects for z-positioning and for two angles
of tilt before a planar scan starts. In addition, automatic gain control
enables walk-away time and avoids saturation effects on single slides out
of a batch. Online display during all scans and additional interactive
dialogues for setting scan positions in X/Y and Z-prescan images makes
parameter definition convenient and intuitive.

Several other options for manual interference and adjustments enables a
high customization and optimization level of the application, which are
filed as user templates. The user template library, in combination with the
automatic focusing, assure reproducibility and reliability.

Quality control and preventive maintenance

Operation quality control

Tecan offers a reusable LS performance check tool (LaserCheck), which
enables a convenient quality control routine of LS Series Laser Scanners in
the customer’s lab independent from using standard spotted slides which
suffer from bleaching and degradation. The procedure is automated and
wizard-guided. The report gives pass/fail feedback about optical alignment,
electronics, sensitivity and mechanics. Tecan’s service and production
departments are using the same tool for detailed parameter readout (Figure
16.4). Tests performed are:
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Figure 16.3. 

Autoloading of slide adapters and microplates on LS scanners.



• Gain calibration
• Barcode reader
• Electronic noise
• Oscillator amplitude and data synchronization
• Laser intensity
• Sensitivity
• Autofocus
• Alignment
• Filter blocking

The laser-light-resistant fluorescing surfaces (vaporized organic dye) used
for sensitivity and autofocus tests are calibrated in the Tecan factory. Each
plate comes with a calibration certificate and the calibration values (serial
number, date, time, operator, calibration data, expiration date) in a cali-
bration file on the LaserCheck CD. The calibration file and the certificate
are valid for 1 year. The LaserCheck plate should be recalibrated once a year
in Tecan’s factory for further unlimited use in the lab. The overall system
performance check with more than 100 different parameters for a four-laser
system takes a routine of 60 to 45 min. The raw data are stored as Excel
spread sheets and 16-bit tiff images. The results are referenced to the system
specifications. The module tests are reported as passed/failed and filed elec-
tronically and as hard copy without further need of manual data analysis.
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Normalization strategies
for microarray data
analysis
Christine Steinhoff and Martin Vingron

17.1 Introduction

The basic requirement for a gene expression microarray experiment is that
the measurement of intensities of each spot can in some way be interpreted
to reflect the corresponding number of mRNA molecules in the sample
under consideration. However, it is well known that raw intensity meas-
urements are highly influenced by a number of different external factors,
for example effects due to pins (1–3), PCR plates, sample preparation, array
coating, spotting, labeling efficiencies, nonlinearity of dye-labeling, scan-
ning, and so on (for an overview see 3, 4). Thus, it is obvious that raw
intensity measurements of microarray spots typically do not reflect respec-
tive mRNA levels.

In order to achieve a biologically meaningful interpretation of the exper-
iment, these influences have to be statistically described. It is imperative to
bring samples which are compared in the course of analysis not only to a
common scale (scaling methods), but particularly to remove effects which
are not meant to be part of the biological interpretation as thoroughly as
possible. The process of normalization should lead to the correction of
those effects that are due to variations in the experimental procedure.
Furthermore, the dynamic range of the data as well as the distribution of
intensities might be different when comparing several arrays within one
series of experiments. Recapitulating the goal of applying any normaliza-
tion method is to adjust for many influences other than those due to the
biological differences in the RNA samples.

Over the last few years, a number of so-called normalization methods
have been published to overcome the problem of various effects and to 
end up with a dataset that allows for further statistical analysis (for reviews
see 3–5).

The basic question is: which mathematical description can explain the
underlying data best, or what kind of data description is properly specify-
ing the biological nature of a microarray experiment? While it is impossible
to rule out all influencing factors and to exactly describe the underlying
biology, it is nevertheless crucial to find out whether setting up a data
description of higher complexity is more appropriate in biological terms.
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We will review frequently used normalization methods and demonstrate
their application to biological datasets.

Overall, the normalization methods which have been published during
the last few years can be divided into procedures that are based on the
assumption that the majority of genes detected by the array change in
expression or remain unchanged in the experiment. In this article, we are
focusing on the second group, namely experiments in which the majority
of genes remain unchanged. Normalization methods of the second group
can be divided into (i) scaling or standardization methods and (ii) normal-
ization methods using a normalizing transformation of the data (see Figure
17.1). Note, that scaling methods can in fact only correct for globally multi-
plicative effects by appropriate scaling of the data. Nevertheless, they are
often called normalization methods as well.

In this article we outline mathematical procedures to describe and
remove various kinds of effects in microarray data. Some of these variations
are systematic, for example pin effects, and can be estimated using the
measured data in many cases. Others are random effects, and appropriate
error models for these will be discussed. In the following sections we first
introduce the experimental data we are using. Then, examples of scaling
methods are explained and we discuss the problem that these methods can
only correct for globally multiplicative errors. Subsequently, we describe
some of the most frequently applied normalization methods which are
based on data transformation. We demonstrate the application of the
presented normalization methods using two published biological micro-
array datasets. Note that we describe the normalization methods for cDNA
array technology. However, they can also be applied with only minor
changes to Affymetrix datasets.
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Normalization Strategies

Scaling Methods Transformation-based Methods

Underlying assumption: “Most genes remain unchanged”

• Mean
• Median
• Shorth
• ZScore

• Regression-based: Overall
  Locally (lowess, loess)
  QSpline
• Quantile Normalization
• ANOVA
• Variance Stabilization

Figure 17.1. 

Overview of normalization strategies used for microarray data analysis.



17.2 Experimental data

We used the BDNF dataset published by Gurok et al. (6). In that study,
neural progenitor cells were prepared from postnatal day 7 CD1 mice
(Charles River, Wilmington, Mass.) and their differentiation process was
examined. For comparison of normalization methods, we only used the
experimental data of undifferentiated cells and the first day of differentia-
tion with BDNF. This data consists of one dye-swap experiment, so two
arrays were used, and signal intensities of two laser channels were meas-
ured per array. The data is available as supplementary information to the
publication (http://www.molgen.mpg.de/~dna_microarrays-neural_differ-
entiation/neural.html). This data serves as an example of a high number of
genes showing a very low expression.

As a second example we used a gene expression dataset from the swirl
zebrafish cDNA microarray experiment which is available in the
Bioconductor (22) Marray-package. The dataset consists of two dye-swap
experiments of which we used the first array (slide 81). It serves as an
example of nonlinearity of microarray data.

17.3 Normalization methods

Microarray data is frequently displayed in logarithmic scale. From the
graphical representation of microarray intensities and ratio-display it is
immediately clear that the log-display shows a more convenient image.
When plotting a histogram of raw microarray intensities one normally gets
a shape similar to a geometric distribution. Plotting the logarithm of the
data points results in a shape which is similar to a normal distribution.
Another example is the display of ratios when comparing two RNA sam-
ples. Plotting the intensities of each sample against each other results in a
display where most data points are clustered in the lower left hand corner
of the plot. Instead, the graphical display of the log-product
(log(sample1 × sample2)) plotted against the log-ratio (log(sample1/sample2))
is more informative (see Figure 17.1) and the log-ratio can be interpreted as
a measure for differential gene expression.

Thus, using logarithmic scale evens out skewed distributions of the data
and gives a more realistic picture for outliers when displaying the log-
product versus the log-ratio of two samples. Furthermore, by applying the
logarithm of the intensities multiplicative effects become additive.

As already mentioned, in logarithmic scale the intensities are rather
equally distributed across their dynamic range while this is not the case for
the untransformed display of the data. In fact, this is a big advantage for
the visualization but not necessarily for the analysis. Problems arise with
the many low intensity values or negative values which are frequently
evident after performing background subtraction. Thus, for low intensities
we get a very strongly scattered plot and for zero or negative values we can
even get non-defined data points.

Typically, log-ratios are normally distributed and at least for high inten-
sities the variance is independent of the intensities, which is another
advantage of log transformation for data analysis. However, this does not
hold for low intensities. There, the variance is dependent on the intensity
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and variance of log-ratios and decreases with increasing log-product values.
Thus, when visualizing log-ratios, one has to take into account that the
variance is not constant along the whole dynamic range. To overcome this
problem, variance-stabilizing normalization has been introduced (8, 9),
which is reviewed at the end of this section.

17.4 Scaling methods

All scaling methods are based on the determination of a common scaling
factor which is subsequently used to rescale the whole dataset, such that a
global rescaling is achieved.

Let xi (i =1,…,n) denote the logarithm of background-subtracted raw
intensities of array spots. When applying any scaling method, one subtracts
the determined common factor from the measured data xi for all i =1,…,n.
Scaling methods fix a range of intensities such that experiments are compa-
rable over a common range. This is true for the following scaling methods:

Overall mean

Each set of signal intensities in a hybridization experiment is normalized
by the mean such that the mean logarithmic signal ratio of each set is zero.
In case of a cohybridization experiment where two differently fluorescence-
labeled target samples are used, a set of signal intensities is the set of
measured data resulting from one of the two dyes. That means, one
subtracts the mean of all logarithmic background-subtracted data points
from xi for all i =1,…,n.

Overall median

Each set of signal intensities is normalized by the median such that the
median logarithmic signal ratio of the two channels is zero analogous to
the scaling for the overall mean.

Shorth of the data

The shorth of a univariate distribution is defined as the shortest interval
containing half of the values. In the unimodal case the mode, which is the
most frequently occurring value, is a robust estimator. Here, the shortest
interval containing half of the genes is determined and, as an estimator for
the shorth, the median of the genes in that interval is calculated and used
as scaling factor.

Normalization using ZScores

Sets of signal intensities are centered on zero with overall variance of one.
The underlying assumption is that overall the logarithmic data follows a
normal distribution N(μ,σ) which can be transformed into N(0,1) by log(x̂i)
= (log xi – E(log xi))/σ(log xi). Normally, as estimators for E, the mean, and
for σ, the standard deviation is used (for example, see (10)).
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Scaling methods can only correct for systematic effects that are globally
multiplicative. They were used in the very beginning of technology devel-
opment (11, 12). Also, early analysis packages used scaling methods
(AtlasImage 1.101, ClonTech).

17.5 Transformation methods

In this section we review some of the most frequently used transformation-
based normalization methods such as regression methods (global-, local-
and qspline-based), ANOVA, variance stabilization and quantile normal-
ization. Overall tendencies in the data might be corrected by choosing an
appropriate regression model. Several regression-based models have been
used recently.

The basic idea of introducing some error model is to describe the rela-
tion of the measured signal intensity with regard to the true abundance
of RNA molecules. Assuming that the true intensity level xkg of the kth
sample and gth gene is disturbed by some random multiplicative (bkg)
and additive (akg) factors, the actual measurement of the gth gene in the
kth sample ykg can be described as follows: ykg = akg + bkg xkg. Proposing
models and approaches that determine and optimally describe the fac-
tors akg and bkg in stochastic terms has been the focus of many
publications over the last few years.

Introducing an error model which describes the nature of intensity meas-
urements including systematic and random effects, and which estimates
true gene expression according to the error model, should improve the
analysis. While normalization without introducing an error model might
be able to correct for systematic effects that frequently appear in the data,
noise effects that stochastically show up can be captured by an appropri-
ate error model.

One of the first approaches to determine a multiplicative term was
proposed in 1997 by Chen et al. (13). An integrative description of multi-
plicative and additive factors in an extensive error model was introduced
by Rocke and Durbin (14) and led to the normalization model of variance
stabilization (8, 9). A good overview of the development of recent error
models for describing microarray datasets is given in Huber et al. (4).

Regression methods

Regression methods correct a dataset of signal intensities by either overall
(15, 16) or locally (17) estimating an optimal polynomial function (either
linear or of higher degree) that explains the local or entire dataset’s
tendency.

1. Linear regression
Here, a function f(x) = ax + b is fitted to the log-log plot of two sets of
signal intensities resulting from two differently fluorescence-labeled
target samples by the least-squares method. The dataset is normalized
according to f(x,) that means (f(x)-b)/a.
2. Polynomial regression of degree >1
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A function f is fitted to the dataset (log-log plot of both sets of signal
intensities) as in the linear case, but f is a polynomial function of
degree >1:

f(x) = where m >1.

3. Local regression via loess/lowess (locally weighted scatter plot
smooth)
For each z in a sliding window, a linear (lowess) or quadratic poly-
nomial (loess) weighted regression function is estimated locally. Here,
a descending M estimator is used with the Tukey’s biweight function.
For normalization of gene expression microarray datasets as proposed
in Yang et al. 2001 and 2002 (2, 18) a lowess curve is fitted to the A
versus M scatterplot, where A denotes the log product intensity of two
channels r and g (A = log �rg�) and M the log ratio (M = log r/g).
Loess/lowess-normalization is widely used and has been widely
adapted to many applications, specific problems and trends such as
print tip effects (1, 3, etc.).
4. Local regression via Locfit
The underlying model is Yi = m(xi) + ei, where m(xi) is assumed to be
smooth and is estimated by fitting a polynomial model within a
sliding window. For each point x consider a locally weighted least-

square criterion where w(v)

= (1– |v|3)3 for |v| >1 and w(v) =0 otherwise; h denotes the band width.
As in the case of loess/lowess normalization, the locally estimated
curve is fitted to the A versus M scatterplot.
5. QSpline normalization
Workman et al. (19) proposed a normalization method where inten-
sity pairs of two arrays are interpolated according to a cubic spline
function. Here, smoothing B-splines are fitted to the quantiles from
raw array signals of both channels. Then, the splines are used as
signal-dependent normalization functions. This method is imple-
mented in the affy-package in Bioconductor (http://www.
bioconductor.org/; library: affy, function: normalize.qspline).

Analysis of variances (ANOVA)

Applying ANOVA for microarray data analysis was first proposed by Kerr et
al. (20). Assuming a dye-swap experiment setting, the underlying statisti-
cal model is: log(yijkl) � μ � Ai � Dj � Vk � Gg � (AG)ig � (VG)kg � εijkg where μ
is the overall mean, Ai the overall array effect, Dj the overall dye effect, Vk

the overall variety effect and Gg is the overall gene effect across the other
factors. The (AG)ig term describes the potential effects which are specifically
due to the variation in the amount of spotted cDNA on the array. (VG)kg

describes signal intensities explained by the considered variety (probe vs
control), which is the main factor of interest in detecting biological differ-
ences. The error term εijkg is assumed to be normally distributed around 
zero. Parameters are calculated by maximum likelihood estimation. The
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authors provide codes for Matlab and R on their homepage:
http://www.jax.org/sta_/churchill/labsite/software/.

Variance stabilization

Normalization by variance stabilization (8) comprises data calibration, the
quantification of differential expression, and the quantification of meas-
urement error. In particular, this normalization method leads to the
correction of the variance-versus-mean dependence that can typically be
observed when examining the variance-to-mean plots of background-
corrected microarray intensity data. For the transformation h, the
parametric form h(x)=arsinh(a+bx) is derived from a model of the variance-
versus-mean dependence for microarray intensity data. The difference
statistic Δh has approximately constant variance for the whole intensity
range of the array. Note that for high intensities, h coincides with the loga-
rithmic transformation. For low intensities the arsinh-transformation is
continuous in contrast to logarithmic transformations. This is because there
is no singularity around zero as in the case of logarithmic transformation.
The parameters of h together with those of the calibration between exper-
iments are estimated with a robust variant of maximum-likelihood
estimation. The variance stabilizing model was introduced by Huber et al.
(8) and Durbin et al. (9) and is implemented in the vsn-package in
Bioconductor (http://www.bioconductor.org/; library: vsn).

Quantile normalization

In order to get the same overall distribution of intensities, the array-inten-
sity values of n arrays are normalized by projecting each quantile of
intensities to lie along the unit diagonal. In n dimensions all n data vectors
should have the same distribution such that plotting the normalized quan-
tiles in n dimensions leads to the unit vector (1/�n�,…,1/�n�). To end up with
the same distribution for all arrays, one takes the mean quantile and substi-
tutes it with the value of the data point in the original dataset. Quantile
normalization was proposed by Bolstad et al. (21) and is implemented in
the affy-package in Bioconductor (http://www.bioconductor.org/; library:
affy, function: normalize.quantiles and normalize.quantiles.robust).

17.6 Application of normalization methods

We applied all normalization methods to the described microarray datasets
by using MATLAB (version 6.0.0.88, release 12, MathWorks), R (7) and
Bioconductor (22). QSpline, quantile, loess and variance-stabilizing normal-
ization were performed using the default setting.

BDNF dataset

Variance stabilization was performed for each dye swap (two experiments)
separately. Apart from ANOVA, all normalizations were used separately for
each experiment. After normalization, the sample repetitions were aver-
aged. Thus, we ended up with two datasets corresponding to the two RNA
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samples (undifferentiated and differentiated cells) which have to be
compared. As graphical display we used the representation of log product
versus log ratio. This is shown in Figure 17.2. The dye-swap experimental
data (6) shows a high percentage of low-expressed genes after background
correction. Variance-stabilizing normalization leads to a very good correc-
tion of the small-intensity values while other methods cannot correct for
this effect and still show – in logarithmic scale – a highly scattered plot in
the low-intensities range. Due to the fact that for ZScore scaling the values
are corrected for mean and divided by the standard deviation, this scatter-
ing effect is strengthened.
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Figure 17.2. 

Normalization of a dye-swap experiment. Each subplot displays the scatterplot of log-product (x-axis)
versus the log ratio (y-axis) of the mean of one dye-swap repetition. The subplot in the upper left
displays the mean values of background-corrected raw intensities without any normalization. The
other subplots show scatterplots after application of global mean scaling, global median scaling,
shorth scaling, Zscore normalization, global linear regression, global quadratic regression, loess
regression, ANOVA normalization, variance stabilization, quantile normalization and qspline
normalization.



Swirl dataset

Since the dye-swap dataset shows no nonlinearity, we chose a second
dataset with a typical nonlinearity in the logarithmic scale. We used the
first experiment of the swirl dataset that consists of one pair of RNA samples
(wildtype and swirl). Background-subtracted intensity values were normal-
ized by applying global mean scaling, global linear regression, loess
regression, quantile normalization and qspline normalization.

For this dataset, local regression should out-perform global linear regres-
sion methods. The result is shown in Figure 17.3. Already from the visual
inspection it is obvious that the application of local regression is more
appropriate than applying a global normalization method. Quantile
normalization and qspline normalization also seem to be superior to global
methods in terms of correction of nonlinearities.

17.7 Summary

It is obvious that as scaling methods can only correct for globally multi-
plicative effects these methods appear insufficient to normalize raw
microarray datasets in a way that the normalized dataset fulfills the require-
ment to approximately reflect the corresponding number of mRNA
molecules in the sample under consideration. Random effects cannot be
captured at all. However, a number of transformation methods have been
proposed in the last few years which seem to be more appropriate for the
analysis of microarray data. While ANOVA normalization assumes a specific
set-up of the experiment which is not always given, local regression
methods as well as variance stabilization seem to be appropriate for many
experimental settings. Variance stabilization in particular is superior to all
other methods when the dataset contains a large proportion of low-inten-
sity values. Local regression-based methods can especially deal with
nonlinearities.

Appropriate normalization methods should be able to identify and
correct for systematic and random effects in the data. Though one can
detect such effects, it is impossible to correct for them in each single inten-
sity measurement within one single experiment. Effects that are due to one
specific plate, pin, enzymatic reaction, and so on, can be detected within
data preprocessing and a separate normalization is possible. As for the
example proposed by Smyth and Speed (3), separate normalization for a
specific outlier pin improves the normalization. Thus, in some cases a sepa-
rate normalization for each pin might be advisable. Problems arise if the
same kind of effects is present for plates and other technical issues. It is
impossible to adjust for all at the same time since the data subsets get too
small. If one wants to use composite normalization one has to decide which
kind of technical issue is the most likely influencing factor. Overall, local
regression-based methods, such as loess and variance stabilization, emerge
as the most appropriate ones. Especially, in the case of strongly scattered
values in the low-intensity range, variance stabilization out-performs all
other methods.
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Figure 17.3. 

Normalization of one experiment of the swirl dataset. Each subplot displays the
scatterplot of log-product (x-axis) versus the log ratio (y-axis) of red and green
intensity values. The subplot in the upper left displays the background-corrected
raw intensities without any normalization. The other subplots show scatterplots
after application of global mean scaling, global linear regression, loess regression,
quantile normalization and qspline normalization. The gray line shows the local
regression line (applying loess function for each 1% quartile) for each resulting raw
or normalized dataset.
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Microarray data analysis:
Differential gene
expression
Stefanie Scheid and Rainer Spang

18.1 Introduction

Producing a useful list of differentially expressed genes from microarray
data sounds like an easy task. However, our experience is different. Being
caught in various traps ourselves, we will warn of the most dangerous
pitfalls. Some ‘roads to the list’ are relatively safe to travel on, and we will
point them out. The trip usually splits into two parts, and can be stopped
after the first. At the beginning is explorative analysis which leads to candi-
date genes. Having arrived at this destination, you can transit to statistical
analysis. This leads to quality measures, and allows you to distinguish
between a reliable result and an unreliable one.

You can choose almost every generic statistical software for analysis. We
recommend using the open source language R (1) together with the bio-
informatics R-packages collected by the Bioconductor project (2). R is freely
available at http://www.r-project.org, and Bioconductor at http://www.
bioconductor.org. Throughout the chapter we will give you precise infor-
mation for your ‘trip to the gene list using R’.

18.2 Getting started

Repeat experiments 

We start with a short field trip, that does not reach the outland of statis-
tics yet. If you only have two microarrays and you want to compare them,
you proceed as follows: Normalize the data, rank genes according to fold
changes, pick from the top of the list as many genes as you like, and
acknowledge in your paper that this is an explorative experiment. We
believe that no claims on the statistical significance of your findings should
be made.

Coming to repeated experiments, our recommendation is: the more
the better. Of course, we will not do the benchwork for you and we will
not pay for the microarrays. However, we want to raise two important
points. First, repetitions are not only for the sake of p-values, they also
improve the quality of your list. Without repetitions your list is much
worse than it could be. Second, there is almost no statistical analysis
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without repetitions of experiments. If you want to go beyond explo-
rative research, you need repetitions.

Packing your bag 

Collect your expression data in a matrix where columns correspond to
samples and rows to genes. The first row contains sample labels and the
first column contains gene labels. Separate all entries (labels and expression
values) by tabs. Common data management tools like Microsoft© Excel and
SPSS© offer to save data in tab-delimited formats. Say, the matrix is stored
in a text file called data.tab. In R, read it into a matrix X by typing: X 
<– read.delim(“data.tab”). In a second file, store additional information like
condition labels for each sample (which sample is a wild-type, which
sample is a mutant?). Similarly, read the reference values into a vector y.

Switch to additive scale 

Expression levels can be signal intensities from oligonucleotide chips or ‘red-
green’ ratios from cDNA chips. You will be used to compare expression levels
by fold changes. This amounts to operating on a multiplicative scale. For sta-
tistical analysis, the multiplicative scale is not convenient and you should
transform the data to the additive scale by taking for example logarithms.
On the additive scale, differences between values correspond to ratios on the
original scale. For example, the difference between two log expression val-
ues relates to the fold change on the original scale. Several normalization
methods already return the data on the additive scale, for example the vari-
ance stabilization method by Huber et al. (3). If your data is not on an
additive scale, type X <– log (X). If your data has negative values, refer to a
text on expression data normalization, for example Huber et al. (4).

Be aware of your experimental design 

Before choosing a scoring method that ranks your genes, consider the
underlying experimental design. Ask yourself the following questions: first,
how many conditions do I examine? If you compare samples of a wild-type
to a mutant group, you need a two-condition score. If you compare samples
of more than two conditions, you are in a multi-condition setting. The next
question is: Are the samples paired or unpaired? A ‘wild-type versus mutant’
comparison is unpaired: the samples are not related to each other. A ‘before
and after treatment’ comparison on the same mouse is paired: the gene
expression of the same animal was measured before and after treatment,
that is each sample in one condition has its counterpart in the second
condition. Like the two channels in a ‘red-green’ experiment, these coupled
data must not be separated from each other. Figure 18.1 helps in deciding
which design, and thus which scoring method, is appropriate.

Pick a score that fits your design 

Within each experimental setting, you still have some selection of scores
to pick from. Results might be quite different. What are the problems? To
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start with, ‘differentially expressed’ is not a well-defined term. Figure 18.2
displays gene expression values of two genes A and B in two conditions
(light and dark gray). The y-axis shows expression levels on additive scale,
and two horizontal lines indicate the mean expression in each condition.
The distance between the two lines is larger for gene A than it is for gene
B. Is gene A the better candidate? Gene B is rather constant in both groups,
while gene A seems to be quite variable. Should we take variance into
account? We can do so, using t-scores. The t-score is higher for gene B. Now,
B is the better candidate.

You reach a different result with a third argument. For gene B, the expres-
sion values in the two conditions share only a small overlap. For gene A,
this is not the case. Note that two dark gray values exceed the light gray
mean. Do you feel that this is an important observation? You can formal-
ize it using the pAUC-score. It is higher for gene B, consistent with the
t-score but inconsistent with the fold change. By reflecting on Figure 18.2,
we came up with three different perspectives on differential gene expres-
sion, and they led to conflicting results. Applied to a microarray
experiment, the three scores result in different rankings of genes.
Eventually, the rankings can be so diverse that you will be left with bad
feelings when it comes to biological conclusions. The problem is what is a
good ranking? We are not able to answer this question. In Section 18.3 we
will discuss several scores and point out pitfalls. The final choice is upon
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you and depends on your definition of differential gene expression. We will
not go into details, for deeper and more comprehensive reviews see Pan (5)
and Troyanskaya et al. (6).

18.3 Explorative analysis

We will describe several scoring options to rank the genes on the array.
Some of them will not work for you, since they do not match your exper-
imental design. But we are confident that some methods in our selection
will suit your purpose.

The design has two conditions and samples are unpaired 

For example, you observe expression values in 10 wild-type and 10 mutant
organisms. For each gene, separately compute the average expression in
each condition and subtract the two averages. Differences on additive scale
are ratios on original scale. Thus, the difference in means relates to the
mean fold change on original scale and is therefore called log ratio. Log ratio
scores are the simplest method to rank genes. In R, load for example
package twilight by calling library(twilight) and type:

score1 <– twilight.pval(X,y,method=“fc”,paired=FALSE)

where “fc” stands for fold change.
The difference in means can be misleading if the gene-wise variances

differ much. Consider again the example in Figure 18.2. Taking variability
into account leads to the classical t-test score. Type:

score2 <– twilight.pval(X,y,method=“t”,paired=FALSE)
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Consider fudge factors and be robust against outliers 

Often, the t-score gives top ranks to genes with very small mean intensity
differences if the expression values are almost constant in each condition.
In terms of the applicability of the t-test this is no problem. As a biologist,
however, you might not like it. To block these genes from top ranks, you
can artificially enlarge low variances. First attempts to correct for low vari-
ances were made by Efron et al. (7) and Tusher et al. (8) by introducing a
fudge factor that is added to each gene’s variance estimate. Typically, the
fudge factor is chosen from the set of variances of all genes. Like Efron et
al. (7) you can choose this value manually. Choosing a very large fudge
factor approximates differences of means, a zero factor results in the clas-
sical t-score, and probably an intermediate value will work best for you. An
automatic choice is implemented in the software SAM (Significance
Analysis of Microarrays), see Tusher et al. (8). The implementation in
package twilight selects the median of all standard deviations as fudge
factor. Type:

score3 <– twilight.pval(X,y,method=“z”,paired=FALSE)

Genes with small variances are one type of gene with high t-scores but
little biological relevance; the other type are genes with outlying values.
The Wilcoxon rank-sum score works on ranks instead of numerical values,
and is less sensitive to outliers. The price for robustness is loss of informa-
tion that was contained in the numerical values. In R, you can define a new
function wilc that incorporates the base function wilcox.test. Note that we
changed the Wilcoxon score such that it is distributed around 0. Assume
that your condition labels are coded as 1 for the first condition and 0 for
the second condition such that the label vector y is binary. Function wilc
is then applied to each gene.

wilc <– function(expression,labels){
result <– wilcox.test(expression~labels,paired=FALSE)$statistic
return( result – sum(labels)*sum(1–labels)/2 )
}
score4 <– apply(X,1,wilc,labels=1–y)

A score that protects against both outliers and constant genes was intro-
duced by Smyth (9) as moderated t-score. The idea is ‘to borrow
information across genes’ with the intention to raise small variances and
to shrink larger variances to an overall variance. The approach is imple-
mented in the R package limma. The computation of limma scores in R
needs three steps. First, fit a linear model for two conditions to each gene.
Second, define the contrast you are interested in. That is the difference
between the two condition averages. Third, compute moderated t-scores
with function ebayes.

library(limma)
a <– lmFit(X,design=cbind(y,1–y))
b <– contrasts.fit(a,contrasts=matrix(c(1,–1),ncol=1))
score5 <– ebayes(b)$t
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Alternatively: Score by separation 

The expression values of gene A in Figure 18.2 share a large numerical
overlap whereas the overlap in the case of gene B is numerically smaller.
Can we rank the genes based on how well the two conditions can be sepa-
rated from each other without allowing too much overlap? The concept of
separation is used by Pepe et al. (10) who suggest using pAUC-scores. A high
pAUC-score indicates that the expression values in one condition are well,
albeit not necessarily perfectly, separated from the values in the other
condition. For small pAUC-values there is essentially no separation. Note
that the concept of separability is different from comparing averages.

Currently, the pAUC-score is not implemented in R. You might want to
read more about pAUC-values and their interpretation in Pepe et al. (10).
To do the computations described in this publication you can use the
following R function. It works for up-regulation only. For exploring down-
regulation, reverse the class labels in your binary vector y to 1–y.

pauc <– function(x,A,B){
u <– sort(unique(A),decreasing=TRUE)
t <– numeric(length(u))
r <– numeric(length(u)) 
for (i in 1:length(u)){

t[i] <– sum(A[B==0]>u[i])/sum(1–B)
r[i] <– sum(A[B==1]>u[i])/sum(B)

}
roc <– numeric(length(x)) 
for (i in 1:length(x)){

z <– which(t<=x[i])
z <– z[length(z)]; roc[i] <– r[z]

} 
return(roc)

}

You need to choose a false-positive rate, say 10%. Finally, calculate pAUC-
scores by applying function integral to each gene:

integral <– function(a,b){integrate(pauc,0,0.1,A=a,B=b)$value}
score6.up <– apply(X,1,integral,y) # up-regulation
score6.down <– apply(X,1,integral,1–y) # down-regulation

For the combination of up- and down-regulation, compute the two vari-
ants and take the maximum of the two scores for each gene.

Example 

Here is an application that illustrates different roads to different gene lists
starting from the same data. The data set is by Golub et al. (11). Samples
from 47 patients with acute lymphoblastic leukemia (ALL) and 25 patients
with acute myeloid leukemia (AML) are hybridized to Affymetrix© HU6800
microarrays coding for 7129 transcripts. The R package golubEsets contains
a slightly transformed version of this data set in the variable golubMerge.
We normalize with vsn (3) and compute absolute scores as described above.
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library(golubEsets); library(vsn)
golubNorm <– vsn(exprs(golubMerge))
X <– exprs(golubNorm)
y <– as.numeric(golubMerge$ALL.AML)–1

Note that twilight.pval returns scores in the first column of a matrix called
result. Genes are ordered by empirical p-values. To return the original order
type:

genes <– rownames(X)
ttest <– twilight.pval(X,y,method=“t”,paired=FALSE)
score <– ttest$result[genes,1]

Table 18.1 displays the ranks of genes ranked highest by t-score and
selected ranks. The first four columns contain ranks of t-like scores. Going
from left to right, the scoring methods put more weight on the difference
in means and less weight on a gene’s variance (recall that the log ratio score
is simply the difference in means). Ranks of genes with small differences
and small variances increase going from t-test to log ratio, for example
genes CD33 and MLP. Ranks of genes with larger differences but large vari-
ances decrease, for example genes FCER1G and SPI1. The comparison
between t and Wilcoxon ranks highlights which scores are confounded
with outlying expression values, for example gene DF. The last column
contains ranks of combined pAUC-scores which in this example lead to
quite similar results.

The design has two conditions and samples are paired 

If your data is paired you cannot travel on the roads described above. In
many cases there are parallel tracks for you to use. Say you have an exper-
iment with 10 patients before and after a treatment. In this setting you do
not want to average the expression levels before and after treatment sepa-
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Table 18.1. Example on data set of Golub et al. (11); ranks of selected genes
resulting from different scoring methods.

Gene t-score Limma Fudge Log ratio Wilcoxon pAUC 

MGSTl 1 1 3 21 5 27 
DF 2 2 1 1 22 4 
CD33 3 3 8 87 1 3 
CST3 4 4 2 2 4 1 
TCF3 5 5 11 58 3 5 
MLP 6 7 22 118 8 28 
CSTA 7 6 5 18 11 10 
CTSD 8 8 27 144 7 12 
SPTANl 9 9 19 62 12 17 
CCND3 10 11 17 51 10 6 
PSMA6 20 18 24 63 21 30 
CD 63 30 30 46 120 29 158 
FCER1G 40 38 23 29 49 164 
SPI1 50 48 20 10 46 64 
LTC4S 60 63 150 359 105 45 



rately, instead you want to compute the difference in expression for each
patient and the average over differences. This is a mean difference instead of
a difference in means. In R, change the optional argument paired=FALSE
to paired=TRUE to compute t-like or Wilcoxon scores. Note that the
Wilcoxon function has to be changed such that the scores are distributed
around 0.

wilc <– function(expression,labels){
result <– wilcox.test(expression~labels,paired=TRUE)$statistic 
return( result – sum(labels)*(sum(labels)+1)/4 )

}

The design has more than two conditions and samples are
independent 

If you have more than two conditions, you can compare them pairwise
which raises serious statistical difficulties. Instead, use the multi-condition
equivalent of t-scores: F-scores. In R, use mt.teststat(. , test=“f”) in package
multtest. The Wilcoxon equivalent are Kruskal-Wallis scores (kruskal. test).
Note that multi-condition scores are sensitive to every gene whose ex-
pression is different in any one of the conditions. If the average expression
in one condition deviates strongly from all others, the score is high.

A special case in multi-condition settings are dependent samples.
Consider a set of 10 patients, each measured at five distinct time-points.
This is a typical design in time-series or survival analysis. There are scores
specialized for both, but this is beyond the scope of this chapter.

Find genes correlated to a reference gene 

Like most biologists, you will have a favorite gene, and you want to find
all those genes with expression values that correlate with the values of your
pet gene. You might think that clustering all expression data and then
looking up your gene in a red-green colored diagram is the best way to do
this. We think it is not. In spite of the pitfalls already mentioned, we believe
that a scoring approach is the safer way. Clustering is a mine field, and you
only need to enter it if you do not want to focus on a pet gene but aim for
a global view on the correlation structure in the data.

Consider the Golub et al. (11) example above. How can you identify genes
with a high correlation to gene MGST1? Set the expression values of gene
MGSTl as reference vector and apply either a correlation score based on
numerical values (Pearson) or on ranks (Spearman) to each gene. With refer-
ence vector refvec, type:

score7 <– twilight.pval(x,refvec,method=“pearson”
# or method=“spearman”

Interpret your ranking 

In principle, the presented scores have one feature in common: they are
distributed around 0. A high positive value indicates up-regulation or corre-
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lation, a high negative value indicates down-regulation or anti-correlation.
To rank for differential gene expression in general, take absolute scores
which is abs(score) in R.

If you want, you can stop here. You have a ranking of all genes on the
array and you can pick genes from the top of the list as you like. This is
exploratory data analysis, and there is nothing wrong with it. You might
say: ‘I can handle 50 genes. Hence, I take the top 50 genes.’ This is a prac-
tical argument, and we do not see any problems with it, too. However, you
might feel some discomfort once you realize that there are always 50 genes
on top of a ranked list. Even in cases with no differentially expressed genes
at all. For relief, you need to follow the track to statistical analysis.

18.4 Statistical analysis

A first visual inspection 

Like in the previous section we start with something very simple. In this
case a visual approach, which is part of the method SAM (Significance
Analysis of Microarrays) by Tusher et al. (8). The Microsoft© Excel plug-in
software is available at http://www-stat.stanford.edu/~tibs/SAM/. SAM
computes scores for differential gene expression as given in the last section
(observed scores). In addition, it simulates randomness by shuffling the
patient labels and computes expected scores. Roughly speaking, these scores
would occur if all genes in the experiment were non-induced. Plotting
expected versus observed scores displays how much your data deviates from
random noise. Figure 18.3 shows SAM-plots for three situations: data sets
with low, medium and high contents of differentially expressed genes. The
diagonal line denotes the perfect agreement between your data and random
data. The more the line deviates from the diagonal, the more evidence for
differential expression you have. Up-regulated genes result in points above
the line and down-regulated genes result in points below the line. The
amount of points deviating from the diagonal gives you a first hint of the
level of differential gene expression.
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Figure 18.3.

SAM-plots for three simulated data sets with expected scores on the x-axes and observed scores on
the y-axes. Diagonal lines denote equality between observed and expected scores. From left to right:
Low, medium and high content of induced genes.



In R, use the command score <– twilight.pval( . . . ) to compute
observed and random scores. The values are stored in matrix score$result
as observed and expected. For convenience, use plot(score,“scores”) to get
a SAM-like plot.

P-values 

Now we proceed deeper into statistical analysis, describing classical main
roads first. You want to filter out genes that are not differentially expressed.
The most widely used filters are p-values. P-value filters consider false posi-
tives (genes that are not differentially expressed but passed the filter) as dirt,
and they follow firm standards on how much pollution is tolerable. They
will comply to these standards and prevent pollutants from entering your
list. Be aware that the filter will not hesitate to absorb truly induced genes,
too. This cannot be controlled directly. Fortunately, it is you who sets the
standards, and thus you can indirectly calibrate the resulting list of genes.
How do these standards express themselves in statistical analysis? In our
experience, the most widely spread association with p-values is: ‘They need
to be below 0.05.’ That is a standard of cleanness. What happens if we cut
off all genes with p ≤ 0.05? For a non-induced gene, the chance to survive
this treatment is 5%. With 20 000 genes on the array and 19 500 of them
non-induced, this leads to around 975 (= 19 500 × 0.05) false positives in
the list. Is your standard of hygiene higher than that? In this case you can
adjust the filter. Note that the simple computation above depends on the
number of non-induced genes on the chip. If the chip was much smaller,
say 500 genes and 250 of them non-induced, you only have to expect about
a dozen false positives (250 × 0.05 = 12.5). That might be tolerable. In
general, larger chips need stronger filters to achieve the same standards for
clean gene lists.

As genes are not independent of each other but connected through path-
ways and coregulation, we recommend using empirical p-values that are
derived by permuting the condition label vector. The empirical p-value is
the percentage of random scores that exceed the original score. To compute
empirical p-values from, say, 10 000 permutations, type:

score <– twilight.pval(X,y,…, B=10 000) 
pvalue <– score$result$pvalue

Control contamination 

By reducing the cutoff, for example to p ≤ 0.01, you can decrease the
number of false positives even for the large chip. However, you can do
better using more efficient and more complicated methods of multiple
testing. ‘Doing better’ means use a tighter filter complying to the same stan-
dard. A classical but very rigid standard is the family-wise error rate (FWER).
Essentially, it does not tolerate false positives in your list at all. While it
cannot completely ensure a perfectly clean list, it can do so at least with a
high probability. Hence if you set the FWER to 0.05, there is only a 5%
chance that a single false-positive gene could sneak through the filter into
the list. For a good introduction into the FWER see Dudoit et al. (12). In R,
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function mt.rawp2adjp in package multtest offers several procedures to
build FWER filters. For the classical Bonferroni-Holm procedure, type:

library(multtest)
FWER <– mt.rawp2adjp(pvalue,proc=“Holm”)

Be less restrictive 

FWER based standards are about the highest available. But it might happen
that not a single gene passes the filter. While this is a ‘spotless list’, it is
probably not what you have hoped for. If you are willing to tolerate some
false positives in your list, say 5%, you can do better using the false discov-
ery rate (FDR) introduced by Benjamini and Hochberg (13). In R type:

FDR <– mt.rawp2adjp(pvalue,proc=“BH”)

Don’t let the statistician leave the biggest challenges with you,
instead challenge him 

You have a short list, and start screening for a gene which you know is up-
regulated. You have confirmed this in single gene assays several times, and
it can also be found in the literature. However, the gene is not in the list.
Did the microarray experiment disprove previous results? Or did you learn
better not to believe in microarrays? We think that the most likely problem
is the p-value filter. It was too harsh. You start looking for your pet gene in
the complete ranked list and you find it up-regulated but somewhat below
the cutoff line. Is it allowed to enlarge the list and include all genes down
to this gene? Yes, but it comes at a price: the list will be contaminated by
more false positives. How badly contaminated is it? This question lies not
on the main tracks of statistics, and it is controversial as to whether it is a
good one. The main track is that you first define the standard, then the
statistician produces the list of genes, and you are left with the challenge
to interpret it. Extending the list, as suggested above, assigns jobs differ-
ently. Now, you define the list and the statistician is left with the challenge
to estimate its degree of contamination. Recently, this challenge was
accepted by parts of the statistical community. And not surprisingly, the
first software tools like SAM became very popular.

Back to the question: how badly contaminated is the extended list? Or,
statistically, what is the expected proportion of false positives in it? Storey
(14) gave a first answer by introducing the q-value. The q-value of a gene
is, roughly, an estimated FDR of the list that includes all genes up to this
gene. The main difference between the Benjamini-Hochberg ideas and the
Storey ideas is that of controlling the FDR versus estimating it. Or in easier
words, it is the difference between whether you need to define a tolerable
FDR and the computer is producing the list or vice versa.

You want to talk about single genes and not lists of genes 

Now you have a list of genes and you know that about 10% of them are
false positives. You want to know which ones. This is of course not poss-
ible. On the other hand, the gene on top of the list is less likely to be a
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false positive than the one on the cutoff line. Efron et al. (7) introduced the
local FDR (LFDR) which is the probability that a gene is a false positive.
Note, that the p-value is a different probability. For computing the LFDR,
apply function twilight which is based on the estimation procedure
described in Scheid and Spang (15).

score <– twilight.pval(…) 
LFDR <– twilight(score)

Plot the LFDR over the range of p-values by calling plot(LFDR, “fdr”).
Following the LFDR from low p-values to high p-values, you get an impres-
sion of the level of differential gene expression in your experiment, and
whether there is a twilight zone where clear differential expression fades
into clear non-differential expression.

18.5 Final remarks

Following the roads of statistical analysis to the end, you get an informa-
tive and statistically valid first description of your microarray experiment,
and can go on to other topics like classification and prediction. We guided
you that far by recommending methods and software tools that we are most
experienced with. We traveled mostly on main roads of microarray analy-
sis. You might want to try different methods. We recommend that you
explore the Bioconductor collection yourself, and find new paths of 
analysis.
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Clustering and
classification methods for
gene expression data
analysis
Elizabeth Garrett-Mayer and Giovanni Parmigiani

19.1 Introduction

Efficient use of the large data sets generated by gene expression microarray
experiments requires computerized data analysis approaches (1, 2). In this
chapter we briefly describe and illustrate two broad families of commonly
used data analysis methods: class discovery and class prediction methods.
Class discovery, also referred to as clustering or unsupervised learning, has
the goal of partitioning a set of objects (either the genes or the samples)
into groups that are relatively similar, in the sense that objects in the same
group are more alike than objects in different groups (3, 4). A typical appli-
cation is to generate hypotheses about novel disease subtypes (5, 6). Class
prediction, also referred to as classification or supervised learning, has the
goal of determining whether an object (usually a sample, but sometimes a
gene) belongs to a certain class (7, 8). A typical application is classification
of patients into existing disease subtypes or prognostic classes (9, 10) using
gene expression information.

In our discussion, ‘sample’ refers generically to any type of biological
material that is processed and hybridized to a chip. For example, in a study
of breast cancers, the samples could represent RNA isolated from breast
cancer tissues biopsied from a group of women. ‘Gene’ is used loosely to
refer to the features on the arrays, such as sequences from genes or ESTs,
single oligonucleotides in Agilent arrays, oligonucleotide sets in Affymetrix
arrays and so forth. ‘Object’ refers to the entity being clustered, and can be
either a gene or a sample, as the same algorithms can often be applied
symmetrically to both. ‘Attribute’ is any feature of the object being clus-
tered. If we cluster samples, genes are typically attributes, and vice versa.
‘Phenotype’ refers to any clinical or biological characteristic of a sample or
the person or organism from which the sample is derived, such as disease
subtype, age, gender, or time to disease progression.

To demonstrate the clustering methods in this chapter, we use a gene
expression microarray dataset published by Hedenfalk and colleagues (11)
and including samples from 22 breast cancers, of which seven are from
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patients with known BRCA 1 mutations, eight from patients with known
BRCA2 mutations, and seven are sporadic. Complementary DNA (cDNA)
labeled with Cy3 or Cy5 was obtained from each tumor sample and
hybridized to two channel cDNA arrays which included spots for 3226
genes and ESTs. The reference sample was cell line MCF-10, a nontumori-
genic breast cell line. Data from this study is available at http://www.nhgri.
nih.gov/DIR/Microarray.

Statistical computing environments typically offer a rich set of alterna-
tives for clustering and classification. In particular the free and open source
computing environment R (12) and the associated Bioconductor (13)
project cover most standard tools, a wide variety of developmental tools
and offer the flexibility for implementing custom solutions. A range of free
and open source tools can be accessed via the website www. arraybook.org.
The site http://ihome.cuhk.edu.hk/~b400559/arraysoft.html maintains a
catalog of both free and commercial microarray data analysis software.

19.2 Clustering

Clustering techniques can be used in microarray analysis to (i) facilitate
visual display and interpretation of experimental results, and (ii) suggest
the presence of subgroups of objects (genes or samples) that behave simi-
larly. The input of a cluster analysis are the gene expression values of the
samples in an experiment, with no additional phenotype information.
Depending on the approach, the output can be a list of subgroups, or a
visualization that simplifies manually establishing subgroups. In some
applications, unsupervised methods are used even though phenotype infor-
mation is available. The goal is often to see how the clusters of samples that
arise from an unsupervised approach compare to the known phenotypes.

Distance and similarity

To determine which objects cluster together, we must have a way of meas-
uring how similar, or dissimilar any two of them are. Most clustering
approaches will allow as input a matrix whose entries measure similarity,
or dissimilarity, between each pair of objects. Choosing this measure is one
of the most critical, yet often underappreciated, aspects of a cluster analy-
sis. Different measures reflect different goals, and thus can have a strong
influence on the resulting clusters. Here we discuss in detail three: the corre-
lation coefficient, which will bring together objects whose patterns of
change are similar; the Euclidean distance, which will bring together objects
whose absolute expressions are similar, and the uncentered correlation,
which achieves a compromise between the previous two.

The Pearson correlation coefficient measures the strength of a linear asso-
ciation between the expression levels of objects. In the case of genes j and
k, it is defined by
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where xsj is the gene expression for gene j in sample s and x̄j is the average
gene expression of gene j across all samples. A symmetric definition applies
to the correlation between samples. The correlation takes values ranging
from –1 (perfect negative correlation) to 1 (perfect positive correlation). A
correlation of 0 means that there is no linear relationship between the two
genes. For analyses that require positive similarity matrices, it is common
to use the absolute value of the correlation with the rationale that high
negative and high positive correlations both may imply an underlying
common mechanism. The correlation coefficient is unitless, but is sensitive
to nonlinear transformation of the data, such as the logarithm. For non-
linear relationships, the correlation coefficient may not adequately describe
similarity. Another drawback is that it may be sensitive to noise.

The Euclidean distance measures geometric distance between two objects.
In the case of genes j and k, it is defined by

(19.2)

A symmetric definition applies to the correlation between samples. It takes
values from 0 to ∞ and it retains the units of the input gene expression
measurements. It grows with the number of samples included in the
dataset.

The uncentered correlation (14) is similar to the Pearson correlation but
is evaluated without centering:

(19.3)

As the Pearson correlation, this is unitless, but is sensitive to absolute
magnitudes as the Euclidean distance. As a result it will be less likely to be
influenced by genes whose variation is mostly noise.

For a summary of other distance and similarity metrics, see (15).

Hierarchical clustering

Hierarchical clustering is used to partition objects into a series of nested
clusters (5, 6), by contrast with approaches that find a single partition (16).
To illustrate, a hierarchical clustering analysis of both genes and samples
in the Hedenfalk data is shown in Figure 19.1, along with a gray scale image
of gene expression levels. The similarity used is the uncentered correlation.
The hierarchy of clusters of samples is displayed using a tree-like structure
called a dendrogram. Dendrograms join objects, or clusters of objects, to
form increasingly large clusters. The height at which two clusters are joined
represents how similar they are, with low heights representing high simi-
larity. Samples in Figure 19.1 are labeled by their type (BRCA1, BRCA2, or
sporadic), though these types are not used in constructing the dendrogram.

There are two kinds of hierarchical clustering approaches: agglomerative
and divisive. The agglomerative approach begins by assuming that each
object belongs to its own separate cluster. At the first step, the two most
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Figure 19.1. 

Hierarchical cluster analysis of the Hedenfalk breast cancer data. The gray scale
image represents gene expression levels, with levels lower than the reference
represented by white to light gray and levels higher than the reference represented
by medium gray to black. The left panel includes all samples and genes. The right
panel includes all samples and the top 25% genes most strongly associated with
the presence of BRCA1 and BRCA2 mutations. The dendrograms for genes have
been omitted.



similar objects are combined to form a new cluster. Then the next most
similar clusters or objects are combined and so forth. This is a bottom-up
approach in the sense that the clustering starts at the bottom of the dendro-
gram of Figure 19.1 and works its way up until all objects belong to one
cluster. As part of the agglomerative approach, it is necessary to specify a
linkage method, that is a way of defining similarity of clusters based on
similarities of cluster members. Some of the commonly used linkage
methods are single, average, and complete in which clusters are linked
based on the similarity of the closest members, the average similarity, and
the similarity of the furthest members.

The divisive approach works from the top of the dendrogram, where all
objects belong to one cluster. At the first step, it finds the best division of
the objects so that there is the highest similarity among objects within clus-
ters and the most dissimilarity between clusters. This process continues,
where the best cluster partition is chosen at each step until all objects are
in their own clusters. Details of hierarchical clustering can be found in (4).

An important consideration when applying or interpreting hierarchical
clustering results is that there is not a unique dendrogram for a given hier-
archical clustering result. For each split in a dendrogram, it is arbitrary
which branch is drawn to the right or left, and users need to specify crite-
ria for this choice. As such, many dendrograms can be drawn for a given
hierarchical clustering result and closeness of objects should be judged
based on the height at which they are joined, rather than their ordering in
the dendrogram.

Preselection of genes can significantly affect clustering of samples and
vice versa. Selecting genes that show at least a certain amount of variation
across samples is useful to reduce the sensitivity of clustering results to noise
variation. Selecting genes whose variation is associated with a phenotype
of interest is also common, though when that is done the correspondence
of clusters to phenotype cannot be invoked as validation of the clustering
results, as the correspondence will be inflated by the preselection. To illus-
trate, compare the left panel of Figure 19.1, which includes all genes in the
experiment, to the right panel, where only the top 25% of genes associated
with the BRCA types are included. The dendrogram on the left has short
branch links and cascading patterns, both of which weaken the case for the
existence of clusters. None of the main partitions has any relation to the
BRCA type. On the right, the branch links at the top are longer and there
is some evidence of two major clusters, which separate well the BRCA1 from
the BRCA2 cases. While in general a correspondence between clusters found
by unsupervised analyses and sample phenotypes can be taken as inde-
pendent supporting evidence of the existence of clusters of biological
significance, in this case this argument would be circular, because the
sample phenotypes were used in selecting the genes for clustering.

K-means clustering and self-organizing maps

K-means clustering (17) partitions objects into groups that have little vari-
ability within clusters and large variability across clusters. The user is
required to specify the number k of clusters a priori. Estimation is iterative,
starting with a random allocation of objects to clusters, re-allocating to
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minimize distance to the estimated ‘centroids’ of the clusters, and stopping
when no improvements can be made. The centroid is the point whose
attributes take the mean expression level of the objects in the clusters. 
K-medoids clustering is similar, except that the center of the clusters is
defined by ‘medoids’, similar to centroids, but based on medians (4).
Specification of k can be difficult, though there are ways of gaining insight
into the appropriate number of clusters, such as using principal compo-
nents analysis. A closely related approach is that of self-organizing maps (7,
15, 18), now common in gene expression data (16).

Principal Components Analysis and Multi-Dimensional Scaling

Principal Components Analysis (PCA) (19–21) and Multidimensional
Scaling (MDS) are techniques whose goal is to reduce the dimensionality
of data to facilitate visualization and additional analysis. They are often
used as a preliminary step to the clustering of large data sets and are
commonly applied to gene expression data (22–28).

PCA creates summary attributes, or ‘components’, that are weighted aver-
ages of the original attributes, are uncorrelated to each other, and are such
that most of the variability in the data is concentrated in few components.
During the estimation process, as many components as there are attributes
are calculated. Users select a small number, chosen to retain a sufficient
fraction of the variability. These are often plotted to visually search for clus-
ters. A strength of PCA is that redundant information is represented in a
single component, while a drawback is that the components may lack clear
biological interpretations.

The first three PC’s for the Hedenfalk data are shown in Figure 19.2. Here,
instead of having to visualize thousands of genes per sample, we use three
weighted averages of genes. Together, they describe 38% of the variability
in the data. The samples appear to cluster in subgroups. When phenotype
information is available, one can check putative subgroups against the
phenotype information, or gauge how the variability in expression relates
to the variability in phenotypes. For example, in the top-left panel, the
sporadic samples tend to have high values for component 2 and relatively
low values for component 1. BRCA2 samples are distributed differently with
most having either very low values for component 2 or high values for both
components 1 and 2. The four areas in the plot created by the two inter-
secting lines are discriminating between different BRCA types. The results
for components 1 versus 3 and 2 versus 3 also show some clustering, though
these are not as clearly related to BRCA types.

MDS starts from a distance matrix between objects and finds the loca-
tions of these objects in a low dimensional space that best preserves the
original distances. For example, given objects in three dimensions, MDS
may find the two-dimensional map of these objects that is most faithful to
the original three-dimensional distances. The result is similar to the PCA
result: we have summary variables, the coordinates of the map, that
describe a large fraction of the variability in the gene expression measures,
and that can be visually inspected to identify clusters. Two examples of
MDS as applied to gene expression data can be found in Khan et al. and
Bittner et al. (29, 30).

246 DNA Microarrays



Limitations of cluster analysis

Clustering techniques for high dimensional data are exploratory. Their
strength is in providing rough maps and suggesting directions for further
study. Substantial additional work is necessary to provide context and
meaning to groups found by automated algorithms. This includes cross-
referencing of existing knowledge about genes and samples as well as
additional biological validation.

Clustering results are sensitive to a variety of user-specified inputs. The
clustering of a large and complex set of objects can, like arranging books
in a collection, be planned in different ways depending on the goals. From
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The first three principal components of the Hedenfalk breast cancer data. Open circles indicate
sporadic samples, closed circles indicate BRCA1 samples, and plus symbols indicate BRCA2 samples.
Dotted lines in the plot of component 1 versus component 2 distinguish the three types.



this perspective, good clustering tools are responsive to users’ choices, not
insensitive to them, and sensitivity to input is a necessity of cluster analy-
sis rather than a weakness. This also means, however, that use of a
clustering algorithm without knowledge of its workings, the meaning of
inputs, and their relationship to the biological questions of interest is likely
to yield misleading results.

Clustering results are generally sensitive to small variations in the
samples and the genes chosen and to outlying observations. This means
that a number of the data-analytic decisions made during normalization,
filtering, data transformations, and so forth will have an effect on results.
When conclusions drawn from clustering go beyond simple data visualiza-
tion, it is important to provide accurate assessments of the uncertainty
associated with the clusters found. Uncertainty from sampling and outliers
can be addressed within model-based approaches (31) or alternatively using
resampling techniques (32–34). The consequences of choosing among plau-
sible alternative transformations, normalizations, and filtering should be
addressed by sensitivity analysis, that is by repeating the analysis and
reporting conclusions that are consistent across analyses.

19.3 Classification

Classification techniques can be used in microarray analysis to predict
sample phenotypes based on gene expression patterns. While novel and
microarray-specific classification tools are constantly being developed, the
existing body of pattern recognition and prediction algorithms provide
effective tools (35). Dudoit and colleagues (36) offer a practical comparison
of methods for the classification of tumors using gene expression data.
Relevant tools from the statistical modeling tradition include: discriminant
analysis (37), including linear, logistic, and more flexible discrimination
techniques; tree-based algorithms, such as classification and regression trees
(CART) by Breiman et al. (38) and variants; generalized additive models (39);
and neural networks (7, 40, 41). Appropriate versions of these methods can
be used for both classification and prediction of quantitative responses such
as continuous measures of disease aggressiveness. Some of these methods
are briefly reviewed here.

Dimension reduction

Because of the large number of genes that can be used as potential predic-
tors, it is useful to preselect a subset of genes, or composite variables, likely
to be predictive and then investigate in depth the relationship between
these and the phenotype of interest. For example, genes with nearly
constant expression across all samples can be eliminated. Additional screen-
ing can be based on measures of marginal association, such as the ratio of
within-group variation to between-group variation, or the measure used in
Slonim et al. (42), though these can miss important genes that act in concert
with others but have no strong marginal effects.

Parsimonious representations of the data may be identified when there
is knowledge of important pathways that can be used to manually construct
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new and more highly explanatory variables. When such knowledge is not
available we need to apply discovery techniques such as those described
earlier; for example, the centroids of clusters or the variables identified by
PCA can be used as predictors. Composite variables that are easily measur-
able and interpretable in terms of the original gene expression are generally
preferable. Automatic approaches for preclustering variables before classifi-
cation are also useful (43).

Evaluation of classifiers

Classifiers based on gene expression are generally probabilistic, that is they
only predict that a certain percentage of the individuals that have a given
expression profile will also have the phenotype, or outcome, of interest.
Therefore, statistical validation is necessary before models can be employed,
especially in clinical settings (44, 45).

The most satisfactory approaches to validation require the use of data
other than those used to develop the classifier. When only a single study
is available, this can often be achieved by setting aside samples for valida-
tion purposes, as illustrated by Dudoit et al. (36). Statistical validation of
probabilistic models (46) should focus on both refinement, that is, the
ability of the classifier to discriminate between classes, and calibration, that
is, the correspondence between the fraction predicted and the fraction
observed in the validation sample.

An alternative to setting aside samples for validation is the so-called cross-
validation. For example, K-fold cross-validation consists of splitting the data
in K subsets, and training the classifier K times, setting aside each subset in
turn for validation. The average classification rates in the K analyses is then
an unbiased estimate of the correct classification rate (47).

A potentially serious mistake is to evaluate classifiers on the same data
that were used for training. When the number of predictors is very large,
a relatively large number of predictors will appear to be highly correlated
with the phenotype of interest as a result of the random variation pres-
ent in the data. These spurious predictors have no biological foundation
and do not generally reproduce outside of the sample studied. As a
result, evaluation of classifiers on training data tends to give overly opti-
mistic assessments of validity. In plausible settings, classifiers can appear
to have a near perfect classification ability in the training set without
having any biological relation with phenotype (48). All aspects of learn-
ing a classifier need to be properly cross-validated to avoid inflated
estimates of performance.

Prediction Analysis of Microarrays (PAM)

A straightforward approach to classification is the nearest centroid classi-
fier. This computes, for each class, a centroid given by the average
expression levels of the samples in the class, and then assigns new samples
to the class whose centroid is nearest. This approach is similar to k-means
clustering except clusters are now replaced by known classes. With a large
number of genes this algorithm can be sensitive to noise. A recent
enhancement uses shrinkage: for each gene, differences between class
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centroids are set to zero if they are deemed likely to be due to chance. This
approach is implemented in the Prediction Analysis of Microarray, or PAM
(49), software. Shrinkage is controlled by a threshold below which differ-
ences are considered noise. Genes that show no difference above the noise
level are removed. A threshold can be chosen by cross-validation, as shown
in Figure 19.3 for the Hendefalk data. High thresholds, on the right, include
few genes, and lead to classifiers that are prone to errors. As the threshold
is decreased more genes are included and estimated classification errors
decrease, until they reach a bottom and start climbing again as a result of
noise genes – a phenomenon known as overfitting.

Top-scoring pairs

Another simple and very effective tool is the top-scoring pair(s), or TSP,
classifier (50). In a two-class classification, this looks for pairs of genes such
that gene 1 is greater than gene 2 in class A and smaller in class B. This
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handles effectively issues of normalization as the pair provides an internal
control and is likely to give generalizable results. TSP classifiers are trans-
parent and interpretable and provide specific hypotheses for follow-up
studies. In cancer data the TSP classifier achieves prediction rates that are
as high as those of alternative approaches which use considerably more
genes and complex procedures (50).

Nearest-neighbor classifiers

Nearest-neighbors classifiers (51), assign samples to classes by matching the
gene expression profile to that of samples whose class is known. A simple
implementation is to choose a rule for finding the k nearest neighbors and
then deciding the classification by majority vote. Nearest-neighbor classi-
fiers are robust, simple to interpret and implement, and do not require,
although they may benefit from, preliminary dimension reduction.
Nearest-neighbor algorithms are also used in several statistical software
packages for imputation of missing data.

Support vector machines

Support vector machines (SVMs) (52) seek cuts of the data that separate
classes effectively, that is by large gaps. Technically, SVMs operate by
finding a hypersurface in the space of gene expression profiles, that will
split the groups so that there is the largest distance between the hypersur-
face and the nearest of the points in the groups. More flexible
implementations allow for imperfect separation of groups. See Burges (53)
and Christianini and Shawe-Taylor (54) for details of SVMs and general-
izations, while Lee and Lee (55) and Brown et al. (56) give examples of
analysis of gene expression data using SVMs.

Discriminant analysis

Discriminant analysis (57) and its derivatives are approaches for optimally
partitioning a space of expression profiles into subsets that are highly
predictive of the phenotype of interest, for example by maximizing the
ratio of between-classes variance to within-class variance. Ripley (7) and
Everitt (21) give details, while Hastie et al. (58) discusses flexible extensions
of discriminant analysis (FDA) and Li and Yang (59) provides a discussion
of discriminant analysis in the context of gene expression array data.

Classification trees

Classification trees recursively partition the space of expression profiles
into subsets that are highly predictive of the phenotype of interest (38).
They are robust, easy-to-use, and can automatically sift large data sets,
identifying important patterns and relationships. No prescreening of the
genes is required. The resulting predictive models can be displayed using
intuitive graphical representations. An example in which classification
trees have been applied to gene expression data can be found in Zhang
and Yu (60).
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Regression-based approaches

Linear models, generalized linear models, generalized additive models
and the associated variable selection strategies provide standard tools for
selecting useful subsets of genes and developing probabilistic classifiers. A
limitation of these techniques is that they cannot generally handle more
genes than there are samples. This can be circumvented using forward
selection approaches that progressively add genes to the classifier. Recent,
more accurate approaches are based on the so-called stochastic search
methods (61), that generate a sample of plausible subsets of explanatory
variables. The selected subsets are then subjected to additional scrutiny to
determine the most appropriate classification algorithm. A combination
of stochastic search with principal component analysis and other orthog-
onalization techniques has proven effective in high-dimensional
problems (62, 63), and has recently been employed in microarray data
analysis (23).

Probabilistic model-based classification

Model-based classification is based on the specification of a probability
distribution that describes the variability of the expression values.
Typically, this is a mixture model, in which mixture components repre-
sent known classes (64). Model-based approaches are
computation-intensive and can be sensitive to assumptions made about
the probability model, but can provide a solid formal framework for the
evaluation of many sources of uncertainty, and for assessing the proba-
bility of a sample belonging to a class.

19.4 Summary

A wide range of alternative approaches for clustering and classification of
gene expression data are available. While differences in efficiency do exist,
none of the well-established approaches is uniformly superior to others.
Choosing an approach requires consideration of the goals of the analysis,
the background knowledge, and the specific experimental constraints. The
quality of an algorithm is important, but is not in itself a guarantee of the
quality of a specific data analysis. Uncertainty, sensitivity analysis and, in
the case of classifiers, external validation or cross-validation should be used
to support the legitimacy of results of microarray data analyses.
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Statistical analysis of
microarray time course
data
Yu Chuan Tai and Terence P. Speed

20.1 Introduction

This chapter discusses the statistical analysis of microarray time course data,
with a focus on developmental time course experiments. The methods
reviewed here are generally suitable for experiments based on the most
widely used kinds of microarray platforms, including single-color, fluores-
cently labeled, high-density short oligonucleotide arrays on silicon chips
(1), radiolabeled cDNA arrays on nylon membranes, or two-color, fluores-
cently labeled cDNA (2, 3) or long oligonucleotide arrays on glass slides.

Microarray time course experiments typically involve gene expression
measurements for thousands of genes over relatively few time points, under
one (e.g. wildtype) or more biological conditions (e.g. mutant 1, mutant
2,…). The number of time points can be 3–10 for shorter and 11–20 for
longer time courses. The time points at which mRNA samples are taken are
usually determined by the investigator’s judgement concerning the biolog-
ical events of interest and are frequently irregularly spaced, although for
periodic time course experiments, equally-spaced times are standard.
Measurements of mRNA abundance will be based on mRNA extracted from
cell lines, tissue samples or whole organisms, and in what follows we will
use the general term units for the source of the mRNA. The major advan-
tage of microarray time course studies is that they give us the ability to
monitor the temporal behavior of a biological process of interest through
the measurement of expression levels of thousands of genes simultane-
ously. This can be a powerful experimental design for identifying patterns
of gene expression in the units of interest.

Time course experiments can be classified into two main categories which
we term periodic and developmental. Periodic time courses include natural
biological processes whose temporal profiles follow regular patterns.
Examples are cell cycles (4–6), and circadian rhythms (7), and we expect reg-
ulated genes to have periodic expression patterns. In the literature, periodic
time course experiments are frequently unreplicated, that is, they arise as a
single series of microarray experiments, experimenters perhaps preferring to
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use scarce resources obtaining a finer temporal resolution, rather than
repeating measurements at times already observed. In what we term devel-
opmental time course experiments, gene expression levels are measured at
successive times during a developing process, for example, during the natu-
ral growth and development of, or following, a treatment applied to the
units. In such cases there are usually few prior expectations concerning the
form of the temporal profiles. Here there are commonly two to five replicate
series, but sometimes there is no replication.

We now summarize several microarray time course experiments.
Tomancak et al. (8) conducted a study of Drosophila embryogenesis using
microarray time course experiments as the control of RNA in situ hybridiza-
tion. Canton S fly embryos were collected, transferred to an incubator and
aged. At hours 1 to 12 post egg laying, the embryos were dechorionated
and quick-frozen, yielding 12 time point samples. The same procedure was
repeated on three different days, producing three replicates. Himanen et al.
(9) reported a study on a lateral root induction system of Arabidopsis
thaliana to characterize the early molecular regulation induced by auxin.
Seeds of A. thaliana were germinated on media containing auxin transport
inhibitor N-1-naphthylphthalamic acid (NPA). After the germination, the
seeds were moved to media with auxin 1-naphthalene acetic acid (NAA)
only and the samples of the root segments were collected at four time
points: 0, 2, 4, and 6 h after the transfer from NPA to NAA. There were two
biological replicates at each time point and cDNA microarray experiments
with the reference design were performed. They identified 906 differentially
expressed genes over time and grouped these genes into six major clusters.
In Qi et al. (10), bone marrow-derived mesodermal progenitor cells (MPCs)
were obtained from three donors and the gene expression profiles for MPCs
or MPCs induced to the osteoblast or chondroblast lineage for 1, 2, and 7
days were monitored using cDNA microarrays. They identified 41 tran-
scription factors differentially expressed over time, in addition to some
known signaling genes, hormones, and growth factors involved in osteo-
genesis. A fourth example of a developmental time course study is
Schwamborn et al. (11). These authors studied the transcriptional response
of the human astrocytoma cells U373 to tumor necrosis factor α (TNFα).
Again, cDNA microarray experiments were performed. Samples from both
TNFα-treated and untreated U373 cells were collected at 1, 2, 4, 8, and 12 h
post treatment, and each time point had three biological replicates. The
temporal profiles between these two treatments were compared. More than
880 genes were shown to be responsive to TNFα. In Tepperman et al. (12),
gene expression samples were collected at six time points, and the gene
profiles of wildtype (wt) and the phytochrome B (phyB) null mutant A.
thaliana were compared to identify genes regulated by phyB in response to
continuous monochromatic red light (Rc) during the induction of seedling
de-etiolation. The study of transcriptional response to corticotrophin-
releasing factor (CRF) in Peeters et al. (13) provides an example of
unreplicated time course experiments with four different treatments:
DMSO, ovine CRF in DMSO, R121919 in DMSO, and CRF plus R121919 in
DMSO. Samples were collected at 0, 0.5, 1, 2, 4, 8, and 24 h after these four
treatments were applied to mouse AtT-20 cells, and were hybridized to
Affymetrix chips.
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Following standard practice in statistics (14), we further categorize time
course experiments into longitudinal and cross-sectional. Longitudinal
experiments are those in which the mRNA samples at different times are
extracted from the same unit, be it cell line, tissue or individual. This allows
joining of ordinate values corresponding to observations on the same unit
at different times, either by straight lines or fitted curves, to give the unit’s
time course for each gene, which will also be called the temporal pattern or
profile. By contrast, cross-sectional time course experiments are those in
which the mRNA samples at different times are extracted from different
sources (units). With cross-sectional data, the individual data points can
also be joined across time, using averages when there are replicate meas-
urements, but the interpretation of the resulting curve is different. It will
not correspond to any particular unit, but will be thought of as a popula-
tion curve. In practice there will be experiments exhibiting features of both
longitudinal and cross-sectional types, e.g. Tomancak et al. (8). There are
more cross-sectional microarray time course experiments published to date
than longitudinal ones, for example, Tepperman et al. (12) and Himanen
et al. (9) cited above. This is probably because it is often infeasible to carry
out longitudinal experiments because of the limited availability of mRNA
from individual organisms such as laboratory mice. However, Qi et al. (10)
is an example of a longitudinal study.

In this chapter we review methods for the design and analysis of micro-
array time course experiments. After discussing design issues in Section
20.2, we turn to methods for identifying the genes of interest to the experi-
menter in Section 20.3, be they genes which change over time, or genes
which change differently over time between two or more biological condi-
tions. Depending on one’s perspective, this task can be viewed as a ‘filtering’
of the genes to remove those which are not of interest, before turning to a
different kind of analysis such as clustering, or it can be seen as identify-
ing a small to moderate list of genes for validation and further
characterization. We use the microarray time course data of the study in
Drosophila embryogenesis in Tomancak et al. (8) to illustrate the concept of
moderation and compare some of the statistics we describe below. We then
review the literature on clustering gene expression microarray time course
data in Section 20.4, and end with a few comments about alignment of
time series in Section 20.5.

We close this introduction with a few remarks on why the analysis of
microarray time course data is special, and not adequately covered by the
enormous literature that already exists on the analysis of time series (see
e.g. 15 and references therein). There are three principal reasons. One is the
fact that microarray time series are usually so short that we cannot consider
applying methods typically used to analyze time series data, for example
ARMA, Fourier or wavelet methods, as in Diggle’s and other time series
books. A second reason is that there are typically thousands of genes and
hence thousands of short time series, all sharing the common experimen-
tal conditions. It is natural to think of analyses which have elements in
common for all genes, such as the empirical Bayes (EB) methods described
below. While there is some literature on EB methods in time series, we know
of none involving thousands of series, as is the case here. Finally, an impor-
tant aspect of microarray gene expression data is the clustering of genes,
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here based on their temporal profiles. As far as we know, this problem has
not arisen in the traditional time series literature, at least not in the form
we meet it here. A far more relevant body of literature is that on longitu-
dinal data analysis, for when the data are longitudinal, this is precisely the
right context. When the data are not longitudinal, our context is that of
many related regression models.

20.2 Design

The choice of design for microarray time course experiments will depend
on several factors, principally the questions the researcher wishes to
address, and the available resources, including mRNA, microarrays, and
related reagents. We refer to Yang and Speed (16) for a general discussion
of design issues for microarray experiments.

The first and most important microarray time course design question
for an investigator will be whether to carry out a longitudinal or cross-
sectional study. As explained in Diggle et al. (14), while it is often
possible to address the same biological question using either longitudinal
or cross-sectional experiments, the major merit of longitudinal time
course studies is they provide information about the temporal changes in
gene expression levels within units, something that is not possible with
cross-sectional studies. In statistical terms, the difference between longi-
tudinal and cross-sectional experiments comes from the fact that gene
expression measurements are typically correlated over time within units,
and these correlations can be estimated and used to advantage in longi-
tudinal studies. On the other hand, such biological correlations cannot
be detected in cross-sectional time course studies, since mRNA is
extracted from different sources at different times.

It follows from what has just been said that if temporal changes in gene
expression over time are of primary interest to the experimenter, an effort
should be made to carry out a longitudinal study wherever possible. We
appreciate that in many, and perhaps most, cases this may be infeasible,
because of the impossibility of repeatedly sampling the mRNA from the
same units. Nevertheless, a good approximation to a longitudinal study can
be often realized by creating parallel, identically treated units, and sampling
from different ones at different times. The difference between this kind of
design and true longitudinal design depends on just how similar are the par-
allel, identically treated units. In some cases, they can be very similar indeed,
and we observe the correlations characteristic of a genuinely longitudinal
design, although their origins may be different. In such cases, these designs
can be more powerful than cross-sectional studies for detecting changes.

Although we might give the impression that, for design purposes, the
distinction between longitudinal and cross-sectional studies is straightfor-
ward, this is not really the case. There are many contexts in which hybrid
studies pose more challenging design problems. For example, we might run
replicate time course experiments on plants grown in a growth chamber,
where each replicate consists of a series of successively sampled plants
grown together under controlled conditions. This study is cross-sectional
from the perspective of plants, but longitudinal from the point of view of
growth chambers. The appropriate number of full replicates, and of plants
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at each time within replicates given fixed resources, will depend on the rela-
tive magnitude of the different components of variation.

The number of time points is usually decided by the biological back-
ground and the cost of the study. More time points permits a finer analysis
of temporal patterns, e.g. a more accurate determination of the time of
onset or decay of a gene’s expression, but in some experiments accuracy of
this kind is not required.

Questions of interest to an investigator might concern the temporal
profile of genes for one biological condition, such as a desire to identify
cell-cycle-regulated genes. Alternatively, interest might focus on compari-
son between gene profiles across two or more conditions. We might want
to identify those genes which change over time in a wildtype organism,
and similarly those genes which change over time in a mutant organism,
and identify those genes whose temporal profiles for the wildtype and
mutant are different. The latter may include many genes which are unchang-
ing in one or the other of the two biological conditions. The way in which
such questions can affect the choice of design is explained in Yang and
Speed (16), and we will not revisit that here in detail.

A short time course experiment can be regarded as a single factor exper-
iment with time as a factor (see 17, 18). What makes it different from other
single factor experiments is the additional information from the natural
ordering of time course samples. This natural ordering of levels will lead to
certain comparisons being of greater interest to the researcher, and others
of lesser interest. For example, comparisons of each time point mRNA
sample with the baseline or differences between consecutive time points
are likely to be of greater interest than comparisons between widely sepa-
rated times. Interest might focus on specific aspects of the temporal patterns
of gene responses, such as monotonicity, convexity, and linearity (16).

The design of time course experiments can be considerably more compli-
cated in the two-color comparative experiments (e.g. cDNA arrays) in
comparison with single-channel experiments (e.g. Affymetrix chips),
although if a common reference design is used, the two cases are fairly
similar. For short two-color comparative time courses, it is possible to
enumerate all the possibilities to find the optimal design. However, for
those with a much larger number of time points, like the yeast cell cycle
data in Spellman et al. (5), this is not feasible. There is not much literature
on the design of time course experiments, but recently, Glonek and
Solomon (19) described a method for designing short cDNA time course
experiments. They optimized statistical efficiency and identified so-called
admissible designs, and selected efficient designs based on the effects of
most interest to the biologists, the number of arrays available, and other
resources. Their approach was shown to give designs better than the
popular common reference design and those incorporating all possible pair-
wise comparisons. Optimal design for microarray time course experiments
is a research topic for the future.

Replication

Replication is an important aspect of all statistical experimental design. As
described in Yang and Speed (16), there can be three types of microarray
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replicates: biological replicates where mRNA samples are taken from differ-
ent units; technical replicates, where mRNA samples are taken from the
same unit and are split and hybridized onto different arrays; and within-
array replicates, where probes are spotted in replicate on the same array.
These types apply equally to longitudinal and cross-sectional time course
experiments. The variation between gene expression measurements taken
on these three types of replicates will be different, and in general is gene-
specific. Replication is a good thing, as it provides estimates of variability
relative to which temporal changes and/or condition differences can be
assessed, making analysis much more straightforward. Biological replicates
are generally best, as they permit the conclusions from the experiment to
be extrapolated to the wider population of units from which the experi-
mental units were obtained, something which is not possible with only
technical replicates. With unreplicated experiments, the inference to a
wider population is not possible, and the analysis is less straightforward,
being more dependent on unverifiable assumptions, as there is no estimate
of pure error which can be used. We suggest at least three replicates at every
time point. When replicates are available, it is better to use the variation
between them in any analysis, rather that just average across the replicates
and proceed as with a single time course experiment. Many of the methods
we describe below require replicates, and are designed to be effective with
the small numbers of replicates common in this context.

20.3 Identifying the genes of interest

There have been many published studies involving developmental time
course experiments. As indicated above, experimenters’ aims vary, but
we can categorize them broadly as: (i) one-sample, where the aim is to
identify genes which change over time, perhaps in some specific way;
(ii) two-sample, where in addition to identifying temporally varying
gene expression, interest is in comparisons across two biological condi-
tions; and (iii) D > two-sample experiments, which are as in (ii), with D
≥ three biological conditions. These categories apply equally to longitudi-
nal and cross-sectional studies. Before we go on to the analysis methods,
we illustrate the foregoing by assigning some of the case studies cited
above to their category.

The study in Himanen et al. (9) on a lateral root induction system of A.
thaliana to characterize the early molecular regulation induced by auxin is
an example of a one-sample problem: only a single treatment (i.e. NPA
followed by NAA) was applied to the same type of cells, and the genes
whose expression levels change over time were of interest. Examples in the
two-sample category include the study of Schwamborn et al. (11), who
compared the temporal profiles between the TNFα-treated and untreated
human astrocytoma cells U373, in order to elucidate the post-treatment
transcriptional response. Similarly, Tepperman et al. (12) compared the
temporal profiles of genes in wild type (wt) and phytochrome B (phyB) null
mutant A. thaliana, to identify genes regulated by phyB in response to
continuous monochromatic red light (Rc) during the induction of seedling
de-etiolation. Both of these studies involved just two different biological
conditions: treated versus control cells, and wild type versus mutant organ-

262 DNA Microarrays



isms. In this type of problem, identifying all the genes with different tempo-
ral profiles between the two biological conditions was usually of interest,
although sometimes only genes with different shapes were of interest, with
those having similar shapes but different magnitude across the two condi-
tions not being of interest. An example in category (iii) is the study of
transcriptional response to CRF described in Peeters et al. (13). There gene
expression levels were measured at 0, 0.5, 1, 2, 4, 8, 24 h after four differ-
ent treatments are applied to mouse AtT-20 cells. As in the two-sample
problem, genes of interest are those which have different gene expression
profiles over time, either in shape and magnitude, or in magnitude only,
between the four treatments.

The identification of temporally changing or differentially changing
genes not only gives insight into the biological processes under study, it
also provides a way of selecting a subset of genes from the entire gene set
for further analysis such as clustering. As yet there are relatively few
methods available for identifying the genes of interest in this context. The
approaches most widely used are those for identifying differentially
expressed genes for replicated microarray experiments across two or more
independent sample groups (20–29). The idea here is the simple one of
testing whether there are changes in a gene’s expression across time by
making comparisons between times, for example between all consecutive
pairs of time points, or all possible pairs of time points (85). It is reason-
able though not ideal to analyze time course data with these approaches,
as they assume independence of the samples across different times, which
is not true for longitudinal time course data. We will give some solutions
to these problems for both longitudinal and cross-sectional data in the
following subsections.

ANOVA and the F-statistic

An intuitive way to select differentially expressed genes from time course
data is to use the classical ANOVA (cross-sectional) or mixed-effect ANOVA
(longitudinal) model (14, 18). In the one-sample case, one includes time as
a factor and possibly replicate as another factor, and calculates the F-statis-
tic corresponding to time. Similarly, for two- and D > two-sample cases, one
includes the factors time and biological condition, and their interaction term
in the model, and possibly replicate as another factor, and computes the F-
statistic for the interaction term. Wang and Kim (30) has a one-sample
example using classical one-way ANOVA. In order to obtain approximately
valid p-values, care needs to be taken to deal with multiple testing (26 and
references therein).

Park et al. (31) proposed a modified ANOVA approach and some variants
without the normality assumption. Their basic model is like the usual two-
way ANOVA with time, biological condition, and their interaction as
effects. Genes which are not significant (after p-value adjustments) in the
time × condition interaction term will be fitted with the second model,
removing the interaction term. Then genes with significant time effect after
p-value adjustments are selected. However, their method ignores the poten-
tial correlations among times from longitudinal time course data. Even if
there are no biological correlations, the fact that there are usually only very
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few replicates makes the estimation of gene-specific variances unstable.
Romagnolo et al. (32) and Wang and Kim (30) used mixed-effect ANOVA
to identify genes with different temporal profiles between the heat-shock-
treated let-60 and wildtype, and dauer exit and L1 starvation C. elegans,
respectively. Himanen et al. (9) also used mixed-effect ANOVA for their one-
sample problem. Chapter 6 of Diggle et al. (14) discusses some standard
ANOVA methods for longitudinal data, and we refer the reader there.

A number of questions are not adequately addressed by classical ANOVA
methods or the variants of Park et al. (31). First, to obtain an F-distribution
for the F-statistic, we require that the samples at different time points are
independent, an assumption easily violated by longitudinal time course
data, and we also require normality of the observations. The robustness of
the F-distribution to deviations from normality is well-studied (see e.g. 33),
but for gene expression measurements on the log scale this may not be a
great concern. Secondly, as a result of the very large number of genes, and
relatively small number of replicates, the F-statistic may lead to more false
positives and false negatives than would normally be the case, because of
poorly estimated variances in the denominator. See Tai and Speed (34) for
the results of a simulation study. This issue can be addressed using the
notion of moderation (see below).

Despite these reservations concerning the F-statistic, it should be under-
stood that it has been and will continue to be effective for identifying genes
of interest to researchers. However, we believe that we can do this job better
with alternative statistics.

Moderation

Typically, genes with large changes in gene expression levels over time rela-
tive to their replicate variances are best candidates for following up.
However, given the thousands of genes in a microarray time course exper-
iment, and the small number of replicates, the variances (in the case of
cross-sectional data) or variance-covariance matrices (in the case of longi-
tudinal data), are usually very poorly estimated. As a result, some genes
which exhibit relatively small amounts of change over time and small repli-
cate variances, may have large between-to-within time F-statistics because
of these under-estimated denominators. We may conclude that such genes
are changing over time, but if they are not, they will be false positives. For
example, Jiang et al. (35) mentioned such genes. Figure 20.1 gives an exam-
ple of such a gene from Tomancak et al. (8). The F-statistic for this gene has
a higher ranking than many other genes exhibiting greater change in
expression levels over time, so we consider it a false positive. On the other
hand, some genes with large amounts of changes over time, but also large
replicate variances, may have small F-statistics because of over-estimated
denominators. Such genes may be false negatives, that is may be changing
over time, but not be identified as such. The gene in Figure 20.2 is clearly
changing over time, however, the expression level of experiment B at 10 h
is much lower than those of experiments A and C. This single outlier leads
to lower rankings for the F-statistic compared to all the other statistics
mentioned below; however, this gene is very likely to be of interest. By
moving (shrinking) gene-specific variances or variance-covariance matrices
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A probable false positive gene (see text).
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towards a common value estimated from the whole gene set, the total
number of false positives and false negatives can usually be reduced. This
is what we term moderation.

The idea of moderation has entered into the analysis of microarray data
in different forms. Efron et al. (21) and Tusher et al. (22) tuned the t-statis-
tic by adding a suitable constant to the standard deviation, the constant
being estimated by a percentile of sample standard deviations, by mini-
mizing a coefficient of variation, respectively. Their approaches are not
based on any distributional theory. Lönnstedt and Speed (24) brought the
idea of moderation in the univariate hierarchical Bayesian mixture model
for two-channel comparative experiments by smoothing gene-specific
residual sample variances toward a common value. Smyth (29) formally
introduced the moderated t-statistic in the univariate general linear model
setting by substituting the denominator of t-statistic with a moderated
denominator. The gene-specific moderated sample variance in Smyth (29)
is defined based on some nice distributional theory and the hyperparame-
ter estimates derived there are shown to perform better than those in
Lönnstedt and Speed (24). Tai and Speed (34) further extended the univari-
ate model in Lönnstedt and Speed (24) and Smyth (29) into multivariate
settings and introduced the MB-statistic (multivariate empirical Bayes statis-
tic) and the T

~2 statistic to rank genes in the order of differential expression
in the one- and two-sample cases in the longitudinal time course context.
In addition, Tai and Speed (36, 37) derived MB-statistics for D > two samples
for longitudinal and cross-sectional data.

Likelihood-based approach

Before we go on to discuss our multivariate empirical Bayes methods, here
we briefly comment on the likelihood-based approaches for longitudinal
time course data. Given the very few replications in this context, the gene-
specific sample variance-covariance matrix or its variant may be singular
and the resulting analysis can be unstable. Guo et al. (38) proposed the
gene-specific score based on the robust Wald statistic for one-sample longi-
tudinal data, using an approach similar to Tusher et al. (22), adding a small
positive number times the identity matrix in the denominator.

(20.1)

where L is an r × p matrix of rank r, b̂ is the estimated p × 1 vector of
unknown regression parameters b, V̂S is the estimated covariance matrix for
β̂ , and λw is a positive scalar. The way they estimated λw is exploratory.
Moreover, their approach is for a one-sample problem only, and the fact
that the number of subjects is usually very small makes asymptotic theory
inappropriate.

Storey et al. (39) also proposed a likelihood-ratio based approach, assum-
ing gene expression values are composed of population mean and
individual deviates. They constructed the F-statistics for both longitudinal
and cross-sectional data in a standard way, and presented a careful treat-
ment of the multiple testing issue. In contrast, Tai and Speed (34) suggested
the moderated LR and Hotelling T 2 statistics, with the smoothing of gene-
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specific sample variance-covariance matrix making use of the replicate vari-
ability information across the whole gene set, and then they simply ranked
genes according to one or the other statistic. These two statistics were
shown in a simulation study to perform about as well as the MB-
statistic described below.

Empirical Bayes

The existence of thousands of genes in the microarray time course context
brings to mind the empirical Bayes (EB) approach to inference. This is a
model-based way of introducing moderation into the analysis.

In Tai and Speed (34), a multivariate hierarchical normal model with
conjugate priors is proposed to derive the posterior odds for differential
expression in the one- and two-sample problems. This is designed for longi-
tudinal data, and takes into account correlations across times. When all
genes have the same number of replicates, the MB-statistic for the null
hypothesis that the expected profile equals to 0, or the paired two-sample
problem with the null hypothesis that the expected profiles are the same,
is a monotonic increasing function of the statistic T

~2 = t̃’t̃, where

(20.2)

is just the traditional multivariate t-statistic with the denominator replaced
by a moderated covariance matrix S̃. This expression incorporates the gene-
specific covariances but also shares the covariance information across genes:

(20.3)

Here S is the gene-specific sample variance-covariance matrix; X� is the gene-
specific sample average time course vector; n is the number of replicates; v
and Λ are hyperparameters estimated from the whole gene set (see 34 for
details). The MB-statistic or T

~2 statistic for the independent two-sample
problem is also derived in Tai and Speed (34), where differential expression
now means that the expected profiles are different between the two biolog-
ical conditions. It is shown there that the MB-statistic achieves the lowest
numbers of false positives and false negatives, and performs about as well
as the moderated Hotelling T 2 statistic. One of the values of the multivari-
ate empirical Bayes is that it provides a natural way to estimate the
gene-specific moderated sample covariance matrix, while the likelihood
ratio based approach (moderated Hotelling T 2 statistic) does not.

Let Ydi be the i-th replicate for the d-th condition, and Y� and Y�d be the
overall sample average, and average for the d-th condition only, respec-
tively. In the case that there are more than two biological conditions and
all genes have the same number n of replicates within each condition, the
posterior odds for difference between conditions for a conjugate normal
model are proportional to
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(20.4)

where TSSP = (Ydi – Y�) (Ydi – Y�)′ and WSSPd = (Ydi – Y�d) (Ydi –
Y�d)′ are the total and within-

condition sums of squares and products, Md, M, and vΛ are matrices
involving the (condition-specific) prior means and variance-covariance
matrices, respectively. This is our EB analogue of Wilks’ likelihood-based Λ
from MANOVA (see 36 for details).

For cross-sectional data across D ≥ two biological conditions, Tai and
Speed (37) derive the posterior odds that the expected temporal profiles are
different among biological conditions versus they are the same. Let Ydji be
the log2 intensity value or log2 ratio of this gene for the d-th biological condi-
tion, j-th time point, and i-th replicate. Ydji are independent across times 
(j = 1,…, k), biological replicates within conditions (i = 1,…, ndj) and biolog-
ical conditions (d = 1,…, D). The sampling times need not to be the same
within and across biological conditions. For the simplest case, we assume
they are, and that all genes have the same number of replicates n for all
conditions and times. Again, under a conjugate normal model with
unstructured means, the posterior odds are proportional to

(20.5)

where Y�dj = n–l Ydji and Y�j = D–1 Y�dj denote the average log2 (relative)
expression level at the j-th time point for the d-th condition only and all
the conditions, respectively; TSS = (Ydji – Y�j)

2 and WSSd = 
(Ydji – Y�dj)

2 are the total and within sums of squares, respectively; md, m, and
vλ2 are quantities involving (condition-specific) prior means and variances.
This is a special case of our fully moderated F-statistic, the EB analogue of
the traditional F-statistic. Gene selection using either the MB-statistic or the
T̃ 2 statistic can be based on rankings.

The multivariate EB procedure in Tai and Speed (34) focuses on moder-
ating the denominator of the multivariate t-statistic t, and ranks genes
according to the moderated statistic T̃ 2, to reduce the number of false posi-
tives and false negatives resulting from very small or very large replicate
variances or covariances. Alternatively, one could replace the numerator of
the multivariate t-statistic with a robust estimate, to avoid the problem of
very large T̃ 2 resulting from outliers. Such an outliers issue can be common
in the microarray time course context, when the sample sizes are typically
very small (two or three). Incorporating robust methods into the analysis
of microarray time course is a research topic of interest here. Figures
20.3–20.5 gives the profiles of the top-ranked genes from Tomancak et al.
(8) using the one-sample longitudinal MB-statistic (34), the one-sample
cross-sectional MB-statistic with a fifth-degree polynomial model for the
means (37), the moderated F-statistic (29), and the usual F-statistic with
unstructured means.
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The top gene by the one-sample longitudinal MB-statistic.
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Regression approaches, including B-splines

To date these methods have been used mainly for unreplicated time course
data under a single biological condition. Zhao et al. (40) outlined a regres-
sion model to search for genes with transcriptional response to a stimulus.
Their regression function was built to relate each gene’s profile to a vector
of covariates including dummies for the stimulus categories, time, and
other characteristics of the sample. Their model included gene-specific
parameters and parameters to model the heterogeneity across arrays. The
mean vector was estimated using the technique described in Liang and
Zeger (41). They further focused on the single-pulse model (SPM), which is
specific for the setting when cells are released from cell cycle arrest. Xu et
al. (42) described an application of the same kind of regression model to a
time course study involving Huntington’s disease.

Several researchers have suggested the use of B-splines to model gene
profiles. In Bar-Joseph et al. (48) the expression profiles for each gene and
each of two biological conditions were represented by continuous curves
fitted using B-splines. A global difference between the two continuous
curves and an ad hoc likelihood based p-value was calculated for each gene.
Other papers using B-splines to model profiles are Luan and Li (44) and
Hong and Li (45). Luan and Li (44) adopt the shape-invariant model (46,
47) for guide genes, and model the common periodic function shared by
all periodically expressed genes using a B-spline basis. Such genes were iden-
tified using a false discovery rate (FDR) procedure. Both the B-spline based
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approach in Bar-Joseph et al. (48) and Luan and Li (44) were illustrated on
the yeast cell cycle datasets. They do not seem suitable for short time
courses. Similarly, Hong and Li (45) proposed a B-spline based approach to
identify differentially expressed genes in the two-sample case. There they
modeled the expected profile as linear combinations of B-spline basis func-
tions, and used a Markov chain Monte Carlo EM algorithm (MCEM) to
estimate the gene-specific parameters and hyperparameters from the hier-
archical model. They selected differentially expressed genes using empirical
Bayes log posterior odds, and the posterior probability based FDR. They
showed their method performed better than the traditional ANOVA model.
As above, the approach in Hong and Li (45) seems more suited to longer
time course data.

Contrasts

A simple but powerful tool for extracting temporal patterns is found in
contrasts: linear combinations of gene expression measurements over time.
Contrasts usually but not always have their coefficients summing to zero.
An example of the use of contrasts can be seen in Lönnstedt et al. (49) where
samples were taken from cells at 0.5, 1, 4, and 24 h after stimulation with
a growth factor. Genes were regarded as early responders if they had large
values of < c, E >= �t ctEt where ct = (t – 24.5)2 and Et is the gene expression
value at time t, while those having large values when ct = t2 were termed
late responding genes. Smyth (29) used contrasts in the univariate linear
model setting, and derived a partly moderated F-statistic for testing whether
there is any change in gene expression levels over time. This approach
assumes the samples are independent, and so would be appropriate for
cross-sectional data. Fleury et al. (50) described a valuable multi-criterion
optimization method called Pareto front analysis, for ranking and selecting
genes of interest. In their paper they made use of contrasts to select genes
with many predefined patterns. In essence, Pareto fronts and their variants
(50–52) seek to identify genes with large values for all of a set of competing
contrasts of interest.

Hidden Markov models

Yuan et al. (53) presented a hidden Markov model approach for selecting
differentially expressed genes from replicated time course experiments with
multiple biological conditions. They considered all possible equality and
inequality relations among means across biological conditions as states, and
the expression pattern process was modeled as a Markov chain, with either
time-homogeneous or non-homogeneous transition matrices. The observa-
tions were conditionally independent given the state of the chain. In this
approach, dependence between gene expression values at different times
was completely described by the pattern process (i.e., the hidden Markov
chain), and genes were selected based on the posterior probabilities of states
of interest. This is an example of using an HMM to model time-dependence
in microarray time course data, while many others have used HMMs in this
context for clustering.
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20.4 Clustering

The identification of differentially expressed genes narrows down the
number of genes for further analysis. Clustering genes with similar tempo-
ral profiles is commonly the next phase of the initial analysis. This is done
in the belief that genes with similar temporal profiles may well be involved
in similar biological processes, for example in the same aspect of response
to a treatment. Frequently there is a further hope that genes in the same
cluster share common sequence motifs in their regulatory region. In clus-
tering, the focus might be on grouping genes with particular temporal
profiles, say early induced, monotonic increasing, up first and then down
and so on, or it may simply be a way of partitioning all genes into auto-
matically defined groups.

Below we briefly summarize the literature on clustering, referring to the
review of Möller-Levet et al. (54) for a comprehensive treatment of the
issues. One of the earliest examples was hierarchical clustering of the yeast
cell cycle data by Spellman et al. (5) and Eisen et al. (55). Shortly afterwards,
self-organizing maps (SOM) were applied to the same data, as well as a human
dataset concerning hematopoietic differentiation by Tamayo et al. (56),
while the k-means algorithm was used in Tavazoie et al. (57). This early liter-
ature used rather arbitrary criteria for reducing the number of genes prior
to clustering. In the GENECLUSTER package, genes are filtered by a simple
variation criteria; see (58) and GENECLUSTER 2 Reference Guide for details
(http://www.broad.mit.edu/cancer/software/genecluster2/gc_ref.html). In
producing a 6 × 4 grid SOM, Saban et al. (59) started with 588 genes which
had to be induced at least three-fold over the initial time point in one repli-
cate at some time point, and induced at least two-fold over the initial time
point in the second replicate at that time point. Such filtering rules are not
uncommon in the literature (see 60). A more recent example was the hier-
archical clustering of 906 genes into six main groups representing three
major patterns in Himanen et al. (9). A significance test within a mixed-
model analysis was used to select 906 genes.

Different clustering algorithms and distance measures can lead to very
different results. A perennial challenge with cluster analysis is the deter-
mination of the number of clusters. In recent years methods have been
developed to deal with this issue, e.g. the gap statistic in Hastie et al. (61),
see also (62).

As well as these classical clustering approaches, a number of model-based
clustering algorithms have been proposed (e.g. 63). Ramoni et al. (64) gave
a Bayesian model-based clustering algorithm, which represents temporal
profiles by autoregressive models and used an agglomerative procedure to
determine the number of clusters. Yeung et al. (65) used Gaussian mixture
models in which each component corresponds to a cluster, the number of
clusters being determined by the Bayesian Information Criterion (BIC).
HMM clustering can be found in Schliep et al. (66) and Schliep et al. (67).
There, each cluster was represented as one HMM. The method started with
a collection of HMMs with typical qualitative behavior, and an iterative
algorithm was used to fit these models and assign genes to clusters in such
a way as to maximize the joint likelihood. This method also dealt with
missing data, and was illustrated on yeast cell cycle data of Spellman et al.
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(5), and on the fibroblast serum response data of Iyer et al. (68). Similarly,
Ji et al. (69) and Zeng and Garcia-Frias (70) also used HMM approaches to
cluster microarray time course data. Bar-Joseph et al. (43) and Luan and Li
(71) did likewise, but first represented the profile for each gene by a contin-
uous curve fitted by B-splines with gene-specific and class-specific
parameters. Both papers illustrated their methods on the yeast cell cycle
and fibroblasts serum response datasets. Zhang et al. (72) proposed a biclus-
tering algorithm to discover genes which are co-regulated in only part of
the time course. They illustrated their algorithm on the yeast cell cycle data
of Cho et al. (4). Other noteworthy approaches were outlined in Peddada
et al. (73) and Wakefield et al. (74).

Based on the above examples and our experience, we note that most
model-based clustering algorithms have been effective for periodic time
courses, but their satisfactory performance on short time-course experi-
ments is not so clear. For developmental time-course data, traditional
algorithms such as hierarchical clustering, SOM, or their variants based on
distance measures have been more popular, probably because there are
usually too few time points to allow the fitting of models. However, these
approaches have the drawbacks of ignoring possible dependency across
times in longitudinal studies, and generally ignoring the ordered nature of
the time index. We feel that clustering methods which combine features
from both the traditional and model-based approaches are urgently needed,
ones which recognize the time ordering, and will deal with few time points,
as well as temporal dependence and replicates where appropriate.

We end this clustering section by briefly mentioning a couple of other
exploratory approaches like clustering that have used to analyze microarray
time course data. These are correspondance analysis (75, 76), and singular
value decomposition (SVD) (77, 78). Such graphical methods can be quite
powerful.

20.5 Curve alignment

The occasional need to align gene expression profiles comes from the fact
that the rates of biological processes may be different across biological or
environmental conditions, or the sampling times are different between two
time course datasets to be compared. Aach and Church (79) suggested a
time-warping algorithm with or without interpolation, while Bar-Joseph et
al. (43) gave a B-spline approach also for the same task, assuming that each
gene’s profile is fitted with gene-specific and class-specific parameters. As
with so much we have mentioned, these approaches have only been illus-
trated on the yeast cell-cycle data. Again, this idea is well-suited to longer
time series, but may not be suitable for shorter time series. There is clearly
room for more work here.

20.6 Software

Many of the algorithms described in this chapter are implemented in open
source software R (80), which can be downloaded from http://cran.
r-project.org. The Bioconductor project (http://www.bioconductor.org)
provides many software tools for the analysis of microarray data. For the
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algorithms described in this chapter but not listed here, the reader should
consult with the authors for software availability.

Differential expression

• The CyberT program in Baldi and Long (20) with a web interface can be
downloaded from visitor.ics.uci.edu/genex/cybert/. It is also available as
R code hdarray.

• The MB-statistic and T̃2 statistic (34) will be implemented in the Bio-
conductor package timecourse www.stat.berkeley.edu/users/terry/Group/
research/timecourse.html.

• The B-statistic (24, 29) and moderated F-statistic (29) are implemented
in the Bioconductor package limma. The latest limma can be downloaded
from bioinf.wehi.edu.au/limma/. LimmaGUI and affylmGUI (81) are two
nice graphical user interfaces to limma for two-color arrays and
Affymetrix chips, respectively.

• The empirical Bayes method across multiple independent groups in
Kendziorski et al. (27) is available through the Bioconductor package
EBarrays.

Clustering

• SOM: the package GeneSOM written by Jun Yan is available in R.
GENECLUSTER 2.0 in Tamayo et al. (56) can be downloaded from
www.broad.mit.edu/cancer/software/genecluster2/gc2.html.

• hierarchical clustering: the R function hclust implements bottom-up hier-
archical clustering with several types of linkages.

• k-means: the R function kmeans is based on the algorithm in Hartigan
and Wong (82).

• QT_clust proposed in Heyer et al. (83) is implemented by Witold Wolski.
It can be accessed from www.molgen.mpg.de/~wolski/downloads/
clustering/clustering.html.

• CLARITY proposed in Balasubramaniyan et al. (84) is available upon
request from authors.

• The model-based clustering approach in Fraley and Raftery (63) is avail-
able as a R package mclust: www.stat.washington.edu/fraley/mclust/.

• The HMM clustering software GHMM in Schliep et al. (66) and Schliep
et al. (67) is available from ghmm.org/.

Curve alignment

• Aach and Church’s (79) time warping programs genewarp and genewarpi
are available as DOS executables under Win 32. The download page is
arep.med.harvard.edu/timewarp/pgmlicense.html.

20.7 Remarks

We have discussed some statistical issues in the analysis of microarray time
course experiments, touching on their design, the identification of genes
of interest, clustering, and alignment. For the practitioner, we have tried to
offer some ways of addressing these issues, particularly the second.
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As will be apparent from our discussion, many, perhaps most, of the
methods in the literature available for choosing or clustering genes in time
course experiments have been devised and tested on the yeast and human
cell-cycle datasets. There is room for much more research on the analysis
of what we have called developmental time course data, especially their
clustering.

A less obvious bias in our coverage is the fact that almost all of the
methods we have discussed have been for data generated in an experi-
mental setting, with mRNA from cell lines, tissue samples or experimental
organisms such as whole Drosophila embryos, or tissue from inbred strains
of mice or Arabidopsis plants. Recently microarrays have moved to the wider
clinical setting, with microarray data now being collected on human
subjects over time. Such longitudinal studies present novel analytical chal-
lenges, as subject-to-subject variation, even within the same treatment
group, can be substantial. The methods we have reviewed here will not be
appropriate in the clinical context without modifications, for example, by
including fixed or random effects for subjects. This is an important area for
future research, but we can refer to Storey et al. (39) for a promising start.
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Array CGH data analysis
Yuedong Wang and Sun-Wei Guo

21.1 Introduction

Like the spotted cDNA microarrays (1), array comparative genomic
hybridization (CGH) also uses two differentially labeled test (unknown
sample to be analyzed) and reference (known to be genomically normal)
DNAs which are co-hybridized, under in situ suppression hybridization
conditions, to cloned genomic fragments with known physical locations,
spotted and immobilized on glass slides. The hybridized DNAs are then
detected by their different incorporated fluorophores, and the ratios of the
digitized intensity values in the hybridized patterns of the DNAs onto the
cloned fragments are indicative of copy-number differences between the
test and the reference genomes.

The detection of genomic alterations using array CGH requires careful
statistical analysis of the intensity data from the two fluorochrome, since,
besides genuine differences between the two genomes, stochastic fluctua-
tions, measurement errors or other errors of unknown origins, and
consistent, region-specific variations caused by differences in hybridization
characteristics of the incorporated fluorochromes and by local variation in
chromosomal structures, can all cause the ratio to deviate from unity (2).

For conventional CGH, a calibration process is usually invoked, in
which reference versus reference hybridizations are performed to gauge
the normal range of ratio variations (3). The ratios of the test-reference
hybridizations, at each chromosomal segment where the ratio is calcu-
lated, are then compared with, say, the two standard deviations (SD)
outside the mean, obtained from the calibration, and a gain or loss is
declared if the ratio is above or under the two SDs (presumably the
nominal 95% confidence bounds without multiple comparison adjust-
ment) (4). Sometimes a pair of fixed, global thresholds, say, 1.15 and
0.85 (5, 6), are used in lieu of two SDs.

Recognizing the variable nature of the variance of the mean ratio within
and between reference:reference hybridizations and possible inequality of
variances of mean ratio between the test:reference and reference:reference
experiments, a t-like statistic incorporating reference:reference and
test:reference variations to detect genomic alterations segment by segment
was proposed (7). This method, however, assumes that the ratio of the vari-
ances of test:reference ratio means and of reference:reference ratio means
is constant across the whole genome, which may not be true. In addition,
correlation in the estimated variances and the spatial correlation of ratios
in the neighboring segments are completely ignored. Spatial correlations
between neighboring clones can be prominent in array CGH data, since,
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once a clone exhibits alteration, its neighboring clones also tend to have
alterations (8). The spatial correlation among neighboring clones is
expected to be high when the regions with genomic alterations are large,
or when the density of the CGH array becomes high. With high-density
CGH arrays containing 30 000 (9) or even 85 000 (10) oligonucleotides on
a single chip with an average resolution of 30 kb or even higher (10) on
the horizon, proper handling of spatial correlations becomes a pressing
issue. Proper handling of spatial correlation may also increase statistical effi-
ciency and improve precision in estimation, which, in turn, may translate
into requirement for less calibration samples.

Besides the issue of spatial correlation in analysis of array CGH data, sev-
eral additional considerations are in order. First, less restrictive assumptions
on variance are preferable, since the variance may depend on the chromo-
somal structures and thus locations of the clones. Second, the nature of
variance may vary from laboratory to laboratory due to considerable differ-
ences in the execution of array CGH experiments; less distributional
assumption on the ratio would be preferable. Lastly, robustness to outliers
and the minimization of the dominating effect of clones with very small
variance would be desirable. Our recently proposed methods (11) are well
adapted to spatial inhomogeneity as in array CGH data, and have been
applied successfully to the identification of genomic alterations in the
endometrium of patients with endometriosis (12).

21.2 Summary

Data and standard statistics

For simplicity, we use a BAC array data set to illustrate our methods (13).
Our methods apply to more complicated designs with dyes and arrays as
factors (11). We shall analyze one set of data presented by Snijders et al.
(13), GM01524, which can be downloaded from the website http://
genetics.nature.com/supplementary_info/. The data result from an experi-
ment aimed at measuring copy number changes for the cell strain
GM01524 (test sample) against a normal male reference DNA (reference),
which were co-hybridized on a CGH array containing 2460 BAC and P1
clones in triplicate (7380 spots) and with an average resolution of ~1.4 Mb
(13). We shall only focus on chromosome 6 for ease of exposition.

Array CGH data often have systematic biases as do cDNA microarray data
(11). Therefore, the first step in analysis is to remove these biases using a
normalization procedure such as lowess (see also Chapter 17). Details can
be found in Yang et al. (14) or Wang and Guo (11).

Our methods apply to each chromosome separately to detect copy num-
ber changes at clones on the chromosome. For simplicity, we assume, in
the following discussion, that all clones to be considered are on the same
chromosome. After normalization, let yijk be the kth replication of the loga-
rithm of the dye intensity of clone i of sample j, where i = 1,…, I represents
observed clones in a chromosome, j = 1,2 represents two samples (test and
reference), k = 1,…, nj and nj represents the number of replications of 
sample j.
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Assume that yijk
iid
~ N(μij, σ 2

ij). Then the question of whether there are any
significant copy number differences between the two samples at clone i can
be formalized by the hypothesis H0: μi1 = μi2 vs H1: μi1 � μi2. Let

y�ij. = �
nj

k�1

yijk/nj, s
2
ij = �

nj

k�1

(yijk – y�ij.)
2/(nj –1), i = 1,…,I; j = 1,2.

The standard z-statistic

Zi = y�i1. – y�i2., (21.1)

and the standard t-statistic

ti � (y�i1. – y�i2.)/�s2
i�1/�n�1��� s�2

i2/�n�2.� (21.2)

Clone i is declared to have significantly different intensity ratio and thus
copy number between the two samples when the absolute value of the z-
statistic or of the t-statistic is large. It should be noted that the z-test ignores
the heterogeneous nature of variances associated with intensity ratios. The
standard t-test accounts for the variation in the z-statistic and is easy to use
since ti approximately follows a Student t distribution with degrees of
freedom (s2

il/n1 + s2
i2/n2)/((s

2
il/n1)

2/(n1 – 1) + (s2
i2/n2)

2/(n2 – 1)). However, it has
two fundamental problems: (i) the repetition numbers n1 and n2 are usually
small (e.g. n1 = n2 = 3 in the example) because repetitive printing of the
same clone on the slide limits the total number of clones to be printed on
the slide. Even if multiple slides are used, the amount of DNA extracted
from the test sample is often limited and thus only a few slides can be used
for hybridization. Estimates of variances s2

i1 and s2
i2 are unreliable when

sample sizes are small (11, 15); (ii) spatial correlations between neighbor-
ing clones are ignored, rendering the methods less efficient. Our methods
aim to overcome these two problems by pooling information in neighbor-
ing clones to yield more stable estimates of the variances and to detect
clones with copy number changes.

Smoothing the variances

From a modeling perspective, a chromosome to be analyzed can be practi-
cally viewed as continuous, and the clones, with known physical locations,
are observation points interspersed along the chromosome. Within each
chromosome, it is reasonable to assume that the variance is a smooth func-
tion of clone locations. Specifically, let si = �s2

i�1/�n�1�+� s�2
i2/�n�2� be the standard

error and xi be the genome position of clone i, we assume that

log(si) � h(xi) � ei, i � 1,…,I, (21.3)

where h is a smooth function. We fit Equation 21.3 using the robust lowess
method with 30% of the data used for smoothing at each position.
Logarithm of standard errors and lowess fit to Equation 21.3 are shown in
Figure 21.1.

We then define a modified t-like statistic as

ui � (y�i1. – y�i2.)/exp(ĥ(xi)). (21.4)
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Replacing standard errors by their smoothed estimates also reduces the
effect of outliers and prevents clones with very small variances from domi-
nating the result.

Detecting locations and regions with different expression levels
using hybrid adaptive spline

High-resolution mapping of specific regions is of crucial importance for
the subsequent discovery of the disease-associated clones and thus the
genes they harbor. The copy number changes in cancer often span large
regions of the genome (16), although losses or gains of smaller scale and
micro-deletions or micro-gains (from 100 bp to 4 Mb and not detectable
by standard cytogenetic methods) are also of importance. Several meth-
ods have been proposed to take into account the spatial correlations such
as likelihood based on a fixed-width window correlation structure (8),
moving averages (17), CGH-Plotter (16), break point model (18) and clus-
ter along chromosomes (19). In reality, correlations may vary with
chromosomal structures and thus locations, and the sizes of segments
harboring genomic alterations also vary along chromosomes. Therefore,
assumptions of fixed correlation structures and difference shapes may be
too restrictive.

We use the hybrid adaptive spline (HAS) that has the ability to handle a
wide variety of shapes and spatial inhomogeneities (20). It is an objective
approach that allows data to dictate the shape of a function. Let yi be one
of the z, t or u statistic defined in Equations 21.1, 21.2 and 21.4 respec-
tively. We assume that

yi � f(xi) � εi, i � 1,…,I, (21.5)
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Figure 21.1. 

Plot of logarithm of standard errors vs. genome positions as circles and the lowess
fit as the solid line.



where f is a function of xi and εi’s are random errors with mean zero and
variance σ2. For simplicity we transformed the variable x into the interval
[0,1].

Since copy number changes occur in local regions, the expectation of a
ratio profile along the chromosome equals zero except in some regions that
harbor the changes. Thus our goal is to detect locations or regions where f(x)
≠ 0. Since f may have discontinuous points and is spatially inhomogeneous,
common nonparametric regression methods such as smoothing spline do
not provide a good estimate for f. Spatially adaptive, HAS was proposed to
handle spatial inhomogeneity as in array CGH data. For simplicity, we intro-
duce the HAS procedure using cubic spline bases. The HAS procedure for
general spline bases can be found in Luo and Wahba (20).

The HAS procedure

Let φ1(x) = 1, φ2(x) = x – 0.5 and ξi(x) = � (xi – u)(x – u)du.

1. Initialization: set the maximum number of bases q (q ≥ 2) and the inflated
degrees of freedom (IDF). Start with k = 2 and two bases {φ1(x),φ2(x)}.

2. Forward stepwise selection: for k = 3,…, q, choose the kth basis ξik (x) to
maximize the reduction in the residual sum of squares (RSS).

3. Optimal number of bases: choose k ≥ 2 as the minimizer of the general-
ized cross-validation (GCV) score 

GCV(k) = RSS/(1 – (2 + (k – 2) × IDF)/I)2.

4. Backward elimination: perform backward elimination to the selected
bases. Decide the final number of bases by the Akaike Information
Criteria (AIC).

5. Fit: fit a standard or ridge regression model to the final selected bases.

The key to spatial adaptiveness is to select bases adaptively based on data.
The IDF is used to account for the added flexibility in adaptively selected
bases. Luo and Wahba (20) suggested the use of IDF=1.2. For array CGH
data, we found that this choice of IDF sometimes under- or over-estimates
the number of bases. Our experiences suggest that the combination of a
smaller IDF (1 or 1.1) with the backward elimination step provides better
fits. We also found that the ridge regression step in the original HAS proce-
dure can lead to over-smoothing for array CGH data. Therefore we
recommend the standard regression using a numerically stable procedure.

We use the following bootstrap procedure to calculate p-values. Denote
the HAS estimates of f and σ as f̂ and σ̂ respectively. We first generated a
bootstrap sample

y*i � f̂ (xi) � ε*i , i � 1,…, I,

where ε*i are sampled with replacement from residuals. Denote the HAS esti-
mates of f and σ based on the bootstrapped sample as f̂ * and σ̂* respectively.
Let D*i = (f̂ *(xi) - f̂ (xi))/σ̂*. Repeat this process B times and denote Di*(b) as
the Di* statistic based on the bth bootstrapped sample. We then calculate
the p-values as

pi = #{b : |Di*(b)| > |f̂ (xi)|/σ̂}/B.

min(xi ,x)

0
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Then clones with pi ≤ α are significant at level a. False discovery rate (FDR)
can be used to circumvent the problem of multiple comparisons (11).

Simulations in Wang and Guo (11) indicated that the modified t-like
statistic based on smoothed variance always improves the performance. The
HAS procedure is more powerful in detecting clustered locations while a
separate t-test is more powerful in detecting isolated locations.

Results

We now apply the HAS procedure to three statistics defined in Equations
21.1, 21.2 and 21.4. Figure 21.2 shows these statistics, the HAS fits, p-val-
ues and locations with significant change in copy numbers between the
two samples. It is obvious that the profile of the standard t-statistic is
rougher than those of the other two statistics in the region between
100 000 kb and 150 000 kb. Standard t-test would miss some of the loca-
tions in this region. For all three statistics, the HAS procedure identified
the whole trisomic region 6q15-6q25 which agrees with the results in
Snijders et al. (13). Wang et al. (19) identified the same region by first
building a hierarchical clustering tree and then selecting the ‘interesting’
clusters. It is interesting to note that, besides the documented trisomy in
the 6q15-25 region, the HAS procedure also identified an isolated gain in
the 6p region that is previously undocumented. It is likely that the gain,
due to its apparently small size, may be too small to be detected by stan-
dard cytogenetic karyotyping methods. 

21.3 Concluding remarks

Our proposed methods for the identification of genomic alterations using
array CGH have several advantages. First, they require much less restrictive
assumptions on the variances of the test:reference ratios. Second, by
smoothing variances along the genome, the smoothed t-like statistics are
more robust to outliers. This is especially important for experiments with
a relatively small number of control samples and/or ratios that follow a
distribution with tails that decay much slower than the Gaussian distribu-
tion. Third, by incorporation of neighboring data with high correlations,
HAS is more efficient and robust in detecting clusters of alterations. It
handles nicely the inhomogeneous ‘curvature’ of the ratio profiles along
the genome. Our inference procedure based on bootstrap does not require
the normality assumption. In view of the observation that there are consis-
tent, region-specific variations in ratio profiles, which may be caused by
differences in hybridization characteristics of the incorporated fluoro-
chromes and by local variation in chromosome structures (such as
telomeres or centromeres) (7), and, in particular, the functional form of the
variation as a function of clone locations is typically unknown, the HAS
procedure is well suited for the array CGH data.

As a high-throughput and high-resolution genetic method for identifi-
cation of whole-genome copy number alterations, array CGH holds a great
potential in uncovering genes involved in disease initiation and progres-
sion in cancer and other diseases. Better and higher-resolution CGH arrays
are on the horizon.
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Figure 21.2. 

Results for chromosome 6 of the cell strain GM01524. Three plots on the left panel
are z-statistics (top), t-statistics (middle) and u-statistics (bottom) as circles and HAS
fits as solid lines. Locations with significant change in copy numbers at 5% (1%)
level based on bootstrap p-values with B = 10 000 are marked at the bottom (top)
of the plot. Three plots on the right panel are transformed p-values, log((p + a)/(1
– p + a)) with a = 0.001, as circles. Regions below three dotted lines represent
rejection regions with α =.01 and α =.05 and FDR ≤ .05 respectively which are
marked at the right end of these lines.



These technical developments may reduce some systematic biases as
encountered before, but proper handling of spatial correlations becomes
increasingly important. In addition, the recently documented copy number
polymorphism in the human genome (21) indicates that large-scale copy
number polymorphisms (about 100 kb or greater) are not uncommon in
normal humans. This finding underscores the importance of experimental
designs and proper choice of reference samples in array CGH studies, and
poses a challenge in identification of copy number changes responsible for
disease initiation and progression.
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MIAME
Robert Wagner

22.1 Introduction

Microarray data analysis is not only a matter of statistical methods but also
a question of how to interpret the results of the performed experiment.
Gene expression data are large and complex and only meaningful in the
context of the specific conditions under which they have been generated.
In many cases publicly available data is poorly annotated, in a way that
important information about the quality of the data or about the normal-
ization and transformation procedures are missing. This makes the
interpretation and comparison of the data difficult and unreliable.

In order to cope with these problems, the Microarray Gene Expression
Database group (MGED; http://www.mged.org/) is developing standards for
microarray data. MIAME (1), the Minimum Information About a Microarray
Experiment, currently in version 1.1, aims to outline the minimum infor-
mation required in order to unambiguously interpret and potentially
reproduce a microarray-based gene expression experiment. It is a set of
guidelines, which specifies the content that should be provided and should
not be confused with a description format. A data model and exchange
format, MAGE (2), which can be used to store the information covered by
MIAME has also been developed by MGED and has become an Adopted
Specification of the Object Management Group (OMG) standards group.
Some of the terminology introduced by MAGE will be used in this chapter
in order to explain the elements of MIAME.

22.2 The structure of MIAME

The MIAME structure is divided into two major sections:

• array design description;
• experiment description.

This reflects the fact that arrays are often manufactured independently of
concrete experiments in which they are used. Therefore array designs can
be described in a separate section, which is independent of the experi-
mental part, and can then simply be referenced from the latter. In general,
all parts of a MIAME description should be given unique identifiers in 
order to reference them in the corresponding sections of the experiment
description.

While some elements of MIAME, especially protocols, are described as
free text, most sections are required to use controlled vocabularies or exter-
nal ontologies. This is essential in order to allow database queries and
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automated analysis on the data. Here, the MGED group has developed the
ontology MO, which is recommended to be used whenever appropriate. If
MO or other external ontologies are not feasible for the data to be described,
MIAME requests the user to apply their own qualifiers and values in the
format of:

(qualifier, value, source)

triplets, where qualifier specifies the name of the element, value its current
instantiation and source the reference, where the controlled vocabulary is
described. For instance,

(qualifier: ‘organism’, value: ‘homo sapiens’, source: ‘NCBI taxonomy’).

In the following sections the elements of MIAME are outlined in detail
giving a ‘checklist’ for the user to verify the completeness of a microarray
experiment description according to the minimum information required.
More information about MIAME and software that is related to it can be
found at http://www.mged.org/miame/.

22.3 Array design description

The array design describes the characteristics of the arrays used in the exper-
iment. The section consists of two parts describing the array as a whole and
its design elements (e.g. its spots). The description of the design elements
is separated into three different classes: feature, identifying the location on
the array; reporter, describing the nucleotide sequence belonging to it; and
composite sequence, summarizing the corresponding gene, exon or splice-
variant. Additionally information about control elements is to be provided.
This second part of the array design description will typically be provided
as a spreadsheet or tab-delimited file. Often it will be available from the
array providers, in which case they can simply be referenced. Sometimes
this part might be difficult to acquire, for instance if commercial array
manufacturers only provide information on the composite sequence level
and not about the reporters. However, it was recently agreed that this part
definitely belongs to MIAME and is necessary when providing information
about the array and its elements.

1. The minimum information about the array design includes:
• the name of the array design;
• the platform type (e.g. spotted glass array, in situ synthesized array);
• surface and coating specifications (e.g. glass, membrane);
• physical dimension of array support (e.g. of the slide);
• the number of features on the array;
• availability (for commercial arrays) or production protocol for the

array.
2. The minimum information about the features includes:

• dimensions;
• attachment (e.g. covalent, ionic);
• a reference to the corresponding reporter(s).

3. The minimum information about the reporters includes:
• the type of reporter (e.g. cDNA, synthetic oligonucleotide);
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• single or double-stranded;
• the sequence, accession numbers in DDBJ/EMBL/GenBank and primer

pair information;
• the approximate length if the exact sequence is unknown;
• clone information (id, provider, date, availability);
• a protocol describing the production of the element in case of a

custom-made array;
• a reference to the corresponding composite sequence(s).

4. The minimum information about the composite sequences includes:
• the name of the gene;
• the reference sequence;
• links to appropriate databases (e.g. SWISS-PROT) if relevant.

5. The minimum information about control elements includes:
• the position of the feature (the coordinate on the array);
• the control type (e.g. spiking, normalization);
• the control qualifier (endogenous, exogenous).

22.4 Experiment description

An experiment is a virtual compilation of biological materials and processes
performed with them (hybridizations) in order to address a biological ques-
tion. This second major part of the MIAME description contains the
following four subparts:

1. Experimental design.
2. Samples used, extract preparation and labeling.
3. Hybridization procedures and parameters.
4. Measurement data and specifications of data processing.

Experimental design

The experimental design characterizes the experiment as a whole and
describes some general information that is necessary in order to query for
an experiment by certain parameters. The minimum information required
in this section is:

• contact information, authors, publishers;
• the type(s) of the experiment (e.g. compound treatment design);
• experimental factors, that is parameters or conditions tested (e.g. time,

dose, response to a compound or treatment);
• the number of hybridizations performed;
• whether and which common reference was used for all hybridizations;
• quality control steps taken (e.g. replicates, dye swap);
• a brief free text description of the experiment and its goals;
• external links (URL) or database accession numbers for further informa-

tion.

Samples used, extract preparation and labeling

A sample is the labeled nucleic acid that is used together with an array in
the hybridization process. The MIAME section about samples describes their
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biological origins as well as treatments performed on the initial material
and resulting products from each intermediate step.

1. The minimum information about the biological origin of a biomaterial is:
• the name of the organism (NCBI taxonomy);
• the sample provider;
• cell type;
• sex;
• age;
• developmental stage;
• organism part (tissue);
• genetic variation (e.g. gene knockout, transgenic variation);
• individual genetic characteristics (e.g. disease alleles, polymorphisms);
• animal/plant strain or line;
• disease state or normal;
• links to clinical information (if available).

2. The minimum information about biomaterial manipulations is:
• growth conditions;
• in vivo treatments (organism or individual treatments);
• in vitro treatments (cell culture conditions);
• treatment type (e.g. small molecule, heat shock, cold shock);
• separation technique (e.g. none, trimming, micro-dissection);
• compound.

3. The minimum information about hybridization extract preparation is:
• the extraction method;
• nucleic acid extracted (total RNA, mRNA or genomic DNA);
• amplification (e.g. none, RNA polymerase, PCR).

4. The minimum information about the labeling process is:
• the amount of nucleic acids labeled;
• the label used (e.g. Cy3, Cy5, 32P, 33P);
• label incorporation method.

5. The minimum information about added external controls is:
• the element on the array expected to hybridize to a spiking control;
• spike type (e.g. oligonucleotide, plasmid DNA, transcript);
• spike qualifier (e.g. concentration, expected ratio).

Hybridization procedures and parameters

Hybridization is the process of joining the complementary nucleic acid
strands of the labeled target and the probes on the array. The minimum
information about hybridization is:

• the labeled extract (sample) used in the hybridization;
• the array used in the hybridization;
• the solution (e.g. concentration of solutes);
• blocking agent;
• wash procedure;
• the amount of labeled extract used;
• time, concentration, volume, temperature;
• a description of the hybridization instruments;
• a detailed free-text protocol on how the hybridization was performed.
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Measurement data and specifications of data processing

The section about measurements describes the data that was obtained as a
result of the hybridization process(es) and consists of three parts: the raw
data originating from scanning: the intensities measured by the image
analysis; and the gene expression levels after normalization and transfor-
mation.

1. The minimum information about the raw data is:
• the hardware used for scanning (make and model);
• the software used for scanning;
• a detailed protocol describing the scanning process including scan

parameters (laser power, spatial resolution, pixel space, PMT voltage);
• (the image file resulting from the scanning of the hybridized micro-

array).

There is no consensus among MGED as to whether the scanned image files
are part of MIAME or not.

2. The minimum information about the measured intensities is:
• the complete output of the image analysis software for each element;
• used image analysis software, version and availability;
• parameters used for the image analysis.

3. The minimum information about the data transformation process is:
• the gene expression data matrix summarizing related elements;
• a detailed description of the data selection and transformation proce-

dures;
• some reliability indicators for each data point (e.g. standard devia-

tion).
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